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Abstract—An efficient algorithm combining the fast multipole
method (FMM) and the discrete complex image method (DCIM)
is presented for analyzing large-scale microstrip structures. Firstly,
the effect of complex images’ locations on the algorithm is discussed
in detail. And a simple and efficient scheme is proposed which
greatly enhances the performance of this FMM-DCIM hybrid method.
On the other hand, the incomplete LU (ILU) preconditioner with
a dual dropping strategy is also tested to study the effect of this
preconditioner on the convergence rate of microstrip structures. And
experimental results show that this preconditioner reduces the number
of iterations substantially. Then the solution is obtained using it in
conjunction with the generalized minimal residual (GMRES). The fast
multipole method is used to speed up the matrix-vector product in
iterations. Numerical results for microstrip antennas are presented to
demonstrate the efficiency and accuracy of this method.
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1. INTRODUCTION

The method of moments (MoM) has been widely used for the analysis
of microstrip structures. However, the numerical solution of the MoM
matrix equation requires O(N3) operations and O(N2) memory to
store the matrix elements, where N is the number of unknowns.
The large operation count and memory requirement render the MoM
solutions for large-scale problems prohibitively expensive. When an
iterative solver is employed for solving the MoM matrix equation, the
operation count is O(N2) per iteration because of the need to evaluate
the matrix-vector multiplication. This operation count is too high for
an efficient simulation.

To make the iterative method more efficient, it is necessary
to speed up the matrix-vector multiplication. There are several
techniques developed for this purpose, including the adaptive integral
method (AIM) [1], the fast multipole method (FMM) [2, 4], the
impedance matrix localization (IML) [5], and the conjugate-gradient
fast Fourier transform method (CG-FFT) [6]. Recently, efforts have
been made to extend these fast algorithms to microstrip problems.
One such example is [7] where the AIM is adapted with the aid of
the discrete complex image method (DCIM) [8]. Extension of FMM
is difficult because of its dependence on the Green’s function. One
FMM approach is to express the Green’s function in terms of a rapidly
converging steepest descent integral and then to evaluate the Hankel
function arising in the integrand by FMM [9]. This approach is
good for thin-stratified media. The other approach is to combine
FMM with DCIM [10–13]. In [10] and [11], which treat the static
and two-dimensional (2-D) problems, the equivalent problem is set
up by adding images at the corresponding complex coordinates, and
therefore, represented by basis functions. In the FMM implementation,
the translation is different for different images. In [12], both the 2-D
and three-dimensional (3-D) FMM’s are employed because the surface-
wave poles are extracted in DCIM, which makes the implementation
complicated. In [13], the multilevel fast multipole algorithm (MLFMA)
[2, 4] combined with DCIM is presented for the efficient analysis of
microstrip structures. Instead of being treated separately, the image
sources are grouped with the original source. The algorithm requires
little extra computation compared with that applied to free space
problems.

However, the method in [13] is often affected by complex images’
locations. In this paper, the approach of combining FMM and DCIM
is discussed in detail. Because of FMM’s dependence on the Green’s
function, the effect of complex images’ locations on the efficiency of
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FMM is shown firstly. To make the approach of FMM with DCIM
applicable, several appropriate complex images must be chosen which
may reduce the accuracy of Green’s functions in the far field. Or,
one must choose the large value of the number of modes L for a
high accuracy to be achieved in the far region which degrades the
efficiency of FMM. To overcome this problem, a simple and efficient
scheme is presented in this paper, which not only makes FMM
with DCIM applicable, but also does not increase the complexity of
this algorithm. On the other hand, the ILUT preconditioner with
a dual dropping strategy is also tested to study the effect of this
preconditioner on the convergence rate of microstrip structures. And
experimental results show that this preconditioner reduces the number
of iterations substantially. Lastly, the solution is obtained using it in
conjunction with the generalized minimal residual (GMRES). The fast
multipole method is used to speed up the matrix-vector product in
iterations. Numerical examples are given to demonstrate the accuracy
and efficiency of the method.

2. FORMULATIONS

2.1. The FMM with DCIM Solution of the Mixed Potential
Integral Equation

Consider a general microstrip structure residing on an infinite substrate
having relative permittivity εr and thickness h. The microstrip is in the
x-y plane and excited by an applied field Ea. The induced current on
the microstrip can be found by solving the well-known mixed potential
integral equation (MPIE) [14]. First, the microstrip is divided into
triangular elements and then the current is expanded using RWG basis
functions. Applying the Galerkin’s method results in a matrix equation

ZI = V (1)

in which the impedance matrix has the elements given by

Zij = jω

∫
Ti

∫
Tj

[
�fi(�r ) ·GAxx(�r, �r ′) · �fj(�r ′)

− 1
ω2

∇ · �fi(�r )∇ · �fi(�r ′)Gq(�r, �r ′)
]
dr′dr (2)

where �fi and �fj represent the testing and basis functions, respectively,
Ti and Tj denote their supports, GAxx is the xx-component of the
Green’s function for vector potential, and Gq is the Green’s function for
scalar potential. In general, both GAxx and Gq can be expressed as an
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inverse Hankel transform of their spectral domain counterparts, which
is commonly known as the Sommerfeld integral (SI). The analytical
solution of the SI is generally not available, and the numerical
integration is time consuming. This problem can be alleviated using
DCIM [8], which yields closed-form expressions as

GA =
NA∑
i=0

aA
i

e−jkRA
i

4πRA
i

(3a)

Gq =
Nq∑
i=0

aq
i

e−jkRq
i

4πRq
i

(3b)

where RA
i = |r − (r′ + ẑbAi )| and Rq

i = |r − (r′ + ẑbqi )|. aA
i , b

A
i , a

q
i and

bqi are the complex coefficients obtained from DCIM.
To use FMM, we first divide the entire structure into groups

denoted by Gm(m = 1, 2, . . . ,M). Letting �ri be the field point in
a group centered at �rm and �rj be the source point in a group centered
at �rm′ , we have

�rij = �ri − (�rj + ẑbi)
= (�ri − �rm) + (�rm − �rm′) + (�rm′ − �rj) − ẑbi
= �rim + �rmm′ − �rjm′ − ẑbi (4)

where bi = bAi or bqi .
Employing the addition theorem [3], we can rewrite the Green’s

function in (3) as

GA(�ri, �rj) ≈
k

j16π2

∮ NA∑
i=0

aA
i e

jk·ẑbA
i ×e−jk·(rim−rjm′ )T (k̂ · r̂mm′)d2k̂ (5a)

Gq(�ri, �rj) ≈
k

j16π2

∮ Nq∑
i=0

aq
i e

jk·ẑbq
i ×e−jk·(rim−rjm′ )T (k̂ · r̂mm′)d2k̂ (5b)

where

T (k̂ · r̂mm′) =
L∑

l=0

(−j)l(2l + 1)h(2)
l (�k · �rmm′)Pl(k̂ · r̂mm′) (6)

Substituting (5) into (2), we obtain

Zij =
ωk

16π2

[∮
SA(k̂)Uim(k̂) · T (k̂, r̂mm′)U∗

jm′(k̂)d2k̂

− 1
ω2

∮
Sq(k̂)Vim(k̂) · T (k̂, r̂mm′)V ∗

jm′(k̂)d2k̂

]
(7)
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where

Uim(k̂) =
∫

Ti

e−jk·rim �fi(�r )d�r,

Vim(k̂) =
∫

Ti

e−jk·rim∇ · �fi(�r )d�r

SA(k̂) =
NA∑
i=0

aA
i e

jk·ẑbA
i and Sq(k̂) =

Nq∑
i=0

aq
i e

jk·ẑbq
i .

When an iterative method is used to solve (1), the matrix-vector
multiplication can be performed in such a way that the contributions
from nearby groups are calculated directly and the far interactions are
calculated using (7).

2.2. Improving the Accuracy of the Closed-form Green’s
Functions in the Far Field

As we know, the condition for equation (5) to hold is

|�rmm′ | >
∣∣�rim − �rjm′ − ẑbi

∣∣ (8)

Usually, the depth of the microstrip structures is small, and it
is very easy to acquire the smaller value bi. Hence, the large value
bi can lead to a difficulty in implementing FMM. To illuminate this
problem, we consider a microstrip line on a substrate with relative
permittivity εr = 2.1, thickness h = 1.5748 mm. The frequency is
9.42 GHz. The line is 1.6 mm wide and 160 mm long and is discretized
into triangular elements with edge length 1.6 mm, as shown in Fig. 1.
max|bqi | for Gq versus the number of complex images is plotted in
Fig. 2. The scalar potential Green’s function Gq is given in Fig. 3.
Fig. 4 shows the values of matrix elements calculated by using two
different approaches: MoM and FMM. In these two approaches, the
vector Green’s function consists of three complex images. However,
the scalar potential Green’s function consists of ten complex images in

1 3 5 7 195 197 199

··· ···

Figure 1. Geometric parameters of a microstrip line L = 160.0 mm,
W = 1.6 mm, the thickness of substrate h = 1.5748 mm, εr = 2.1, f =
9.42 GHz.
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Figure 2. max|bqi | for Gq versus the number of complex images.
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Figure 3. The scalar potential Green’s function Gq.
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Figure 4. Matrix elements calculated by the conventional MoM and
FMM.
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MoM. The effect of complex images’ locations of the scalar potential
Green’s function on FMM is studied. The group size d is 0.25λ0 with
λ0 being the wavelength in free space. Note that Z1n(n = 1, 3, . . . , 17)
is considered as the near interaction and is calculated directly, and
Z1n(n = 19, 21, . . . , 199) is considered as the far interaction and is
calculated by FMM. As seen from Fig. 4, when the number of complex
images N q

i = 3 and the number of modes L = k0d + 3 ln(π + k0d)
with k0 being the wavenumber in free space, the FMM agrees well
in the near region, but not in the far region with MoM. The reason
is that in this case, max|bqi | is a small enough value and satisfies the
condition for (5) to hold. Thus correct results can be obtained in
the near region by FMM. But these three complex images and quasi-
dynamic images extracted firstly do not give a good approximation of
the scalar Green’s function Gq in the far field. So it is very difficult to
obtain the exact results in the far region. At the same time, we also
can see easily that when the number of complex images N q

i = 6 and
the number of modes L = k0d+3 ln(π+k0d), the FMM does not obtain
right results in both the near region and the far region. However, if
the number of modes L is chosen to be k0d + 8 ln(π + k0d), we can
find correct solutions in the far region. But in the near region, right
results cannot be obtained using FMM because max|bqi | has a large
value (as shown in Fig. 2). Furthermore, large values of L correspond
to more CPU time requirement that will lead to degraded efficiency
of FMM. So, it is desirable to keep L as small as possible. Hence,
it is necessary to find a more efficient method to get the solution
in the far region instead of using DCIM. It is noted that the source
contribution (direct) and its quasi-static image (reflected) contribution
can be calculated analytically through Sommerfeld identity. Therefore,
they are excluded from complex images in this paper.

It is obvious that the FMM above has a problem: the right results
cannot be obtained in both the near region and the far region at the
same time. Moreover, one must choose a large value of L for a high
accuracy to be achieved in the far region. To overcome this problem, a
simple and efficient method is introduced here. Suppose the accurate
Green’s function is G1(�ρ ), which can be calculated using DCIM or the
numerical integral method and so on. The closed-form of the Green’s
function G2(�ρ ) which is correct in the near region, but may have some
sight errors in the far field can be expressed as

G2(�ρ ) =
Np∑
p=0

ap
e−jkrp

4πrp
, rp = |�ρ− ẑbp|, �ρ = |�r − �r ′| (9)

where max|bp| is with small value. As a rough guideline, we can select
max |bp| < 0.6d for many applications. G2(�ρ ) can be obtained using
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only a few complex images. Now to improve the accuracy of G2(�ρ ) in
the far field, we add a correction term

G0(�ρ ) =
Nq∑
q=1

aq
e−jkrq

4πrq
, rq = |�ρ− ẑbq| (10)

where the location of images bq(q = 1 ∼ Nq) are known numbers with
small values. The coefficients aq can be calculated using

G2(�ρ ) +G0(�ρ ) = G1(�ρ ) (11)

To find aq, Nq points �ρ must be chosen and we need to calculate
both sides of (11) at each of these Nq points. Therefore, we will have
Nq equations for aq(q = 1 ∼ Nq). Solving these Nq equations with Nq

unknowns, we can find aq. It is noted that sample points should be
selected in the far field. To get more accurate results, the least square
method is used in this paper. Then the new Green’s function in the
far field can be given as

G(�ρ ) = G0(�ρ ) +G2(�ρ ) =
Nq∑
q=0

aq
e−jkrq

4πrq
+

Np∑
p=0

ap
e−jkrp

4πrp
(12)

Now we can implement the FMM. The entire solution region is
divided into three regions: near region, mediate region and far region.
In the near- and mediate regions, G2(�ρ ) is used. In the far field, G(�ρ )
is used, which need computing for only one time. The number of
modes L can be chosen to be k0d+ 3 ln(π+ k0d) anywhere. Hence the
computational complexity is not increased. Now, our Green’s function
is correct anywhere. Hence the FMM can be implemented with this
closed-form Green’s function as it is applied to solve problems in the
free space.

To examine the accuracy of this algorithm, a microstrip line shown
in Fig. 1 is considered again. Fig. 5 shows the values of matrix elements
obtained by using two different approaches. One approach is to use
the FMM with three complex images for the scalar potential Green’s
function, named FMM1. The other approach is to use FMM with the
scalar potential Green’s function added a correct term in the far region,
named FMM2. In this example, we select Nq = 5 and bq = −0.2×q×h.
In these two FMM, the group size d is 0.25λ0 with λ0 being the
wavelength in the free space. The number of modes L is chosen to
be k0d + 3 ln(π + k0d). The Green’s function G(�ρ ) is plotted in Fig.
3. We can observe that it is more accurate than G2(�ρ ) in the far field.
On the other hand, as seen from Fig. 5, the FMM 2 agrees better with
MoM. Of course, if we want better results, we must add more terms in
G0(�ρ ).
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Figure 5. Matrix elements calculated by the two different FMM.
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3. NUMERICAL RESULTS

The complexity of the fast multipole algorithm has been studied by
many authors [3] and is omitted here. In this paper, we study mainly
the efficiency of preconditioners and iterative solvers. The iterations
are terminated when the relative residual error is less than 10−2. All
examples are computed on a Pentium IV 2.4 G PC with 512 MB of
RAM.

In testing microstrip structures, we found that the convergence
rate of an iterative solver is very slow. It is well known that
the convergence rate of an iterative solution is dependent upon the
spectral radius of the MoM system. The reason lies in the large
condition number of the system and hence it is imperative to use
a preconditioner to offset the slower convergence accruing from the
increased spectral radius. The basic principle of preconditioning is
to use a matrix to transform the system into an equivalent system
so that the spectral radius of the matrix is compressed. A good
choice for the matrix should contain most of the dominant terms or
the near interactions present in the matrix. In our simulations, the
incomplete LU (ILU) preconditioner with a dual dropping strategy is
also tested [15] in conjunction with different iterative solvers such as
the conjugate gradient normal residual (CGNR) [16], the biconjugate
gradient stabilized (BICGSTAB) [17], and the generalized minimal
residual (GMRES) [18] to study the effect of this preconditioner and
these solvers on the convergence rate of microstrip structures. In the
ILUT preconditioner, the dual dropping strategy is implemented using
the two parameters τ and p, where τ is the threshold drop tolerance
and p is the given-in parameter. Here τ controls the computational
cost and p controls the memory cost. By judiciously choosing the two
parameters τ and p, we may be able to construct an ILU preconditioner
that is effective and does not use much memory space. It should be
noted that while CGNR and BICGSTAB require two matrix-vector
products for each iteration, GMRES requires only one.

As an example, we consider a four-element series-fed microstrip
antenna array, which is fed at the left end. The geometric parameters
are taken from [19] and reproduced in Fig. 6. The iteration counts
of solvers CGNR, BICGSTAB, and GMRES are tabulated in Table 1
for the ILUT preconditioner and compared to those without using a
preconditioner. The maximum number of iterations to allow is 1000.

It is observed that the ILUT preconditioner can effectively bring
down the iteration count. It is also observed that both BICGSTAB
and GMRES are more efficient than CGNR. Now we select GMRES
and study the affect of the different parameters in ILUT on the
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Figure 6. Geometric parameters of a series-fed microstrip antenna
array L = 10.08 mm, W = 11.79 mm, L2 = 13.4 , L3 = 12.32 ,
d1 = 3.93 mm, d2 = 1.3 mm, the thickness of substrate h = 1.5748 mm,
εr = 2.1, f = 9.42 GHz.

Table 1. The iteration counts of solvers CGNR, BICGSTAB, and
GMRES for solving radiation by a four-element series-fed microstrip
antenna array.

different iterative solvers CGNR Bicgstab Gmres(20) 

The number of iteration ~ 826 ~ 
No Preconditioner 

The time of solving (1) ~ 451.81(s) ~ 

The number of iteration 64 2 3 
ILUT(0,0.001) 

The time of solving (1) 48.01(s) 8.90(s) 8.52(s) 

convergence rate. Three cases are tabulated in Table 2. The maximum
number of iterations to allow is 200. Obviously, a good quality ILU
preconditioners can be obtained by choosing a smaller value of τ and a
larger value of p in the ILUT implementation. The E-plane radiation
pattern at 9.42 GHz is given in Fig. 7 and is compared with the data
given in [20]. Excellent agreement is observed.

Then we consider the plane wave scattering from two finite arrays
of microstrip patches of various sizes. The element of the array
is a rectangular patch with 36.6 mm widith and 26.6 mm length.
The distance between two adjacent elements in both the x and y
directions is 55.517 mm. The geometry can be obtained from [21]. The
monostatic RCS as functions of θ for a 3×3 and 7×7 array at 3.7 GHz
are shown in Fig. 8. Good agreement is observed between our results
and those obtained by King and Bow [21]. We use GMRES (20) as an
iterative solver. The computational requirements of the FMM is listed
in Table 3. We can see clearly the efficiency of this fast algorithm.
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Figure 7. E-plane radiation patterns of a series-fed microstrip
antenna array.
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Table 2. The affect of accleration parameters for GMRES (20) for
solving radiation by a four-element series-fed microstrip antenna array.

In these two tables, symbol "~" means no convergence. 

( p,τ ) (0,0.001) (0,0.01) (0,0.1) (20,0.01) (50,0.01)

The time of make
preconditioner (s) 6.92 3.24 3.68 4.12

The number of iteration 3 5 4 3

~ 

~ 

Table 3. Resource requirements of FMM for solving scattering by
3 × 3 and 7 × 7 microstrip antenna arrays.

In this table, nearN  means the number of unknowns solved by MoM. 

×examples 33 arrays 77 arrays

unknowns 1737 8428

nearN 344019 1449616

( p,τ ) (50,0.01) (50,0.01)

The number of iterative 2 3

The time of make preconditioners (s) 0.66 3.90

The time of each iteration (s) 0.60 7.49

×

4. CONCLUSION

In this paper, an efficient algorithm combining the fast multipole
method (FMM) and the discrete complex image method (DCIM)
is extended successfully to the analysis of scattering and radiation
from large-scale microstrip structures. A simple and efficient
scheme is presented which makes the approach of the FMM with
DCIM applicable. The incomplete LU (ILU) preconditioner with
a dual dropping strategy is also tested to study the effect of this
preconditioner on the convergence rate of microstrip structures.
Numerical results show that the solution can be accelerated using an
incomplete LU decomposition preconditioner in conjunction with the
generalized minimal residual (GMRES). The fast multipole method
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is used to speed up the matrix-vector product in iterations. The
FMM also eliminates the need to fill and store the square impedance
matrix. Numerical examples demonstrated that the FMM yields a
dramatic reduction of memory requirement and computational cost
for large problems while retaining good accuracy. Numerical results
for microstrip antennas are presented to demonstrate the efficiency
and accuracy of this method.
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