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Abstract—This paper addresses guided wave propagation in three-
dimensional open omega waveguides. The analysis uses a mode
matching technique, is focused on the discrete modes and includes
both guidance and leakage behavior. It is shown that, in some ranges
of operation, the discrete surface modes turn into leaky modes due to
TE-TM mode coupling, an effect already known for isotropic dielectric
waveguides. The numerical results show the influence of the medium
and geometrical parameters on the attenuation and phase constants of
these leaky modes.
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1. INTRODUCTION

The pseudochiral or omega medium has been presented for the first
time in 1992, by Saadoun and Engheta [1]. This medium can be
obtained by doping a host dielectric medium with omega shaped
conducting inclusions, where the electric and magnetic fields induce
both electric and magnetic polarizations. However, unlike chiral media
[2], electric and magnetic polarizations are perpendicular to each other.
Therefore omega media are nonchiral.

This medium has received considerable attention from the
electromagnetics research community. New results have been presented
in the literature concerning the analysis of reflection and transmission
properties of planar arrays of omega particles [3] and planar structures
of uniaxial chiro-omega slabs [4, 5], radiation of elementary sources
embedded in omega media [6], extraction of constitutive parameters
of omega materials [7, 8], wave propagation in closed parallel plate [9],
circular [10] and rectangular waveguides partially [11, 12] or totally
filled [13] with omega media and in a NRD waveguide with an omega
slab [14].

The analysis of wave propagation in open structures with omega
media has been limited to two-dimensional (2D) slab structures [15–
18]. In the present paper, results for electromagnetic wave propagation
in three-dimensional (3D) omega waveguides are presented, as far as
the authors are aware, for the first time, expanding preliminary results
presented in [19]. The analysis is applicable to different types of
3D rectangular open waveguides and is applied to the omega ridge
waveguide depicted in Fig. 1. Attention is focused not only on the
guiding properties but also on leakage effects: it is shown that in some
ranges of operation, leakage will occur in the form of a lateral exiting
wave. Therefore results are derived for the phase and attenuation
constants of the complex modes propagating in the structure.

 y

 x

Figure 1. Omega ridge waveguide.
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In a 3D waveguide like this one, propagating surface waves bounce
back and forth horizontally in the inner region undergoing total or
partial reflection after each bounce. Therefore, the analysis requires the
characterization of step discontinuities. A rigorous analysis of a step
discontinuity in an open waveguide is a difficult problem since the fields
must be expressed not only in terms of discrete modes but also in terms
of the continuous spectrum of radiation modes [20]. In the present
work, the analysis is focused only on the discrete modes and is done
by a generalization of the Peng and Oliner’s method [21, 22]. In this
method, the structure is covered by an upper-shielding consisting of a
perfectly conducting plane. If the shielding is sufficiently far from the
waveguide the discrete slow modes remain considerably unperturbed
and the results are very similar to those obtained for the fully open
waveguide.

The remaining sections of this paper are organized as follows:
Section 2 contains a brief reference to omega media and a preliminary
analysis of 2D planar shielded omega waveguides since these are the
constituent blocks of the 3D waveguide inner and outer regions. In
Section 3 the 3D omega ridge waveguide is analyzed starting with
the characterization of the step discontinuity and applying a mode
matching technique and the transverse resonance method. In Section
4 numerical results are presented including the operational diagrams as
well as the phase and attenuation constants for the first leaky modes.
Finally, in Section 5, a few concluding remarks are drawn.

2. GROUNDED OMEGA SLAB WITH
UPPER-SHIELDING

2.1. Omega Media

Omega media belong to the general class of reciprocal bianisotropic
media [23], whose constitutive relations may be written as (T stands
for transpose)

D = ε0 (ε · E + Z0κ · H) (1a)

B = µ0

(
− 1
Z0

κT · E + µ · H
)

(1b)

with Z0 =
√
µ0/ε0, where ε and µ are the relative electric permittivity

and relative magnetic permeability tensors, and κ is the magneto-
electric coupling dimensionless tensor.

Introducing a normalized magnetic field H = Z0H, where k0 is
the free-space wavenumber, from Maxwell’s curl equations for source
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Figure 2. Uniaxial omega medium: coordinate system and spatial
orientation of the two identical ensembles of Ω-shaped conducting
microstructures in the host isotropic medium.

free regions, together with (1a) and (1b), one may write

−j∇′ ×H = ε · E + κ · H (2a)

j∇′ × E = −κT · E + µ · H (2b)

where time-harmonic field variation of the form exp(jωt) was assumed,
and ∇′ = ∇/k0.

Hereafter, for the sake of simplicity of the analysis, we will only
consider uniaxial omega media [24]. These media can be built by the
inclusion of two stacked sets of identical omega-shaped microstructures
in the host medium, but with a different orientation. When the
orientation of these two ensembles relative to the coordinate system
(x, y, z) is as shown in Fig. 2, the effective medium exhibits a vertical
optical axis so that, after a proper homogenization, the constitutive
tensors ε, µ and κ can be written in the following dyadic form

ε = ε‖x̂x̂ + ε⊥(ŷŷ + ẑẑ) (3a)
µ = µ‖x̂x̂ + µ⊥(ŷŷ + ẑẑ) (3b)
κ = jΩ(ŷẑ − ẑŷ) (3c)

where Ω, herein referred as the omega parameter, can be either positive
or negative, depending on the orientation of the loops. In the case of
a lossless medium, these constitutive parameters are all real.
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Figure 3. Grounded omega slab with an upper-shielding.

2.2. Field Theory and Modal Equations

In this subsection, we analyze a grounded omega slab with an upper
shielding, as depicted in Fig. 3. Let η = t/d be the filling factor of the
structure, with 0 ≤ η ≤ 1. Since it is completely closed by perfectly
conducting planes placed at x = 0 and x = d, only discrete modes may
propagate.

Introducing normalized variables x′ = k0x, y′ = k0y and z′ =
k0z, and considering plane wave propagation of the form exp(−jβz′),
where β = kz/k0 is the normalized longitudinal wavenumber, one has
∇′ = ∂x′x̂ − jβẑ, with ∂x′ standing for ∂/∂x′. After substituting (3)
into (2) and eliminating the components directed along x, one obtains
the following set of coupled partial differential equations:

∂x′f t = −jC · f t, (4)

where f t is the column vector of the electric and the normalized
magnetic field components tangential to the yz plane

f t = [Ey Hz Hy Ez]T , (5)

and C is a coupling matrix given by

C =




−jΩ µ⊥ 0 0

ε⊥ − β2

µ‖
jΩ 0 0

0 0 jΩ −ε⊥

0 0 −µ⊥ +
β2

ε‖
−jΩ



. (6)

Since trC = 0 and tr(adjC) = 0, the four eigenvalues of C are anti-
symmetrically paired. Moreover, the field components transverse to
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the optical axis are algebraically expressed as fn = G · f t, where

fn = [Hx Ex]T , (7)

and G is given by

G =




− β

µ‖
0 0 0

0 0
β

ε‖
0


 . (8)

Since the matrices C and G are block-diagonal, TE and TM modes
may propagate in this structure.

For the TE modes, with field components Ey, Hx and Hz, using
(4) and choosing Ey as the support field component, the Helmholtz
equation for Ey can be obtained, with the normalized transverse
wavenumber h being given by

h2 = µ⊥ε⊥ − Ω2 − µ⊥
µ‖

β2. (9)

The Helmholtz equation and the boundary conditions at x = 0
and x = d, define a Sturm-Liouville eigenvalue problem [25]. Moreover,
introducing the following scalar inner product

〈φ, ψ〉 =
d′∫

0

φ(x′)ψ(x′)dx′, (10)

the orthogonality relation for the TE modes can be easily written as〈
1
ε‖

Eym , Eyn

〉
= δmn, (11)

where δmn represents the Kronecker delta.
In the case of the TM modes, analogous relations can be derived

by duality for the field components Hy, Ex and Ez. Following a similar
procedure, the Helmholtz equation for Hy leads to

h2 = µ⊥ε⊥ − Ω2 − ε⊥
ε‖

β2, (12)

while the orthogonality relation can now be written as〈
1
µ‖

Hym ,Hyn

〉
= δmn. (13)
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In the TE mode case, enforcing the boundary conditions at x′ = 0
and x′ = t′, one gets

[µ⊥q cot(qa′) + Ω] + h cot(ht′) = 0, (14)

which is the modal equation for TE modes. Similarly, for TM modes,
one has[

h2 + Ω2 + ε⊥qΩ tan(qa′)
]
+ ε⊥qh cot(ht′) tan(qa′) = 0, (15)

which is the modal equation for TM modes. The modes propagating in
this structure can be either fast or slow modes, depending on the value
of β. In the case of the slow modes, i.e., β > 1, one has q = −jα(α > 0),
with α2 = β2 − 1. Moreover, the fundamental mode of the structure is
the TM0 mode.

The operational diagram of the normalized longitudinal wavenum-
ber β as a function of the filling factor η, for the first TE and TM
modes, is shown in Fig. 4, where a structure with d/λ = 2.0, ε‖ =
2, ε⊥ = 3, µ‖ = 1, µ⊥ = 2 and Ω = 0.5 is considered. For a certain
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Figure 4. Operational diagram of a partially filled omega parallel-
plate waveguide, with d/λ = 2.0, ε‖ = 2, ε⊥ = 3, µ‖ = 1, µ⊥ and
Ω = 0.5.
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value of the filling factor η, a vertical line drawn in this diagram allows
us to know how many modes are propagating above cutoff and which
are the values of their longitudinal wavenumbers. These results are
necessary for the next section where the analysis of the omega ridge
waveguide is developed.

x

z

y

u v

θ

Figure 5. Oblique incidence on the step discontinuity along the v-axis.

3. OMEGA RIDGE WAVEGUIDE

3.1. Analysis of the Step Discontinuity

The starting point for the analysis of the 3D omega ridge waveguide
is the study of a step discontinuity under oblique incidence, as shown
in Fig. 5. The coordinate system (x, u, v) is used for an incident wave
impinging on the discontinuity along the v-axis, at an angle θ with the
y-axis. Hence,

neff − jα = β sin θ, (16)

where neff is the effective index of refraction of the modes propagating
in the 3D omega waveguide and α, with α > 0, is its leakage
attenuation constant. In (16) β represents the normalized longitudinal
wavenumber for either a TE or a TM surface mode. One should note
that the constitutive tensors, written in the (x, u, v) coordinate system,
take exactly the same form as in (3), just replacing the y and z axes
by the u and v axes, respectively.

Oblique incidence couples the elementary TE and TM modes. In
fact, after a simple coordinate rotation, these modes become hybrid
modes in the structure coordinate system (x, y, z), where they possess
five field components. These hybrid modes are LSE (Ex = 0) and LSM
modes (Hx = 0) [25].
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The scattering matrix of the discontinuity is now derived. This
matrix relates the amplitudes of the incident and reflected TE and TM
surface modes at y = w. It can be obtained by imposing the boundary
conditions to the field components tangential to the interface between
the two regions.

At the discontinuity y = w, every incident, reflected or
transmitted field component, must be written as an infinite sum over
the fields of all the surface TE and TM modes propagating in the two
regions of the structure. Hence, for the LSM modes, one has (I stands
for the fields in the thicker region and II for the thinner)



Ei
x =

1
εI
‖(x

′)

∞∑
n=0

aTMnβ
I
TMn

φI
TMn

(x′)

Er
x =

1
εI
‖(x

′)

∞∑
n=0

bTMnβ
I
TMn

φI
TMn

(x′)

Et
x =

1
εII
‖ (x′)

∞∑
p=0

cTMpβ
II
TMp

φII
TMp

(x′)

(17)

while, for the LSE modes,


Hi
x = − 1

µI
‖(x

′)

∞∑
n=1

aTEnβ
I
TEn

φI
TEn

(x′)

Hr
x = − 1

µI
‖‖(x

′)

∞∑
n=1

bTEnβ
I
TEn

φI
TEn

(x′)

Ht
x = − 1

µII
‖‖(x

′)

∞∑
p=1

cTEpβ
II
TEp

φII
TEp

(x′)

, (18)

where the factor exp{−j[(neff − jα)z′ − ωt]} was omitted. The
coefficients an, bn and cn are the amplitudes of the incident, reflected
and transmitted n-order mode, either for TE or TM modes, and φn its
transverse eigenfunction.

Introducing the following vectors

a =

[
aTE

aTM

]
(19)

and

b =

[
bTE

bTM

]
, (20)
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where aTE = [aTE1 , aTE2 , . . . , aTEn , . . .]T is an infinite column vector
and similarly for aTM, bTE and bTM, one gets

b = %Γ · a, (21)

where %Γ is the scattering matrix of the discontinuity.
From the continuity of Ex at y = 0, one may write

1
εI
‖(x

′)

∞∑
n=0

(aTMn + bTMn)βI
TMn

φI
TMn

(x′)

= − 1
µII
‖ (x′)

∞∑
p=1

cTEpβ
II
TEp

φII
TEp

(x′), (22)

while, from the continuity of Hx, one obtains

− 1
µI
‖(x

′)

∞∑
n=1

(aTEn + bTEn)βI
TEn

φI
TEn

(x′)

= − 1
µII
‖ (x′)

∞∑
p=1

cTEpβ
II
TEp

φII
TEp

(x′). (23)

On the other hand, imposing the continuity of Ez at y = 0, one
may write

−
∞∑

n=1

(aTEn − bTEn) cos θI
TEn

φI
TEn

(x′)

−j
1

εI
⊥(x′)

∞∑
n=0

(aTMn +bTMn) sin θI
TMn

[
∂x′φI

TMn
− ΩI(x′)φI

TMn
(x′)

]

= −
∞∑

p=1

cTEp cos θII
TEp

φII
TEp

(x′)

−j
1

εII
⊥(x′)

∞∑
p=0

cTMp sin θII
TMp

[
∂x′φII

TMp
− ΩII(x′)φII

TMp
(x′)

]
(24)

while the continuity of Hz leads to

j
1

µI
⊥(x′)

∞∑
n=1

(aTEn + bTEn) sin θI
TEn

[
∂x′φI

TEn
+ ΩI(x′)φI

TEn
(x′)

]

−
∞∑

n=0

(aTMn−bTMn) cos θI
TMn

φI
TMn

(x′)
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= j
1

µII
⊥(x′)

∞∑
p=1

cTEp cos θII
TEp

[
∂x′φII

TEp
+ ΩII(x′)φII

TEp
(x′)

]

−
∞∑

p=0

cTMp cos θII
TMp

φII
TMp

(x′). (25)

In the following, a conventional mode-matching technique is
applied. After multiplying (22) by φII

TMm
and (23) by φII

TEm
, integrating

between 0 and d′, and using the orthogonality relations (13) and (11),
respectively, the expressions for cTMm and cTEm are derived. Using this
result, multiplying (24) by φII

TEm
/µII

‖ and (25) by φII
TMm

/εII
‖ , integrating

and using again the orthogonality relations, one may finally derive the
following matrix system

A · a = B · b, (26)

where

A =

[
A

11
A

12

A
21

A
22

]
(27)

and

B =

[
B

11
B

12

B
21

B
22

]
, (28)

with

A11
mn = cos θI

TEn
Rmn − cos θII

TEm

βII
TEm

βI
TEn

Qmn (29a)

A12
mn = j


sin θI

TMn
Smn − βI

TMn

∞∑
p=1

sin θII
TMp

βII
TMp

PpnTmp


 (29b)

A21
mn = j


sin θI

TEn
Umn − βI

TEn

∞∑
p=1

sin θII
TEp

βII
TEp

QpnXmp


 (29c)

A22
mn = − cos θI

TMn
Vmn +

cos θII
TMm

βII
TMm

βI
TMn

Pmn (29d)

and

B11
mn = cos θI

TEn
Rmn +

cos θII
TEm

βII
TEm

βI
TEn

Qmn (30a)

B12
mn = −A12

mn (30b)
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B21
mn = −A21

mn (30c)

B22
mn = − cos θI

TMn
Vmn − cos θII

TMm

βII
TMm

βI
TMn

Pmn. (30d)

The following inner products have been introduced

Pmn =

〈
1
εI
‖
φI

TMn
, φII

TMm

〉
(31a)

Qmn =

〈
1
µI
‖
φI

TEn
, φII

TEm

〉
(31b)

Rmn =

〈
φI

TEn
,

1
µII
‖
φII

TEm

〉
(31c)

Smn =

〈
1
εI
⊥

(
∂x′φI

TMn
− ΩIφI

TMn

)
,

1
µII
‖
φII

TEm

〉
(31d)

Tmp =

〈
1
εII
⊥

(
∂x′φII

TMp
− ΩIIφII

TMp

)
,

1
µII
‖
φII

TEm

〉
(31e)

Umn =

〈
1
µI
⊥

(
∂x′φI

TEn
+ ΩIφI

TEn

)
,

1
εII
‖
φII

TMm

〉
(31f)

Vmn =

〈
φI

TMn
,

1
εII
‖
φII

TMm

〉
(31g)

Xmp =

〈
1
µII
⊥

(
∂x′φII

TEn
+ ΩIIφII

TEn

)
,

1
εII
‖
φII

TMp

〉
. (31h)

Comparing (26) with (21), it is easy to see that %Γ = B
−1 · A.

However, B
−1 can only be computed if B is a finite square matrix. Let

N I
TE and N II

TE be the number of TE modes considered, after truncation,
in regions I and II, respectively, and N I

TM and N II
TM the same for TM

modes. Therefore, one must have N I
TE +N I

TM = N II
TE +N II

TM, i.e., the
total number of modes considered in each region must be equal.

3.2. Modal Equation of the 3D Waveguide

Since the scattering matrix of the step discontinuity has been derived,
now we have the appropriate tools to derive the modal equation of the
3D waveguide. The plane y = 0 is a symmetry plane. In fact, relatively
to this plane, the propagating modes can be divided into even and odd
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modes. For the even modes the symmetry plane can be replaced by an
electric plane while, for the odd modes, a magnetic plane can replace
it.

In the case of the even modes, the longitudinal components of the
magnetic field vanish in this plane, i.e.,

Hi
x + Hr

x = 0 (32a)
Hi

z + Hr
z = 0, (32b)

while, for the odd modes,

Ei
x + Er

x = 0 (33a)
Ei

z + Er
z = 0. (33b)

From (32a) and (32b) one may write

W
−1
TE · aTE = −W TE · bTE (34a)

W
−1
TM · aTM = W TM · bTM (34b)

where

W TE = diag
(
e
−jβI

TE1
cos θI

TE1
w′
, e

−jβI
TE2

cos θI
TE2

w′
, . . .

)
(35a)

W TM = diag
(
e
−jβI

TM0
cos θI

TM0
w′
, e

−jβI
TM1

cos θI
TM1

w′
, . . .

)
(35b)

On the other hand, from (33a) and (33b), one has

W
−1
TE · aTE = W TE · bTE (36a)

W
−1
TM · aTM = −W TM · bTM. (36b)

Therefore, setting Γ = 1 for even modes and Γ = −1 for odd modes,
one gets

%Γ = Γσ · W , (37)

with
σ = diag(−1,−1, . . . ,+1,+1, . . .) (38)

and
W = diag

(
W

2
TE,W

2
TM

)
, (39)

and the following equation can be derived

a = %Γ · b. (40)
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Figure 6. Equivalent network for the 3D waveguide.

The equivalent network for the 3D waveguide is depicted in Fig. 6.
From (40) together with (21), one may finally write

(I − %Γ · %Γ) · a = 0, (41)

where I is the identity matrix. A non-trivial solution for (41), implies
that

det(I − %Γ · %Γ) = 0, (42)

which is the modal equation of the 3D omega waveguide.

4. NUMERICAL RESULTS

In this section, some numerical results for the upper-shielded omega
ridge waveguide shown in Fig. 7, are presented. These results have
been obtained including all the elementary surface modes propagating
above cutoff in each region.

Let ζ = tII/tI, with 0 ≤ ζ ≤ 1, be the step size and ξ = w/d,
with 0 ≤ ξ < ∞, be the waveguide aspect ratio. In this example,
we have considered tI/λ = 0.35, Ω = 0.5, and ζ = 0.35 while, for
the other constitutive parameters, we have kept the same values as
used in Section 2. Two values of η are considered: ηI = 0.175 and
ηII = 0.05. One should note that these values of η guarantee that the
position of the upper-shielding does not affect the numerical values of
the propagation constants. Therefore, these results are valid for the
open structure.

With these numerical data, the elementary modes propagating
in the inner and outer regions correspond exactly to those modes
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Table 1. Normalized longitudinal wavenumbers for the first guided
modes.

 TM0 TE1 

I 0.175  
0

I
TM 1.828  

1

I
TE 1.456  

II 0.05  
0

II
TM 1.307  

1

II
TE 0.973  

η

η

β

β

β

β

 2w

 d 
 tI

 tII

Figure 7. Omega ridge waveguide with an upper shielding.

intersected by the vertical dashed lines drawn on Fig. 4. For any
of these values there are, at least, four pairs of TE and TM modes
propagating above cutoff, which have been included in the calculations.

The values of the normalized longitudinal wavenumbers of the
first and second propagating modes, listed in Table 1, are important
to determine the critical angles for total internal reflection in the inner
region. These angles are related with the asymptotic and cutoff values
of the effective refractive index of the modes in the ridge waveguide,
which will be presented in Fig. 9 and Fig. 10.

The operational diagram for the first guided modes propagating
in the omega ridge waveguide, is shown in Fig. 8. These curves were
all calculated for neff = βII

TM0
. Hereafter, the modes are termed as Hn

meaning that they are all hybrid, where n is the order of the mode
expressing the number of maximums in the inner region. There is a
fundamental mode with no cutoff, as expected.

The effective index of refraction neff of the modes in the ridge
waveguide is shown in Fig. 9 as a function of the aspect ratio ξ, for the
first even and odd guided modes. Mode coupling between some of the
curves can be easily identified. As was already pointed out, due to the
waveguide spatial symmetry relatively to the central plane y = 0, every
propagating mode has either even or odd symmetry. Therefore, hybrid
mode coupling is only possible among the modes with the same parity
while curves displaying different parity modes crossover each other.

For the same waveguide and with identical numerical parameters,
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Figure 8. Operational diagram of an omega ridge waveguide with
d/λ = 2.0, tI/λ = 0.35 and ζ = 0.35.

Fig. 10 shows the operational diagram of the first leaky modes
propagating below cutoff. The thicker part of the dispersion curves
corresponds to the range where the mode becomes effectively a leaky
mode. Leakage will only occur as long as one of the elementary surface
modes propagating in the outer region ceases to be totally reflected
at the step discontinuities. One should note that some modes never
turn into proper leaky modes. Moreover, mode H2 is the first mode
suffering power leakage, since the fundamental mode H0 and mode H1

never become leaky.
The root locus in the complex plane of the normalized longitudinal

wavenumber, for the first leaky mode H2, is shown in Fig. 11. We
can easily see that the peak value for the leakage constant increases
monotonically with the value of the Ω parameter (in the limit Ω = 0
corresponds to the common uniaxial anisotropic case), while the peak
width decreases.

The attenuation constant due to the leakage effect, in dB/λ, as a
function of ξ, for the same leaky mode, is depicted in Fig. 12. It can be
concluded that an increase in the omega parameter is responsible for
a higher leakage loss in a wider band of ξ values. Moreover, as already
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Figure 13. Variation of the leakage and phase constants with Ω, for
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described in the literature for an isotropic structure, a transverse
resonance phenomenon is observed, leading to a periodic cancellation
of the leakage effect with a variable strip width [22].

Finally, Fig. 13 shows the leakage and the phase constants of the
H2 leaky mode, as a function of the omega parameter, for two values
of ξ.

To check the numerical results presented in this paper, a
comparison with the limit isotropic case (Ω = 0) has been done, using
the results published by Oliner et al. [22] for the same mode, H3 in our
notation. A dielectric ridge waveguide made with an isotropic medium
with ε = 12 and µ = 1, and having tI/λ = 0.2 and tII/λ = 0.1,
was considered. For the sake of comparison, an isotropic-like omega
medium, in the sense that ε = (2ε⊥ +ε‖)/3 and µ = (2µ⊥ +µ‖)/3, was
assumed. In this case, whenever Ω vanishes, a true isotropic (and not
uniaxial anisotropic) medium is obtained. In fact, as shown in Fig. 14
for Ω = 0, our results perfectly match those presented in Fig. 15 of
[22].
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5. CONCLUSION

Electromagnetic wave propagation in 3D planar omega waveguides has
been addressed in this paper. It was shown that discrete complex
hybrid modes can propagate in these structures and results for an
omega ridge waveguide were presented, showing the effect of the
omega and the geometrical parameters on the leakage behavior of the
structure.
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