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Abstract—It is shown that the modal analysis of coupled waveguides
in a two-dimensional photonic crystal can be reduced to the evaluation
of natural frequencies of an equivalent network. This network
is constituted of ideal transmission lines and transformers and is
directly derived from Maxwell’s equations without any simplifying
assumptions. The natural frequencies of the proposed equivalent
network are computed after its subdivision into a series of cascaded
sub-networks. These sub-networks are then described by their multi-
port impedance matrices so that the entire network can be described by
the cascaded connection of these matrices. Resonance conditions of this
cascaded connection yield the natural frequencies and consequently
the propagation constants of various modes of the original coupled
photonic-crystal waveguides. Under the resonance condition, the
voltages and currents of the equivalent network are nonzero, and they
can be used to determine all the field components of the corresponding
mode. The obtained numerical results verify the fact that the
coupling length of photonic-crystal directional couplers can be reduced
considerably.
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1. INTRODUCTION

Optical directional couplers play a major role in many telecommuni-
cation subsystems such as intensity modulators, switches, and power
dividers [1]. An optical directional coupler is commonly composed of
two parallel dielectric waveguides whose modal fields are coupled. As
a result of this coupling, electromagnetic waves propagating along one
waveguide excite modes of the neighboring waveguide, thus power cou-
pling takes place. Among different methods for implementing optical
directional couplers [2–5], those in which optical waveguides are imple-
mented using periodic dielectric structures have found great attention.
For the same token, photonic-crystal waveguides can be exploited in
implementation of optical couplers. A photonic-crystal waveguide is
realized by introducing a linear defect in a bulk photonic crystal. In
other words, a photonic-crystal waveguide resembles a hollow waveg-
uide with walls made of a photonic crystal. In the bandgap of these
walls, electromagnetic waves propagate along the waveguide because
of the total reflection at its walls.

The first implementation of a two-dimensional (2-D) photonic-
crystal coupled waveguide has been reported in [4]. There, by inserting
two parallel linear defects in a bulk photonic crystal, a directional
coupler has been constructed. Along a so-named coupling length, the
linear defects, i.e., waveguides, are in close proximity where the mutual
coupling can take place. It is important to note that the space between
the two waveguides of a photonic-crystal coupler is also filled by a
photonic crystal whereas for conventional optical couplers this space
is filled by a homogeneous medium. By changing either the coupling
length or the number of layers placed between the two waveguides, one
can achieve a specific coupling coefficient. In most cases, even a short
coupling length leads to any desired coupling coefficient, as a result of
which implementation of compact devices is made possible [5].

The behavior of photonic-crystal directional couplers has been
studied by various computational methods such as the plane-wave
expansion (PWE) method [7] and the time-domain beam propagation
method (BPM) [4]. To analyze photonic-crystal couplers with the
help of the PWE method, one should exploit the concept of super-cell.
To this end, the two linear defects corresponding to the two coupled
waveguides must be repeated periodically prior to the application
of the PWE analysis since the PWE method is merely applicable
to periodic structures. But as the dimensions of the super-cell are
larger than those of the original waveguides, the computation time
required for the PWE analysis of photonic-crystal couplers is greater
than the corresponding analysis for a bulk photonic crystal. Note



Full-wave analysis of coupled waveguides 293

that the larger the dimensions of the super-cell, the larger will be
the number of the required plane waves for the PWE analysis. As
will be discussed shortly, the method of this paper is not based on
the concept of super-cell and thus is computationally more efficient
because the number of required spatial harmonics can be maintained
very small. In contrast to the time-domain BPM, the method of this
work does not make use of any perfectly matched layer (PML) nor is
there any spatial discretization involved. Therefore, in our method the
geometrical features of the structure can be taken into account with
higher accuracy.

In the present work, a combination of a network model [8, 9] and
the transverse resonance technique is used to analyze photonic-crystal
couplers. With the help of this method, the modal analysis of a 2-D
photonic-crystal coupled waveguide can be reduced to the evaluation
of the natural frequencies of an equivalent network composed of
transmission lines. Moreover, the proposed method provides us with a
physical insight into the coupling mechanism.

This paper is organized as follows. In Section 2, the equivalent
network of two coupled photonic-crystal waveguides is developed. In
Section 3, using the developed model, the propagation constants of
the guided modes and consequently the coupling length of a photonic-
crystal coupler are evaluated. Some brief concluding remarks are
presented in Section 4.

2. METHOD OF ANALYSIS

Fig. 1 depicts a coupler structure implemented in a 2-D square lattice
of parallel infinite dielectric rods surrounded by air. The rods are
assumed to have square cross-section and be parallel to the z axis.
Two parallel waveguides of width W are formed by introducing two
line defects in the crystal. As the goal of analysis, the propagation
constants of the coupled guided modes and their corresponding field
distributions are to be determined.

It should be noted that in this article, our discussion is focused
on TM polarization because square-rod structures show bandgap
exclusively for TMz modes [10].

Fig. 2 illustrates one of the rows of the photonic crystal shown
in Fig. 1. In Region 2 of Fig. 2, called periodic region, the relative
permittivity εr(x) is a periodic function of x; it can thus be expanded
using the following Fourier series

εr(x) = lim
N→∞

N∑
n=−N

ε̃ne
−j2nπx/Lx , (1)
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Figure 1. A photonic-crystal waveguide coupler with one row of
dielectric rods in the coupling region.

in which Lx is the lattice constant in the x-direction and

ε̃n =
1
Lx

∫ Lx

0
εr(x)ej2nπx/Lxdx. (2)

In addition, the total TMz field in the periodic region is pseudo-
periodic, so the Ez and Hx components of this field are given by

Ez(x, y) = lim
N→∞

N∑
n=−N

Ezn(y)e−jαnx (3)

Hx(x, y) = lim
N→∞

N∑
n=−N

Hxn(y)e−jαnx, (4)

where αn = kx + 2nπ/Lx in which kx is the unknown propagation
constant along the x-direction. After elimination of Hy, Maxwell’s
equations for the components of the TMz field will lead to

∂

∂y
Ez = −jωµ0Hx
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Figure 2. Network model for a rectangular periodic structure.
The line voltages Vn and currents In correspond to Ezn and Hxn ,
respectively.

∂

∂y
Hx = −jωε0

(
εr(x) +

1
ω2µ0ε0

∂2

∂x2

)
Ez

which is a system of differential equations with partial derivatives
of the first order. Here, the working frequency is assumed to be ω.
Substituting (1), (3), and (4) in the above system, one easily arrives
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at
N∑

n=−N

d

dy
Ezn(y)e−jαnx = −jωµ0

N∑
n=−N

Hxn(y)e−αnx

N∑
n=−N

d

dy
Hxn(y)e−jαnx =

−jωε0
N∑

n=−N

 N∑
m=−N

ε̃n−mEzm(y) − α2
n

ω2µ0ε0
Ezn(y)

 e−jαnx.

Since the exponential functions exp(−jαnx) form a complete set of
basis functions, the above system of equations holds if and only if the
corresponding coefficients in the above linear combinations are equal.
By equating the corresponding coefficients, the following system of
first-order differential equations will be obtained:

d

dy


· · ·

Ezn−1(y)
Ezn(y)
· · ·

 = −jωµo


· · ·

Hxn−1(y)
Hxn(y)
· · ·

 (5)

d

dy


· · ·

Hxn−1(y)
Hxn(y)
· · ·

 = −jωεo([N2] − [α]2/k2
o)


· · ·

Ezn−1(y)
Ezn(y)
· · ·

 (6)

in which

[N2] =


· · ·

ε̃o ε̃−1 ε̃−2

· · · ε̃1 ε̃o ε̃−1 · · ·
ε̃2 ε̃1 ε̃o

· · ·

 , (7)

ko = ω
√
µoεo, and [α] is a (2N + 1)× (2N + 1) diagonal matrix whose

diagonal elements are αn. It is observed that (5) and (6) are similar to
the equations governing a multi-conductor transmission line provided
that (Ezn , Hxn) is considered as the voltage-current pair of the n-th
transmission line. Note that (5) and (6) are also valid in a homogeneous
region, such as Region 1 and 3 in Fig. 2, where the relative permittivity
assumes a constant value independent of x. In the periodic region,
because of the nondiagonal elements of [N2] the above transmission
lines are mutually coupled whereas in the homogeneous regions the
matrix [N2] is diagonal and the transmission lines are decoupled.
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In conformity with transmission-line equations, the substitutions

[V (y)] = [· · · , Ezn−1(y), Ezn(y), · · ·]T (8)

[I(y)] = [· · · , Hxn−1(y), Hxn(y), · · ·]T (9)

[C] = εo([N2 − [α]2/k2
o) (10)

[L] = µo[1] (11)

are used. These will transform (5) and (6) into
d

dy
[V (y)] = −jω[L][I(y)]

d

dy
[I(y)] = −jω[C][V (y)]

. (12)

The above system of first-order differential equations is a rigorous
formulation valid for all the regions of the structure shown in Fig. 1.
Knowing the geometrical and electrical properties of the dielectric rods,
one may determine the matrices [L] and [C] from (2), (7), (10), and (11)
for every region. It is worth mentioning that the boundary conditions
at the interface of two succeeding regions are fulfilled if and only if
the continuity of the vectors [V (y)] and [I(y)] is achieved. This is
because they correspond to the tangential components of the electric
and magnetic field. In summary, solving the equations given by (12)
along with the boundary condition of continuity of [V (y)] and [I(y)]
for every y leads to the rigorous solution of the original problem.

Now, the solution to the above system of first-order differential
equations for a given [L] and [C] is an exponential function, therefore,
in accordance to [11], we suggest the following solutions for [V ] and
[I]:

[V (y)] = [p]e−jkyy (13)

[I(y)] = [q]e−jkyy. (14)

In (13) and (14), [p] and [q] are constant vectors, and ky is the
propagation constant to be determined. By substituting (13) and (14)
in (12), the following equations are obtained:

−jky[p] = −jω[L][q] (15)
−jky[q] = −jω[C][p]. (16)

Substitution of (16) in (15) yields

(ω2[L][C] − k2
y[1])[p] = 0. (17)
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The above equation will have a non-zero solution if and only if ky

satisfies
det(ω2[L][C] − k2

y[1]) = 0. (18)

From (18), it is obvious that ky is the eigenvalue of the matrix ω2[L][C].
Note that if ky is an eigenvalue of ω2[L][C], so is −ky. If we denote
the n-th eigenvalue by kyn , the corresponding eigenvector [pn] can be
evaluated from (17). Obviously, there are 2N + 1 eigenvalues and
eigenvectors.

Having determined all kyn and [pn] for Region 2 of Fig. 2, we may,
according to [11], obtain the complete solution for [V (y)] as

[V (y)] =
∑
n

(Ṽ +
n e

−jkyny + Ṽ −
n e

−jkyn (b−y))[pn] (19)

or
[V (y)] = [P ][Ṽ (y)] (20)

in which
[P ] = [· · · |[pn]|[pn+1]| · · ·], (21)

[Ṽ (y)] = (· · · , Ṽn(y), Ṽn+1(y), · · ·)T , (22)

and Ṽn(y) is defined as

Ṽn(y) = Ṽ +
n e

−jkyny + Ṽ −
n e

−jkyn (b−y). (23)

In the above relations, Ṽ +
n and Ṽ −

n can be interpreted as the complex
amplitude of the n-th forward and backward wave in the y-direction,
respectively, and b represents the y-dimension of the region under
investigation.

Similarly, [I(y)] can be obtained from

[I(y)] =
∑
n

(Ĩ+
n e

−jkyny + Ĩ−n e
−jkyn (b−y))[qn] (24)

or
[I(y)] = [Q][Ĩ(y)] (25)

in which
[Q] = [· · · |[qn]|[qn+1]| · · ·] = ω[C][P ][ky]−1, (26)

and
Ĩ(y) = (· · · , Ĩn(y), Ĩn+1(y), · · ·)T . (27)

Again Ĩn(y) is given by

Ĩn(y) = Ĩ+
n e

−jkyny + Ĩ−n e
−jkyn (b−y). (28)
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Figure 3. The network model of two coupled photonic-crystal
waveguides.

Note that (19) and (24) are solutions to (12) for both a periodic
region, e.g., Region 2 of Fig. 2, and a homogeneous layer, e.g. Region 1
in the same figure. Since kyn are different for homogeneous and periodic
layers, the continuity of [V (y)] and [I(y)] at the interface of two
neighboring layers must be achieved with the help of a transformer
[8]. This is depicted in Fig. 2 by the multi-port network T .

In summary, the wave propagation in the coupled waveguide of
Fig. 1 can be modeled by the equivalent network of Fig. 3 in which
2N + 1 decoupled transmission lines simultaneously model (19) and
(24) for each layer while the transformers T at the interface of different
layers model the necessary boundary conditions. It can be shown that
each transformer T will transform the impedance [Z] seen to the right
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of an interface into the impedance [Z̃] given by

[Z̃] = [P ]−1[Z][Q] (29)

where [P ] and [Q] are defined by (21) and (26), respectively.
After modeling the coupled waveguides using the above mentioned

transmission lines and transformers, in order to find the bandgap
of photonic-crystal walls, we calculate [Zin] in the doped region,
i.e. waveguide region of Fig. 3. For this purpose, we terminate
the equivalent network with an impedance [ZL]. The value of
this impedance could be chosen arbitrarily. The reason is that in
the bandgap of the photonic crystal, electromagnetic waves cannot
propagate within the photonic crystal, therefore the value of the
load does not affect [Zin]. By applying the well-known methods of
transmission-line theory, the input impedance is calculated for the
successive layers of the network. Multiple transformation of [ZL]
through a relatively large number of periodic layers will provide us
with a good estimation of [Zin] in the waveguide region. Note that
[Zin] will be reactive as the photonic-crystal walls are operating in
their bandgap frequencies.

Using [Zin], we can evaluate the corresponding reflection matrix
[Γin]. The same procedure must be followed to determine the reflection
matrix [Γ′

in] looking to the left (see Fig. 3). If the matrices [Γin] and
[Γ′

in] satisfy
det([Γin][Γ′

in] − [1]) = 0 (30)

for a specific kx at a given angular frequency ω, the transverse
resonance condition is fulfilled. In other words, all values of kx and
ω satisfying (30) will constitute the dispersion diagram of the coupler.

3. NUMERICAL RESULTS

First we consider a photonic-crystal directional coupler composed of
dielectric rods in air with lattice constant Lx, as shown in Fig. 1. The
rods are of square cross-section with a = b = 0.4Lx and the refraction
index of n = 3.4. The waveguide width is W = 1.6Lx. The common
wall of the two waveguides is a row of the above rods. Because of
symmetry, there are both even and odd modes at every given frequency.
Fig. 4 illustrates the dispersion diagram of the TM guided modes of the
coupled waveguides shown in Fig. 1. In Fig. 4, the area between the top
and bottom solid lines forms the pseudo-bandgap. The solid line inside
this bandgap is the dispersion diagram of the even mode, whereas the
dashed line is that of the odd mode computed by the method of this
paper. Our results are verified by comparing them with those obtained
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Figure 4. Dispersion diagram for the TM guided modes of the coupled
waveguides of Fig. 1.

from an analysis based on the plane-wave expansion method [6]. These
are also represented in Fig. 4 by open circles (even modes) and by plus
signs (odd modes). As can be seen, they are in good agreement.

The corresponding field distributions along the y-direction are
shown in Figs. 5 and 6, where Lx/λ = 0.355 is assumed in which
λ is the free-space wavelength.

As a second example, we consider the coupled waveguides depicted
in Fig. 7. Here, the common wall of the two waveguides is constituted
of two rows of dielectric rods. The dispersion diagram for these coupled
waveguides is illustrated in Fig. 8. Comparing Fig. 4 with Fig. 8, we
conclude that a wider common wall leads to a lower coupling and hence
to a more equalized propagation constants for even and modes.

The corresponding field distributions for even and odd modes
along the y-direction are shown in Fig. 9 and 10, respectively, where
Lx/λ = 0.355.

Fig. 11 demonstrates the coupling length Lc for the directional
coupler of Fig. 1 and that of Fig. 7. As can be seen, the coupling
length for the directional coupler of Fig. 1 is shorter. This can be
explained by the fact that Lc is given by Lc = 2π/|ke − ko| in which
ke and ko denote the propagation constant of even and odd mode,
respectively.
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Figure 5. Normalized field pattern for the even mode of the coupler
shown in Fig. 1 at Lx/λ = 0.355.

Figure 6. Normalized field pattern for the odd mode of the coupler
shown in Fig. 1 Lx/λ = 0.355.
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Figure 7. Photonic-crystal waveguide coupler with two rows of
dielectric rods in the interaction region.

Figure 8. Dispersion diagram for the TM guided modes of the coupled
waveguides of Fig. 7.
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Figure 9. Normalized field pattern for the even mode of the coupler
shown in Fig. 7 at Lx/λ = 0.355.

Figure 10. Normalized field pattern for odd mode of the coupler
shown in Fig. 7 at Lx/λ = 0.355.
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Figure 11. The solid and dashed line represent the coupling length
for the photonic-crystal coupler of Figs. 1 and 7, respectively.

4. CONCLUSIONS

Using the introduced matrix formulation, the modal analysis of coupled
photonic-crystal waveguides is reduced to the evaluation of natural
frequencies of an equivalent network composed of ideal transmission
lines and transformers. It has been shown that directional couplers
implemented in 2-D photonic crystals can possess very short coupling
length because of their relatively large coupling coefficient. These
features make them suitable for ultra-compact integrated optical
circuits.
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