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Abstract—We offer symmetry relations of the translation coefficients
of the spherical scalar and vector multi-pole fields. These relations
reduce the computational cost of evaluating and storing the translation
coefficients and can be used to check the accuracy of their computed
values. The symmetry relations investigated herein include not only
those considered earlier for real wavenumbers by Peterson and Ström
[9], but also the respective symmetries that arise when the translation
vector is reflected about the xy-, yz-, and zx-planes. In addition,
the symmetry relations presented in this paper are valid for complex
wavenumbers and are given in a form suitable for exploitation in
numerical applications.
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1. INTRODUCTION

The spherical scalar and vector multipole fields, respectively the
solutions of the scalar and vector Helmholtz wave equations in
spherical coordinates, are of fundamental importance in acoustics and
electromagnetics. Their importance lies not only in solving boundary
values problems involving a spherical geometry, such as the scattering
from a sphere, but also in the efficient expansion of the plane wave
and the radiated field from a localized source distribution [1]. Their
translation formulas [2–9], which express a spherical multipole field
in one coordinate system in terms of the spherical multipole fields of
another coordinate system that is related to the former by translation,
have been a powerful analytic tool in many areas of electromagnetics.
Early applications of the formulas include the plane-wave scattering
from two metal spheres [10], which was later generalized to the
scattering from many dielectric spheres in arbitrary configurations [11];
probe correction for spherical near-field scanning [12]; modeling of wave
propagation through random discrete media [13]; extension of the T-
matrix technique for many scatterers [9] and its efficient numerical
implementation using FFT [16, 17]. As noted in [15], the cost of
computing translation coefficients was found to be high and thus their
recurrence relations [7, 14, 15] were derived in an attempt to contain
this high cost. This paper examines the symmetry relations of the
translation coefficients since they further reduce the computational
cost of evaluating and storing the translation coefficients for the
applications mentioned above.
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As reviewed in the next section (see (6), (13) and (14)), the
translation coefficients of the scalar and vector multipole fields are
functions of six variables: the wavenumber k, the translation vector
R, and the mode indices of the original and translated multipole fields
(l,m) and (l′,m′) [2–9]. Thus, we will use Γl,ml′,m′(k,R) to represent
them. It is important to note that the majority of the aforementioned
applications requires the computation and storage of Γl,ml′,m′(k,R) values
for many mode combinations of (l,m) and (l′,m′) and at many R
points. For example, the aforementioned algorithm of [16] and [17]
requires the evaluation of Γl,ml′,m′(k,Ri − Rj) for all combinations of
(l,m) and (l′,m′) that satisfy l, l′ ≤ Lmax and −l,−l′ ≤ m,m′ ≤ l, l′

for some Lmax, and at all Ri − Rj spatial points, where Ri and Rj

correspond to two well-separated nodes on a three-dimensional uniform
grid containing the volume distribution of scatterers. Thus, even
though Γl,ml′,m′(k,Ri −Rj) is Toeplitz with respect to the spatial node
indices, i and j, for a given mode combination, a scattering problem
with a grid size Nx = Ny = Nz = 128 and with Lmax = 3 would still
require the evaluation of Γ approximately 44 × (2× 128)3 ∼= 4.3× 109

times for each type of Γ. Here, the factor 44 corresponds to the total
number of mode combinations and (2× 128)3 to the number of spatial
node combinations. We note that the recurrence relations of [7, 14, 15],
which relate Γs of different mode combinations at a given value of R,
reduce only the first factor.

Peterson and Ström [9] investigated the symmetry properties
of the scalar and vector multipole fields with real k by taking
advantage of the properties of the three-dimensional Euclidean group,
E(3). According to [9], the translation coefficients exhibit symmetry
properties under:

• spatial inversion of the translation vector: R→ −R
• interchange of the mode indices: {(l,m), (l′,m′)}→{(l′,m′), (l,m)}
• sign changes of the azimuthal indices: {(l,m), (l′,m′)} →
{(l,−m), (l′,−m′)}

Even though Peterson and Ström’s derivation is elegant and concise,
some of their results are expressed in a form that is ill suited
for numerical applications. For example, some symmetry relations
are expressed in terms of spherical Hankel functions with −kR as
their argument, while the aforementioned applications, including the
scattering algorithm of [16] and [17], require the evaluation of the
translation coefficients with +kR as the argument of spherical Hankel
functions. Furthermore, for the vector multipole fields, they choose
to derive the symmetry relations of the translation coefficient of
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the general spherical tensor field that is defined in Appendix, while
the numerical applications mentioned earlier all require only the
translation coefficients of the two transverse fields.

In this paper, we extend the analysis of [9] in several important
ways. First, in addition to the symmetry relations mentioned above,
we consider the symmetry relations that arise when R is reflected
about the xy-, yz-, and xz-planes. These reflection symmetry relations
are particularly useful to the FFT-based, iterative solution technique
[16, 17] that requires the computation and storage of translation
coefficient values at a set of R points that are related to each other
through reflection. Indeed, [19] shows that the reflection symmetry
relations alone reduce the storage requirement of the FFT T-matrix
method [16, 17] by a factor of 8. Second, unlike Peterson and Ström’s
results, all the symmetry relations presented herein are valid for
complex k. For real k, we compare our symmetry relations with
the corresponding results of [9]; except for one case, our results
agree with the corresponding ones for the three types of symmetry
operations considered in [9]. Third, we express the symmetry relations
in a form suitable for numerical applications. For example, we
combine the aforementioned expressions involving spherical Hankel
functions with negative arguments with another type of symmetry
relations to produce symmetry relations that are useful for numerical
applications. [19] shows that this set of symmetry relations provide
an additional reduction of the storage requirement of the FFT T-
Matrix method. Moreover, as the aforementioned applications require
translation coefficients of the transverse vector spherical multipole
fields, we elect to derive their explicit symmetry relations diretly.

In Section 2 we define the scalar and vector spherical multipole
fields and provide the explicit expressions for their respective
translation coefficients for the purpose of establishing the notations
and conventions used in the paper. In Section 3, we derive the
symmetry relations of the translation coefficient of the scalar multipole
field for the aforementioned four symmetry operations by taking
advantage of the respective complex conjugation properties of the
spherical harmonics and spherical Bessel and Hankel functions and the
symmetry and recurrence relations of the Clebsch-Gordan coefficients.
In Section 4, the symmetry relations of the translation coefficient of
the scalar spherical multipole field are used to derive the corresponding
relations of the two transverse vector spherical multipole fields. In
Section 5, we present a summary of the symmetry relations derived.
The appendix discusses the spherical tensor field and its relation to
the spherical longitudinal and transverse multipole field [9, 20–22].
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2. SCALAR AND VECTOR SPHERICAL MULTIPOLE
FIELDS AND THEIR TRANSLATION FORMULAS

In this section we briefly review the respective translation formulas of
the scalar and transverse vector spherical multipole fields. Consistent
definitions of these fields are necessary to ensure that their symmetry
relations be physically meaningful, as inconsistent definitions of these
fields sometimes led to incorrect expressions for the translation
coefficients in the literature. We will follow the notations used in [7]
and [9].

The scalar spherical multipole field φl,m(k, r) of order (l,m) is
defined as

φl,m(k, r) ≡ fl(kr)Yl,m(θ, φ), (1)
where (r, θ, φ) represent the spherical coordinates of the position vector
r, and k is the fixed wavenumber which may be complex. fl(kr) is
either the spherical Bessel function jl(kr) or spherical Hankel function
h

(±)
l (kr) of the first (second) kind. Yl,m(θ, φ) represents the spherical

harmonics of order (l,m) [20–22],

Ylm(θ, φ) ≡ (−1)m
√

(2l + 1)
4π

(l −m)!
(l + m)!

Pl,m(cos θ)eimφ,

where Pl,m(cos θ) is the associated Legendre function,

Pl,m(cos θ) ≡ 1
2ll!

(1− cos2 θ)m/2
dl+m

d(cos θ)l+m
(cos2 θ − 1)l, −l ≤ m ≤ l.

With the above definition Yl,m(θ, φ) satisfies the complex-conjugation
property [20–22],

Y ∗l,m(θ, φ) = (−1)mYl,−m(θ, φ) (2)

and the spatial-inversion property [20–22],

Yl,m(π − θ, π + φ) = (−1)lYl,m(θ, φ), (3)

where π−θ and π+φ. are, respectively, the polar and azimuth angles of
the spatially-inverted position vector, −r. Under reflection of r about
the yz-, zx-, and xy-planes, its angular coordinates change from (θ, φ)
to (θ, π − φ, ), (θ,−φ), and (π − θ, φ), respectively. Thus, Yl,m(θ, φ)
satisfies the following reflection symmetry relations,

Yl,m(θ, π − φ) = Yl,−m(θ, φ),
Yl,m(θ,−φ) = (−1)mYl,−m(θ, φ), (4)

and Yl,m(π − θ, φ) = (−1)l+mYl,m(θ, φ).
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We note that the above reflection relations are consistent with the
spatial-inversion symmetry relation, (3), as a spatial reflection is
equivalent to successive reflections about the yz-, zx- and zy-plane:

Yl,m(π − θ, π + φ) = Yl,−m(π − θ,−φ)

= (−1)mYl,m(π − θ, φ) = (−1)lYl,m(θ, φ).

Under translation of the coordinate system, r = R + r′, the
scalar spherical multipole field φl,m(k, r) = fl(kr)Yl,m(θ, φ) of the
original coordinate system can be expressed in terms of the scalar
spherical multipole fields φ̃l′,m′(k, r′) = gl′(kr′)Yl′,m′(θ′, φ′) of the new
coordinate system [2–9]:

φl,m(k, r) =
∞∑
l=0

l∑
m=−l

αl,ml′,m′(k,R)φ̃l′,m′(k, r′). (5)

Here, (r′, θ′, φ′) represent the spherical coordinates of the new position
vector r′. The tilde in φ̃l′,m′(k, r′) signifies that the radial function
gl′ of the new scalar multipole field in (5) may differ from the radial
function fl′ , of the original multipole field depending on the ratio r′/R:

gl′(kr′) =

{
fl′(kr′) if r′ > R

jl′(kr′) otherwise.

The translation coefficients αl,ml′,m′(k,R) in (5) are given by [2–9]

αl,ml′,m′(k,R) =
l+l′∑

l′′=|l−l′|,2
4πi(l

′−l+l′′)(−1)m
′
[(2l+1)(2l′+1)/4π(2l′′+1)]1/2

· C(l, l′, l′′; 0, 0, 0)C(l, l′, l′′;−m,m′,−m + m′)
· pl′′(kR)Yl′′,m−m′(θR, φR), (6)

where (R, θR, φR) represent the spherical coordinates of the translation
vector R. The Clebsch-Gordan coefficients C(l, l′, l′′; 0, 0, 0) and
C(l, l′, l′′;−m,m′,−m + m′) represent the strength of the coupling
among the multipole modes (l,m), (l′,m′) and (l′′,−m + m′). The
summation in (6) is over the dummy variable l′′ from |l − l′| to l + l′

in steps of two, as C(l, l′, l′′; 0, 0, 0) is non-zero only when l + l′ + l′′ is
even [20–22]. The radial function pl′′(kR) is determined according to

pl′′(kR) =

{
fl′′(kR) if r′ > R

jl′′(kR) otherwise.
(7)
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Where necessary, we will use αl,ml′,m′(0, k,R) to denote αl,ml′,m′(k,R) with

pl′′(kR) = jl′′(kR), and αl,ml′,m′(±, k,R) with pl′′(kR) = h
(±)
l′′ (kR).

The longitudinal spherical multipole field Ll,m(k, r) and trans-
verse vector multipole fields M l,m(k, r) and N l,m(k, r) are defined in
terms of φl,m(k, r) as [7, 20–22]

Ll,m(k, r) ≡ 1
k
∇φl,m(k, r), (8)

M l,m(k, r) ≡ 1√
l(l + 1)

1
i
r ×∇φl,m(k, r), (9)

and N l,m(k, r) ≡ 1
k
∇×M l,m(k, r). (10)

The translation formula for the longitudinal multipole field Ll,m(k, r)
is the same as that of φl,m(k, r) since the gradient operator in (8)
is translationally invariant; i.e., ∇ = ∇′. On the other hand, the
translation formulas of the transverse fields M l,m(k, r) and N l,m(k, r)
are more complicated since the operators ∇×r in (9) and ∇×∇×r in
(10) are not translationally invariant. It has be shown that M l,m(k, r)
and N l,m(k, r) translate according to [2–8]

M l,m(k, r) =
∞∑
L=1

L∑
M=−L

[
Al,mL,M (k,R)M̃L,M (k, r′)

+ Bl,mL,M (k,R)ÑL,M (k, r′)
]
, (11)

and N l,m(k, r) =
∞∑
L=1

L∑
M=−L

[
Al,mL,M (k,R)ÑL,M (k, r′)

+ Bl,mL,M (k,R)M̃L,M (k, r′)
]
, (12)

where the tilde in M̃L,M (k, r′) and ÑL,M (k, r′) has the same meaning
as in the scalar case. The translation coefficients Al,mL,M (k,R) and

Bl,mL,M (k,R) may be written in terms of αl,ml′,m′(k,R) of (6) [2–8],

Al,mL,M (k,R)≡ ik

[
L

2L + 1

] 1
2

βL,Ml,m,L+1(k,R)

−ik
[
L + 1
2L+1

] 1
2

βL,Ml,m,L−1(k,R) +
[
L(L+1)
l(l + 1)

] 1
2

αl,mL,M (k,R),

and (13)

Bl,mL,M (k,R)≡ kβL,Ml,m,L(k,R), (14)
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where βL,Ml,m,l′(k,R) is a linear combination of αl,mL,M (k,R) [7],

βL,Ml,m,l′(k,R) =
√

4π
3

R

i
√
l(l + 1)

1∑
µ=−1

(−1)µY1,−µ(θR, φR)

· C(l′, 1, L;M − µ, µ,M)αl,ml′,M−µ(k,R). (15)

We note that Al,mL,M (k,R) may also be written as [3, 8]

Al,mL,M (k,R) = 2π(i)L−l(−1)M [l(l + 1)L(L + 1)]−1/2

·
l+l′∑

l′′=|l−l′|,2
(i)l

′′
[(2l + 1)(2L + 1)/4π(2l′′ + 1)]1/2

· [l(l + 1) + L(L + 1)− l′′(l′′ + 1)]C(l, l′, l′′; 0, 0, 0)
· C(l, l′, l′′;−m,m′,−m + m′)pl′′(kR)Yl′′,m−m′(θR, φR),

(16)

which is more convenient for some applications. Since Al,mL,M (k,R) and

Bl,mL,M (k,R) can be expressed in terms of αl,ml′,m′(k,R), the symmetry
properties of the former are intimately related to those of the latter.
This observation may be used to derive the symmetry relations
of Al,mL,M (k,R) and Bl,mL,M (k,R), once the corresponding relations of

αl,ml′,m′(k,R) are obtained. Some well known results [9, 20–23] of
the spherical tensor field are presented in Appendix to facilitate
comparison between the symmetry relations of [9] and the present
work.

3. SYMMETRY RELATIONS OF THE TRANSLATION
COEFFICIENT OF THE SCALAR SPHERICAL
MULTIPOLE FIELD

Having defined the spherical multipole fields and their translation
coefficients, we now proceed to derive the respective symmetry
relations of αl,ml′,m′(k,R) for the four symmetry operations mentioned
earlier. These relations may be derived in several different ways. As
(6) strongly suggests, however, we choose to derive them by taking
advantage of the well-known symmetry properties of the Clebsch-
Gordan coefficients and the scalar harmonics Yl,m(θR, φR). The
wavenumber k is assumed to be complex.
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3.1. Spatial Inversion of the Translation Vector

Under the spatial inversion of the translation vector, R → −R, its
spherical coordinates change from (R, θR, φR) to (R, π − θR, π + φR).
As a result, Yl′′,m−m′(θR, φR) in (6) changes to Yl′′,m−m′(π−θR, π+φR),
which according to (3) equals (−1)l

′′
Yl′′,m−m′(θR, φR). Thus, the net

effect of the spatial inversion is the introduction of the phase factor,
(−1)l

′′
. As noted earlier, C(l, l′, l′′; 0, 0, 0) is non-zero only when l+l′+l′′

is even. This implies that (−1)l
′′

= (−1)l+l
′
and, therefore,

αl,ml′,m′(k,−R) = (−1)l+l
′
αl,ml′,m′(k,R). (17)

We note that (17) is identical to the result obtained for real k by
Peterson and Ström [9]. However, as shown here, it is valid whether k is
real or complex and whether pl′′(kR) = jl′′(kR) or pl′′(kR) = h

(±)
l′′ (kR)

in (6).

3.2. Interchange of Mode Indices

We next investigate the symmetry properties of αl,ml′,m′(k,R) under the
interchange of mode indices {(l,m), (l′,m′)} → {(l′,m′), (l,m)}. From
(6) we have

αl
′,m′

l,m (k,R) =
l+l′∑

l′′=|l−l′|,2
4πi(l−l

′+l′′)(−1)m[(2l + 1)(2l′ + 1)/4π(2l′′ + 1)]
1
2

· C(l′, l, l′′; 0, 0, 0)C(l′, l, l′′;−m′,m,m−m′)
· pl′′(kR)Yl′′,−m+m′(θR, φR). (18)

Comparison of the above equation with (6) shows that three terms
are altered: (i) the phase factor i(l−l

′+l′′)(−1)m, (ii) the product of two
Clebsch-Gordan coefficients C(l′, l, l′′; 0, 0, 0)·C(l′, l, l′′;−m′,m,m−m′),
and (iii) the spherical harmonics, Yl′′,−m+m′(θR, φR) which according
to (2) equals (−1)(−m+m′)[Yl′′,m−m′(θR, φR)]∗. Since l + l′ + l′′ is even,
the phase factor is real and satisfies

i(l−l
′+l′′)(−1)m = (−1)(l+l

′)
[
i(l
′−l+l′′)

]∗
(−1)m. (19)

Also, the Clebsch-Gordan coefficient C(a, b, c;ma,mb,mc) undergoes a
phase change under simultaneous interchanges of a and b, and ma and
mb [20–22],

C(a, b, c;ma,mb,mc) = (−1)a+b+cC(a, b, c;ma,mb,mc).
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Therefore, the product of the two Clebcsh-Gordan coefficients becomes
C(l′, l, l′′; 0, 0, 0)C(l′, l, l′′;−m′,m,m − m′) = C(l, l′, l′′; 0, 0, 0)C(l, l′, l′′;
m,−m′,m −m′). Substitution of these results into (18) and the fact
that the Clebsch-Gordan coefficient is always real yield,

αl
′,m′

l,m (k,R) = (−1)l+l
′


 l+l′∑
l′′=|l−l′|,2

4πi(l
′−l+l′′)(−1)m

′

·[(2l + 1)(2l′ + 1)/4π(2l′′ + 1)]
1
2C(l, l′, l′′; 0, 0, 0)

· C(l, l′, l′′;m,−m′,m−m′)p∗l′′(kR)Yl′′,m−m′(θR, φR)

]∗
.

If pl′′(kR) = jl′′(kR), comparison of the above equation with (6) using
j∗l′′(kR) = jl′′(k∗R) yields

αl
′,m′

l,m (0, k,R) = (−1)l+l
′ [
αl,ml′,m′(0, k

∗,R)
]∗
. (20)

On the other hand, if pl′′(kR) = h
(±)
l′′ (kR), then

[
h

(±)
l′′ (kR)

]∗
=

h
(∓)
l′′ (k∗R). Thus,

αl
′,m′

l,m (±, k,R) = (−1)l+l
′ [
αl,ml′,m′(∓, k∗,R)

]∗
. (21)

If k is real, (20) and (21), respectively, reduce to

αl
′,m′

l,m (0, k,R) = (−1)l+l
′ [
αl,ml′,m′(0, k,R)

]∗
, (22)

and αl
′,m′

l,m (±, k,R) = (−1)l+l
′ [
αl,ml′,m′(∓, k,R)

]∗
. (23)

We note that (22) is identical to the corresponding result of [9], while
(23) can be shown to agree with the corresponding result of [9], namely,
αl
′,m′

l,m (±, k,R) =
[
αl,ml′,m′(±,−k,R)

]∗
using the following symmetry

property of the spherical Hankel function when l + l′ + l′′ is even,

h
(±)
l′′ (−kr) = (−1)l

′′
h

(∓)
l′′ (kr) = (−1)l+l

′
h

(∓)
l′′ (kr). (24)

3.3. Simultaneous Changes of the Signs of the Azimuthal
Indices

We next investigate the symmetry property of αl,ml′,m′(k,R) un-
der simultaneous changes of the signs of the azimuthal indices
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{(l,m), (l′,m′)} → {(l,−m), (l′,−m′)}. This introduces two changes
to (6). First, the Clebsch-Gordan coefficient C(l, l′, l′′;−m,m′,−m +
m′) changes to C(l, l′, l′′;m,−m′,m −m′). Since the Clebsch-Gordan
coefficient undergoes a phase change under simultaneous changes of
the signs of the three azimuthal indices [20–22],

C(a, b, c;−ma,−mb,−mc) = (−1)(a+b−c)C(a, b, c;ma,mb,mc),

and since l + l′ + l′′ is even, we have C(l, l′, l′′;−m,m′,−m +
m′) = C(l, l′, l′′;m,−m′,m − m′). Second, the spherical harmonics
Yl′′,m−m′(θR, φR) changes to Yl′′,−m+m′(θR, φR) which according to (2)
is (−1)m+m′ [Yl′′,−m+m′(θR, φR)]∗. Using the reasoning similar to that
used in the previous subsection, we obtain the following symmetry
relations:

αl,−ml′,−m′(0, k,R) = (−1)m+m′
[
αl,ml′,m′(0, k

∗,R)
]∗

if pl′′(kR) = jl′′(kR),

and (25)

αl,−ml′,−m′(±, k,R) = (−1)m+m′
[
αl,ml′,m′(∓, k∗,R)

]∗
if pl′′(kR)=h

(±)
l′′ (kR).

(26)

If k is real, then (25) and (26), respectively, reduce to

αl,−ml′,−m′(0, k,R) = (−1)m+m′
[
αl,ml′,m′(0, k,R)

]∗
if pl′′(kR) = jl′′(kR),

and (27)

αl,−ml′,−m′(±, k,R) = (−1)m+m′
[
αl,ml′,m′(∓, k,R)

]∗
if pl′′(kR) = h

(±)
l′′ (kR).

(28)

(27) is identical to Peterson and Ström’s result [9], while (28)
can be shown to agree with their result αl,−ml′,−m′(±, k,R) =

(−1)m+m′αl
′,m′

l,m (±, k,−R) using (17) and (23).
As they stand, the symmetry relations of (20)–(23) and (25)–(28)

individually are not useful for numerical applications. For example,
(23) and (28) both require evaluations of the spherical Hankel function
of different kinds with complex-conjugated k. However, combining
these two types of symmetry relations effects the following relation
that is suitable for numerical applications:

αl
′,−m′
l,−m (k,R) = (−1)(l+l

′+m+m′)αl,ml′,m′(k,R). (29)

We note that this relation holds whether k is real or complex and
whether pl′′(kR) = jl′′(kR) or pl′′(kR) = h

(±)
l′′ (kR) in (6).
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3.4. Reflection of the Translation Vector about the yz-, zx-,
and xy-Planes

We now proceed to investigate the respective symmetry relations of
αl,ml′,m′(k,R) when the translation vector R undergoes reflections about
the yz-, zx-, and xy-planes. Substitution of (4) into (6) and the fact
that l + l′ + l′′ is an even integer readily yield the following three
reflection symmetry relations of αl,ml′,m′(k,R).

αl,ml′,m′(k,−x, y, z) = αl,−ml′,−m′(k, x, y, z), (30)

αl,ml′,m′(k, x,−y, z) = (−1)(m+m′)αl,−ml′,−m′(k, x, y, z), (31)

and αl,ml′,m′(k, x, y,−z) = (−1)(l+l
′+m+m′)αl,ml′,m′(k, x, y, z), (32)

where x, y and z are the cartesian coordinates ofR. We note that each
of the above relations holds whether k is complex or real and whether
pl′′(kR) in (6) is jl′′(kR) or h

(±)
l′′ (kR). Needless to say, symmetry

relations involving multiple reflections can be obtained from the above
relations. Indeed, we recover the spatial-inversion symmetry relation
(17) from the above relations,

αl,ml′,m′(k,−x,−y,−z) = αl,−ml′,−m′(k, x,−y,−z)
= (−1)(m+m′)αl,ml′,m′(k, x, y,−z)
= (−1)(l+l

′)αl,ml′,m′(k, x, y, z).

We further note that (30)–(32) are consistent with the corresponding
reflection properties of φl,m(k,R). Substitution of (4) into (l) yields
the following reflection properties of φl,m(k,R):

φl,m(k,−x, y, z) = φl,−m(k, x, y, z)
φl,m(k, x,−y, z) = (−1)mφl,−m(k, x, y, z),

and φl,m(k, x, y,−z) = (−1)(l+m)φl,m(k, x, y, z).

The consistency then can be established by applying the above
relations and (30)–(32) to (5).

4. SYMMETRY RELATIONS OF THE TRANSLATION
COEFFICIENTS OF THE TRANSVERSE VECTOR
SPHERICAL MULTIPOLE FIELDS

We extend the analysis of the previous section to derive the
corresponding symmetry relations of Al,mL,M (k,R) and Bl,mL,M (k,R) for
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the same set of symmetry operations considered in the previous section.
(13) and (14) show that Al,mL,M (k,R) and Bl,mL,M (k,R) may be expressed

as a sum of the products of αl,mL,M (k,R) and a geometrical factor that
depends on {l,m}, {L,M} and R. Therefore, the symmetry relations
of Al,mL,M (k,R) and Bl,mL,M (k,R) are intimately related to the combined

symmetry properties of the geometrical factor and αl,mL,M (k,R). The
symmetry relations of the latter are obtained in the previous section,
while the symmetry properties of the former can be obtained by taking
advantage of the well-known symmetry and recurrence relations of the
Clebsch-Gordan coefficient [20–22] and the symmetry properties of the
spherical harmonics as done in the previous section. As in the scalar
case, k is allowed to be complex.

4.1. Spatial Inversion of the Translation Vector

(13) and (14), respectively, express Al,mL,M (k,R) and Bl,mL,M (k,R) in
terms of βL,Ml,m,l′(k,R) (15). Therefore, we first look into its spatial-
inversion property. Application of (3) and (17) to (15) yields,

βL,Ml,m,l′(k,−R) = (−1)l+l
′+1βL,Ml,m,l′(k,R),

which, in turn, by virtue of (14) and (13) yields the following spatial-
inversion relations:

Bl,mL,M (k,−R) = (−1)l+L+1Bl,mL,M (k,R), and (33)

Al,mL,M (k,−R) = (−1)l+LAl,mL,M (k,R). (34)

Some comments are in order. First, Al,mL,M (k,R) and Bl,mL,M (k,R)
undergo different phase changes under the spatial inversion of
the translation vector. This is due to the fact that M l,m(k, r)
and N l,m(k, r) themselves undergo different phase changes under
spatial inversion. From (9) and (10), we deduce M l,m(k,−r) =
(−1)lM l,m(k, r) and N l,m(k,−r) = (−1)l+1N l,m(k, r). Substitution
of these into (11) and (12) explains the phase difference between
(33) and (34). Second, both (33) and (34) are valid whether k is
complex or real, and whether pl′′(kR) = jl′′(kR) or pl′′(kR) = h

(±)
l′′ (kR)

in (6). Third, one can show using (A1) and (A2) that (33) and
(34) are consistent with the corresponding symmetry property of the
translation coefficient of the spherical tensor field Sl,j,mL,J,M (k,R) =

(−1)(l+L)Sl,j,mL,J,M (k,−R) reported in [9].
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4.2. Interchange of Modal Indices

We next investigate the symmetry relations of Al,mL,M (k,R) and

Bl,mL,M (k,R) under the interchange of mode indices. Comparison of (16)
with (6) shows that they are of the same functional form. Following
the reasoning used in the derivation of (20)–(23), we obtain

AL,Ml,m (0, k, r) = (−1)l+L
[
Al,mL,M (0, k∗, r)

]∗
, if pl′′(kR) = jl′′(kR),

and (35)

AL,Ml,m (±, k, r) = (−1)l+L
[
Al,mL,M (∓, k∗, r)

]∗
, if pl′′(kR) = h

(±)
l′′ (kR).

(36)

If k is real, then the above equations, respectively, reduce to

AL,Ml,m (0, k, r) = (−1)l+L
[
Al,mL,M (0, k, r)

]∗
, if pl′′(kR) = jl′′(kR),

and (37)

AL,Ml,m (±, k, r) = (−1)l+L
[
Al,mL,M (∓, k, r)

]∗
, if pl′′(kR) = h

(±)
l′′ (kR).

(38)

We note that (37) can be reconciled with Peterson and Ström’s result
Sl,j,mL,J,M (0, k,R) =

[
SL,J,Ml,j,m (0,−k,−R)

]∗
using (A1) and the spatial-

inversion relation obtained earlier and that (38) can be reconciled with
Sl,j,mL,J,M (±, k,R) =

[
SL,J,Ml,j,m (±, k,−R)

]∗
using (A1) and (24).

The derivation of the corresponding symmetry relation for
Bl,mL,M (k,R) is more complicated since (14) has not been reduced to
a simple form comparable to (16). Using (14) and (6), BL,Ml,m (k,R) and

Bl,mL,M (k,R) can, respectively, be written as

BL,Ml,m (k,R) = (−1)mkR
l+L∑

l′=|L−l|,2

Λ(L, l, l′′)√
2l′′ + 1

C(L, l, l′′; 0, 0, 0)pl′′(kR)

·

 1∑
µ=−1

C(L, l, l′′;−M,m− µ,m−M − µ)

·C(l, 1, l;m−µ, µ,m)Yl′′,M−m+µ(θR, φR)Y1,−µ(θR, φR)

]
, (39)



Symmetry relations of translation coefficients 59

and

Bl,mL,M (k,R) = (−1)mkR
l+L∑

l′=|L−l|,2

Λ(l, L, l′′)√
2l′′ + 1

C(L, l, l′′; 0, 0, 0)pl′′(kR)

·

 1∑
µ=−1

C(L, l, l′′;M + µ,−m,M −m + µ)

·C(L, 1, L;M+µ,−µ,M)Yl′′,M−m+µ(θR, φR)Y1,−µ(θR, φR)

]∗
, (40)

where Λ(l, L, l′′) and Λ(L, l, l′′) are defined, respectively, as

Λ(L, l, l′′) = 4πi(−L+l+l′′−1)

√
(2L+1)(2l+1)

3L(L+1) and Λ(l, L, l′′)=4πi(−l+L+l′′−1)

·
√

(2L+1)(2l+1)
3L(L+1) . (19) indicates that Λ(l, L, l′′) and Λ(L, l, l′′) are both

real and related to each other by√
l(l + 1)Λ(l, L, l′′) = (−1)l+L

√
L(L + 1)Λ(L, l, l′′). (41)

The quantities in the square brackets in (39) and (40) can be related
to each other by using the recurrence relation of the Clebsch-Gordan
[20–22],√

J(J + 1)C(J, 1, J ;M + µ,−µ,M)C(j1, j2, J ;m1,m2,M)

=
√
j1(j1+1)C(j1, 1, j1;m1+µ,−µ,m1)C(j1, j2, J ;m1+µ,m2,M+µ)

+
√
j2(j2+1)C(j2, 1, j2;m2+µ,−µ,m2)C(j1, j2, J ;m1,m2+µ,M+µ)

and the symmetry relation [20–22],

C(a, b, c;ma,mb,mc) = (−1)(b+mb)
√

(2c + 1)/(2a + 1)

·C(c, b, a;mc,mb,ma).

Using these relations, the product of the Clebsch-Gordan coefficients
in the square bracket in (40) may be written as

C(L, 1, L : M + µ,−µ,M)C(L, l, l′′;M + µ,−m,M −m + µ)

=
1√

L(L + 1)

[√
l′′(l′′ + 1)C(l′′, 1, l′′;M −m + µ,−µ,M −m)

·C(L, l, l′′;M,−m,M −m)

+
√
l(l+1)C(l, 1, l;m−µ, µ,m)(L, l, l′′;−M,m−µ,m−M−µ)

]
.(42)
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Since
1∑

µ=−1

C(l′′, 1, l′′;M −m+ µ,−µ,M −m)Yl′′,M−m+µ(θR, φR)Y1,−µ

(θR, φR) = 0, the quantity in the square bracket, with the aid of (41),
may be written as

(−1)m+M

√
l(l + 1)
L(L + 1)


 1∑
µ=−1

C(l, 1, l;m− µ, µ,m)

C(L, l, l′′;−M,m− µ,m−M − µ)Yl′′,M−m+µ(θR, φR)Y1,−µ(θR, φR)

]∗
.

Comparing this equation with the corresponding term in (39) and using
(41), we obtain the symmetry relations of Bl,mL,M (k,R),

BL,Ml,m (0, k, r) = (−1)l+L+1
[
Bl,mL,M (0, k∗, r)

]∗
, if pl′′(kR) = jl′′(kR),

and (43)

BL,Ml,m (±, k, r) = (−1)l+L+1
[
Bl,mL,M (∓, k∗, r)

]∗
, if pl′′(kR) = h

(±)
l′′ (kR).

(44)

If the k is real, then the above equations, respectively, reduce to

BL,Ml,m (0, k, r) = (−1)l+L+1
[
Bl,mL,M (0, k, r)

]∗
, if pl′′(kR) = jl′′(kR),

and (45)

BL,Ml,m (±, k, r) = (−1)l+L+1
[
Bl,mL,M (∓, k, r)

]∗
, if pl′′(kR) = h

(±)
l′′ (kR),

(46)

both of which again can be reconciled with Peterson and Ström’s result
for Sl,j,mL,J,M (k,R) [9]. As in the spatial-inversion symmetry relations,

Al,mL,M (k,R) and Bl,mL,M (k,R) undergo different phase changes under
interchange of model indices.

4.3. Simultaneous Changes of the Signs of the Azimuthal
Indices

We investigate the symmetry properties of Al,mL,M (k,R) and Bl,mL,M (k,R)
under simultaneous changes of the signs of the azimuthal indices m and
M . Using (2), (25), and (26), we can show that

βL,−Ml,−m,l′(0, k,R) = (−1)l
′+L+m+M

[
βL,Ml,m,l′(0, k

∗,R)
]∗
,
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if pl′′(kR) = jl′′(kR) (47)

and βL,−Ml,−m,l′(±, k,R) = (−1)l
′+L+m+M

[
βL,Ml,m,l′(∓, k∗,R)

]∗
,

if pl′′(kR) = h
(±)
l′′ (kR). (48)

The desired symmetry relations of Al,mL,M (k,R) and Bl,mL,M (k,R) then
can be readily obtained by substituting the above equations into (13)
and (14).

Al,−mL,−M (0, k,R) = (−1)m+M
[
Al,mL,M (0, k∗,R)

]∗
, if pl′′(kR) = jl′′(kR),

(49)

Al,−mL,−M (±, k,R) = (−1)m+M
[
Al,mL,M (∓, k∗,R)

]∗
, if pl′′(kR)=h

(±)
l′′ (kR),

(50)

Bl,−mL,−M (0, k,R) = (−1)m+M
[
Bl,mL,M (0, k∗,R)

]∗
, if pl′′(kR) = jl′′(kR),

and (51)

Bl,−mL,−M (±, k,R) = (−1)m+M
[
Bl,mL,M (∓, k∗,R)

]∗
, if pl′′(kR)=h

(±)
l′′ (kR).

(52)

We note that when k is real, the above symmetry relations fail to
reduce to the corresponding relations of Sl,j,mL,J,M (k,R) reported in [9],

Sl,j,−mL,j,−M (0, k,R) = (−1)(J−L+M)−(j−l+m)
[
Sl,j,mL,j,M (0, k,−R)

]∗
if pl′′(kR) = jl′′(kR),

and Sl,j,−mL,j,−M (±, k,R) = (−1)(J−L+M)−(j−l+m)
[
Sl,j,mL,j,M (±, k,−R)

]∗
if pl′′(kR) = h

(±)
l′′ (kR),

both of which are believed to be in error.
As they stand, the symmetry relations of (35), (36), (43), (44),

and (49)–(52) are not useful for numerical applications for the reasons
stated in the previous section. However, as in the scalar case,
combining two types of symmetry relations produces results that are
useful in numerical applications,

Al,−mL,−M (k,R) = (−1)l+L+m+MAL,Ml,m (k,R),

and Bl,−mL,−M (k,R) = (−1)l+L+m+M+1BL,Ml,m (k,R).

We note that both of the above relations are valid whether k is complex
or real and whether pl′′(kR) = jl′′(kR) or pl′′(kR) = h

(±)
l′′ (kR) in (6).
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4.4. Reflection of the Translation Vector about the xy-, zy-,
and zy-Planes

We investigate the respective symmetry properties of Al,mL,M (k,R) and

Bl,mL,M (k,R) under reflection of R about the yz-, xz- and xy-planes.

Using the respective reflection symmetry relations of αl,mL,M (k,R) and
Yl,m(θ, φ) we obtain the following reflection symmetry relations of
βL,Ml,m,l′(k,R).

βL,Ml,m,l′(k,−x, y, z) = (−1)(l
′+L+1)βL,−Ml,−m,l′(k, x, y, z),

βL,Ml,m,l′(k, x,−y, z) = (−1)(l
′+L+m+M+1)βL,−Ml,−m,l′(k, x, y, z),

and βL,Ml,m,l′(k, x, y,−z) = (−1)(l+l
′+m+M+1)βL,Ml,m,l′(k, x, y, z).

Substitution of these relations into (13) and (14), respectively, yields
the following reflection symmetry relations Al,mL,M (k, r) and Bl,m

L,M (k, r),

Al,mL,M (k,−x, y, z) = Al,−mL,−M (k, x, y, z),

Al,mL,M (k, x,−y, z) = (−1)(m+M)Al,−mL,−M (k, x, y, z),

Al,mL,M (k, x, y,−z) = (−1)(l+L+m+M)Al,mL,M (k, x, y, z)

and

Bl,m
L,M (k,−x, y, z) = −Bl,−m

L,−M (k, x, y, z),

Bl,m
L,M (k, x,−y, z) = (−1)(m+M+1)Bl,−m

L,−M (k, x, y, z),

Bl,m
L,M (k, x, y,−z) = (−1)(l+L+m+M+1)Bl,m

L,M (k, x, y, z).

Several comments are in order. First, each of the above relations
holds whether k is real or complex, and whether pl′′(kR) is jl′′(kR)
or h

(±)
l′′ (kR). Second, they are consistent with the spatial-inversion

symmetry relations (33) and (34) since

Al,mL,M (k,−x,−y,−z) = Al,−mL,−M (k, x,−y,−z),
= (−1)m+MAl,mL,M (k, x, y,−z)
= (−1)l+LAl,mL,M (k, x, y, z)

and Bl,m
L,M (k,−x,−y,−z) = −Bl,−m

L,−M (k, x,−y,−z),
= (−1)m+MBl,m

L,M (k, x, y,−z)
= (−1)l+L+1Bl,m

L,M (k, x, y, z).
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Third, the sign difference between the symmetry relations of
Al,mL,M (k,R) and Bl,mL,M (k,R) for each reflection is consistent with the
reflection properties of M l,m(k, r) and N l,m(k, r). Application of (4)
to (9) and (10) yields the following reflection symmetry relations of
M l,m(k, r) and N l,m(k, r).

M l,m(k,−x, y, z) = −
[
−M (x)

l,−m(k, x, y, z)x̃

+ M
(y)
l,−m(k, x, y, z)ŷ + M

(z)
l,−m(k, x, y, z)ẑ

]
,

M l,m(k, x,−y, z) = (−1)(m+1)
[
M

(x)
l,−m(k, x, y, z)x̃

−M
(y)
l,−m(k, x, y, z)ŷ + M

(z)
l,−m(k, x, y, z)ẑ

]
,

M l,m(k, x, y,−z) = (−1)(l+m+1)
[
M

(x)
l,m(k, x, y, z)x̃

+ M
(y)
l,m(k, x, y, z)ŷ −M

(z)
l,m(k, x, y, z)ẑ

]
,

and

N l,m(k,−x, y, z) = −N (x)
l,−m(k, x, y, z)x̃

+N
(y)
l,−m(k, x, y, z)ŷ + N

(z)
l,−m(k, x, y, z)ẑ,

N l,m(k, x,−y, z) = (−1)(m)
[
N

(x)
l,−m(k, x, y, z)x̃

− N
(y)
l,−m(k, x, y, z)ŷ + N

(z)
l,−m(k, x, y, z)ẑ

]
,

N l,m(k, x, y,−z) = (−1)(l+m)
[
M

(x)
l,m(k, x, y, z)x̃

+ N
(y)
l,m(k, x, y, z)ŷ −N

(z)
l,m(k, x, y, z)ẑ

]
,

which explain the phase difference.

5. SUMMARY

We have examined the symmetry properties of the translation
coefficients of the scalar and vector spherical multipole fields. The
symmetry relations considered include not only those considered earlier
for real wavenumbers in [9], but also the respective symmetry relations
that arise when the translation vector is reflected about the xy-, yz-,
and zx-planes. In addition, all the symmetry relations considered
in this work are valid for complex wavenumbers. These symmetry
relations may be used to reduce the computational cost of evaluating
and storing the translation coefficients for the applications mentioned
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earlier because they are expressed in a form suitable for exploitation
in numerical applications. These relations were successfully applied
to significantly reduce the memory requirement of the FFT T-matrix
technique [19].
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APPENDIX A.

It is possible to define a more general spherical vector multipole field
than Ll,m(k, r), M l,m(k, r) and N l,m(k, r). The spherical tensor field
T j,ml,1 (k, r) of order (j,m) [9, 20–22] is defined by

T j,ml,1 (k, r) ≡ fl(kr)Y
j,m
l,1 (θ, φ)

≡ fl(kr)
1∑

µ=−1

C(l, 1, j;m− µ, µ,m)Yl,m−µ(θ, φ)êµ,

where the spherical basis vectors êµ are related to the Cartesian
unit vectors by ê0 = ẑ and ê± = ∓ 1√

2
(x̂ ± iŷ). Under translation,

r = R+ r′, T j,ml,1 (k, r) translates according to

T j,ml,1 (k, r) =
∑
L,M,J

Sl,j,mL,J,M (k,R)T̃
J,M
L,1 (k, r′),

where Sl,j,mL,J,M (k,R) is the translation coefficient for T j,ml,1 (k, r) [9]. The
more familiar Ll,m(k, r), M l,m(k, r) and N l,m(k, r) can be expressed
as a linear combination of T j,ml,1 (k, r) [9, 20–22],

Ll,m(k, r) =
[
l + 1
2l + 1

]1/2

T j,ml+1,1(k, r) +
[

l

2l + 1

]1/2

T j,ml−1,1(k, r),

M l,m(k, r) = T l,ml,1 (k, r),

N l,m(k, r) = −
[

l

2l + 1

]1/2

T j,ml+1,1(k, r) +
[
l + 1
2l + 1

]1/2

T j,ml−1,1(k, r).

The latter two relations may be used to relate Sl,j,mL,J,M (k,R) to

Al,mL,M (k,R) and Bl,mL,M (k,R) [9],

Al,mL,M (k,R) = Sl,j,mL,J,M (k,R), (A1)
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Bl,mL,M (k,R) =
i

(2l + 1)1/2
[√

l + 1Sl−1,j,m
L,L,M (k,R)−

√
lSl+1,j,m
L,L,M (k,R)

]
,

(A2)
which can be used to compare the symmetry relations of Al,mL,M (k,R)

and Bl,mL,M (k,R) derived in this paper with the corresponding symmetry

relations of Sl,j,mL,J,M (k,R) reported in [9].
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