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Abstract—The study of periodically dielectric-slab-loaded TE10

waveguide structures of conductive walls and finite length is carried out
by using wave analysis techniques. The principal aim is to design and
construct a highly dispersive waveguide keeping losses to a minimum.
Passing a properly frequency modulated wave through this waveguide,
pulse compression phenomena take place. Frequency modulated waves,
incident to a finite length periodic loaded waveguide, are studied. The
aim is to achieve optimum pulse compression, by taking into account
all wave phenomena involved. In order to minimize the reflected (at
the input) and maximize the transmitted (at the output) waves of
the compressor structure, a staggered-tapered structure of dielectric
slabs inside the waveguide is utilized to match the incident waves. The
slab longitudinal discontinuity nature prevents the appearance of field
singularity points that could hinder the operation of the compression
mechanism. An exact Fourier analysis is carried out to compute
the compressed wave field intensities. Optimization techniques are
used to achieve the best compression and matching conditions for
various realistic dielectric materials, having permittivities εr in the
range of 9 to 36 and loss factors tan(δ) in the range of 0.01 to
0.00001. Experimental results, obtained by carrying out measurements
on prototype waveguide structures, built in our laboratory, present
pulse compression phenomena, but do not show good agreement with
theory.
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1. INTRODUCTION

The concept of pulse compression in radar receivers was developed in
the early 1950’s in an attempt to increase the range. During the period
1940–1950 the research was focused on the increase of transmitter peak
power. Then it was discovered that many of practical and physical
factors restricted power amplification. Those were overcome by the
pulse compression phenomenon in the receiver radar using highly
dispersive circuits at intermediate frequency band.

During the last decades, high power RF systems have been
developed and tested to achieve pulse compression phenomena for
the enhancement of peak power levels. In the work of Tantawi et al.
[1], the Stanford Linear Energy Development II (SLED II) [2] system
of compression is presented. The SLED II is relied on an optically
controlled high-power RF pulse compression system, which is based
on the switched resonant delay-line theory [2]. Another important
structure is the binary pulse compression (BPC) [3] system, which is
also based on the use of delay line theory.
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Figure 1. Periodically loaded waveguide structure with matching
transformers.

The fundamental mechanism, used in the present paper to achieve
compression, is the passing of a frequency modulated incident wave
through a dispersive waveguide section satisfying pulse compression
conditions. The proposed technique has the uniqueness of trying
to achieve dispersive compression at high power level by using a
passive medium in the microwave spectrum. The proposed dispersive
structure, shown in Fig. 1, consists of a periodically loaded waveguide.
The metallic wall waveguide is of type WR-340. The periodic structure
is composed of rectangular layers with alternating relative dielectric
permittivities of εro and εr1. Their width and height are the same with
the internal dimensions of the waveguide. At the input and output of
the periodic medium, identical matching transformers are positioned,
consisting of a finite number of non-periodic layers, as also shown in
Fig. 1. The structure on both sides, is considered to be connected to an
empty infinite length waveguide. This arrangement acts as a perfect
mirror for some spectral frequency regions and as a band pass filter by
some others. A good theoretical analysis of a one-dimensional periodic
medium is presented in [4]. Also pulse propagation in dispersive media
is studied in [5].

In Section 2, the guiding structure analysis is introduced, in order
to determine the position, the magnitude and the form of the pulse
compression phenomenon. In Section 3, the numerical computations
of the propagation characteristics for different dispersive mediums
and computations of pulse compression are presented. Furthermore,
inclusion of metallic wall losses was also taken into account and proved
to be insignificant for the case of copper waveguides. Finally, in
Section 4, experimental study of a dispersive medium of 14 unit cells
is carried out.
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2. ANALYSIS OF THE GUIDING STRUCTURE

2.1. Analysis of the Finite Structure

The analysis of the finite length periodic structure, as defined in Fig. 1,
can be analyzed by considering the standing waves in each layer of
the structure while in case that z → +∞ and z → −∞ then only
transmitted and reflected waves are taken into account.

The proposed periodic structures present successive discontinu-
ities, which are perpendicular to the direction of propagation. No
coupling occurs between the TE and TM modes. Consequently, if, ini-
tially, only the dominant mode TE10 is excited, it will be the only one
that will propagate across the periodic waveguide. An incident TE10

mode originating at z → −∞ is considered. The TE10 mode field dis-
tribution in each layer of a finite periodic structure has the following
form,

Ey = sin
(
π

a
x

) (
A∗κ(ω)eiβiz + Aκ(ω)e−iβiz

)
(1)

Hx =
1

Z(ω)
sin

(
π

a
x

) (
A∗κ(ω)eiβiz −Aκ(ω)e−iβiz

)
(2)

Hz = − π

iωµoa
cos

(
π

a
x

) (
A∗κ(ω)eiβiz + Aκ(ω)e−iβiz

)
(3)

where, Z(ω) = ωµo
βi

and βi =
√
k2

0(ω)εri −
(
π
α

)2 are the wave impedance
and propagation constants and α represents the longest dimension of
the finite waveguide. Also the time dependence of electromagnetic field
components is assumed to be exp(iωt) and it is suppressed throughout
the analysis. Finally an assumption taken is that the materials used
are nonmagnetic (µr = 1).

The initial aim is to calculate the transfer function of the periodic
structure under investigation, shown in Fig. 2. The medium consists
of N + 1 unit cells. The unknown variables Aκ(ω, z), A∗κ(ω, z) and
Bκ(ω, z), B∗κ(ω, z) represent the complex coefficients of the reflected
and transmitted waves, in layers with relative permittivities εro and εr1
respectively, for each unit cell. The thickness of the alternating layers
of each unit cell are �o and �1. The S21(ω) is the complex coefficient of
transmission at the output of the structure. Finally, the εro represents
the relative permittivity of the air.

The analysis begins at the output of the medium, since the
reflection coefficient S11(ω) at the input of it (z = 0) is unknown for the
spectrum of interest. Initially, the continuity boundary conditions are
applied for the tangential electric and magnetic components, between
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the interfaces of the consecutive layers of alternate dielectrics at the
point z = (N + 1) · �1 + N · �o. This is the point of the output of the
periodic medium. Dividing by parts the two equations, which result
from the boundary conditions, a relation arises between the reflection
and transmission coefficients, in layer with relative permittivity εr1 of
the N + 1 unit cell.

A∗N+1(ω) =

(
Zo(ω)
Z1(ω)

− 1
)

(
Zo(ω)
Z1(ω)

+ 1
)e−i2β1zAN+1(ω) (4)

The Zo(ω) and Z1(ω) represent the wave impedances of the layers
with relative permittivities εro and εr1 respectively.
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Figure 2. Loaded periodic medium without matching transformers.
At each layer the reflection and transmission coefficients are presented.

Since the structure, under investigation, is a finite periodic
waveguide, the analysis from the output to the input of this medium
can take place in two consecutive random κ and κ+ 1 unit cells where
1 < κ < N (Fig. 2). Then, boundary conditions for the continuity
tangential electric and magnetic components are imposed, between
the interfaces of the consecutive layers at the planes of the points
z = κ · (�1 + �o) and z = (κ − 1) · �o + κ · �1. Relations between
the coefficients Bκ, B

∗
κ and Aκ+1, A

∗
κ+1 as well as between Aκ, A

∗
κ and

Bκ, B
∗
κ are found. This procedure is repeated inductively up to the

input of the medium. By combining the equations that arise from
the continuity boundary conditions at the point z = 0, the following
expression for the S11(ω) is produced,

S11(ω) =
Q(ω)

(
1 +

Zo(ω)
Z1(ω)

)
+ 1− Zo(ω)

Z1(ω)

Q(ω)
(

1− Zo(ω)
Z1(ω)

)
+ 1 +

Zo(ω)
Z1(ω)

(5)
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where Q(ω) = A∗1
A1

.
The previous analysis shows that A∗1 = C(z, ω)AN+1 and A1 =

D(z, ω)AN+1, where C(z, ω) and D(z, ω) are complex functions. Thus,
the factor Q(ω) is independent from the coefficient AN+1. Since the
S11(ω) is known for every frequency, the previous analysis is repeated,
with the input of the periodic medium as its starting point. This leads
to two equivalent expressions for the S21(ω),

S21(ω) = eiβoz
(
A∗N+1e

iβ1z + AN+1e
−iβ1z

)
(6)

S21(ω) = eiβoz
(
AN+1e

−iβ1z −A∗N+1e
iβ1z

) (
Zo(ω)
Z1(ω)

)
(7)

where A∗N+1 = f(z, S11(ω)) and AN+1 = g(z, S11(ω)).
Through the above analysis S21(ω) and S11(ω) coefficients and the

transfer function of the finite length structure can be computed.

2.2. Analysis of the Infinite Structure

In order to understand the propagating mechanism involved in the
periodic structure, it is useful to analyze the case of infinite periodicity.
The infinite length periodicity solutions, which fulfill the Floquet
(Bloch) theorem [6–8], provide guidance to locate highly dispersive
conditions seeking to achieve strong pulse compression phenomena.
The analysis deals with a periodic layered medium of infinite length,
which consists of two different materials with relative permittivity εr(z)
profile given by the following expression,

εr =

{
εro, 0 < z < d1

εr1, d1 < z < d2
(8)

where d2 is the period of a unit cell and the medium presents
translational symmetry εr(z) = εr(z + d2) over the direction of
propagation z.

For the same reasons with the finite structure, only the TE10 mode
is propagate. It consists of three electromagnetic components Ey, Hx

and Hz, which are equivalent with the following expressions,
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π
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x

)
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a
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(
π

a
x

)
u(z) (11)
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assuming an exp(iωt) time dependence. The function u(z) can
be found by solving the homogeneous differential wave equation of
Helmholtz. (

∇2 + k2
0(ω)εr

)
Ey = 0 (12)

The u(z) arises, has the following expression,

u(z) = c1 cos(βz) + c2 sin(βz) (13)
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Figure 3. Two consecutive unit cells of the infinite periodic structure.

A finite part of the infinite structure, shown in Fig. 3, can be used
for the analysis to take place. It consists of two unit cells, each one
consisting of two layers with relative permittivities εro and εr1. Since
the medium is infinite periodic, it can be assumed that z is equal to
zero, at the beginning of the selected part. By replacing the u(z) with
its equivalent, the tangential electric and magnetic components of the
two layers of the first unit cell with relative permittivities εro and εr1,
take the following form,

Ey11 = sin
(
π

a
x

)
(σ1I cos(β1z) + σ2I sin(β1z)) (14)

Hx11 =
1

iωµo
sin

(
π

a
x

)
(−β1σ1I sin(β1z) + β1σ2I cos(β1z)) (15)

Ey12 = sin
(
π

a
x

)
(σ1II cos(β2z) + σ2II sin(β2z)) (16)

Hx12 =
1

iωµo
sin

(
π

a
x

)
(−β2σ1II sin(β2z) + β2σ2II cos(β2z)) (17)

The σ1I , σ2I , σ1II , σ2II are the complex coefficients and β1, β2 the
propagation constants of the layers with relative permittivities εro and
εr1 respectively. Due to Block theorem, a phase factor relates the u(z)
and its derivative of the waves in the layer with relative permittivity
εro of the first unit cell to those of the equivalent layer of the second
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unit cell. (
u3(z + d2)
u′3(z + d2)

)
= e−iφ

(
u1(z)
u′1(z)

)
(18)

Using the relation (18) between the points z = 0 and z = d2

and the equations derived from the continuity boundary conditions at
the interfaces of the consecutive layers, at point z = d1, the following
eigenvalue equation gathers,(

A B
C D

) (
σ1II

σ2II

)
= eiφ

(
σ1II

σ2II

)
(19)

The eigenvalue of the equation is the phase factor eiφ. For a non-
trivial solution, the following determinant must be equal to zero.∣∣∣∣∣ A− eiφ B

C D − eiφ

∣∣∣∣∣ = 0 (20)

The two reciprocal eigenvalues solutions eiφ, of the quadratic
equation, are

eiφ =
1
2

{
(A + D)±

{
(A + D)2 − 4

} 1
2

}
(21)

The solutions are reciprocal since the translational matrix
(A,B,C,D) is unimodular. By replacing the terms of the equation (21)
with their equivalents and solving for φ the following expression results,

ϕ = −i ln
{

1
2
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)
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) 1
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}}
(22)

3. NUMERICAL COMPUTATIONS OF PROPAGATION
CHARACTERISTICS

In order to determine the dispersion properties of the proposed
structure, numerical computations are carried out for the low loss
alumina Al2O3 (εr1=9.9, tan(δ)=10−4) layered structure, for both
periodic and matching sections (see Fig. 1).
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In order to determine pulse compression conditions, an infinite
length periodic structure is initially considered, in which conditions of
high dispersion are achieved. Then, using an optimization algorithm
[9], the Al2O3 and air layers’ thickness of two identical matching
transformers are determined, in order to obtain minimization of the
absolute reflection coefficient |S11(ω)| at the input of the equivalent
finite periodic structure. The two matching transformers are mirror
symmetric, with respect to the mid-plane of the structure. The use of
an infinite length periodic structure is very useful, since high dispersion
conditions are observed even in the case of a single cell element.

 

T(ω)

 ∆T(ω)

ω∆ω

Figure 4. Presentation of physical quantities of a dispersion region.

In order to achieve pulse compression, the finite length periodic
waveguide should present a transfer function, with minimum loss and
phase rotation derivative (groupdelay) showing a steep and monotonic
variation with respect to frequency, as indicated in Fig. 4. In this
context, two physical quantities are encountered in the dispersive
region:
a) the frequency bandwidth ∆ω measured in Hz and
b) the differential time delay ∆T (ω) measured in sec,

which are related through the expression T (ω) = dϕ(ω)/dω that
associates the wave phase rotation to the group delay.

The slope of the dispersion could be positive or negative. Then
the proper frequency modulation should be used in the incident wave
to achieve pulse compression.

3.1. Al2O3 Finite Periodic Waveguide of 100 Unit Cells:
Matching Transformer Based on Empirical Selection of the
Layers

The first examined case is a finite periodic waveguide consisting of
100 unit cells. The unit cell has a length of 178 mm and consists
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of two layers of different relative permittivities. The first involves
alumina of thickness �Al2O3 = 11 mm, and the second air of thickness
�air = 167 mm. The dimensions and the relative permittivities have
been chosen on the basis of the indications derived from the infinite
periodic medium. The group delay T (ω), which has been computed by
applying the analysis of the infinite periodic medium for 100 unit cells,
is presented in Fig. 5. In this case, the area, where the T (ω) is probably
capable of giving pulse compression, appears in a spectrum near
3.001 GHz, of approximately ∆f = 12 MHz, since in that bandwidth
it is more intense. This case is referred to the second band pass region
of the corresponding finite periodic waveguide.

Figure 5. T (ω) derived from the analysis of the infinite periodic
medium for 100 unit cells.

In Fig. 6, the corresponding absolute transmission coefficient
|S21(ω)| for the equivalent finite periodic waveguide is presented in
the same band pass area (2.9945–3.262) GHz. As it has been expected,
since there were no matching transformers used, the |S21(ω)| introduces
ripples, which oscillate between approximately (0.02–0.964) in the
spectrum of interest. The peaks of the |S21(ω)| do not reach the unity,
due to the alumina losses. Finally, the number of peaks is equal to the
number of unit cells of the finite periodic waveguide.

Since the area of high dispersion should have the least possible
reflections, for the compression to be achieved, matching transformers
should be used at the input and output of the finite periodic structure.

Initially, the matching was encountered on the basis of an
empirical combination of the three air and three alumina layers’
thickness, which were placed alternatively at each end of the periodic
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Figure 6. |S21(ω)| of the finite periodic medium for 100 unit cells.

periodic y
   input matching transformer medium 

x

z

1

32OAl
2

32OAl
3

32OAl
1
air

2
air

3
air air32OAl

... εr1 εro εro εro εroεr1 εr1 εr1

� � � � � � � �

Figure 7. Input matching transformer of the finite periodic medium
of 100 unit cells.

medium. In Fig. 7, the computed single transformer at the input of the
structure is shown and in Table 1 the corresponding layers’ thickness
are presented.

The stationary wave (vswr), presented in Fig. 8, oscillates between
1–16.4. In the spectrum (2.999–3.018) GHz, where matching has been
achieved, the vswr is low.

In Fig. 9, the corresponding |S21(ω)| is presented. In an interval
of approximately 10 MHz near 3.003 GHz, the |S21(ω)| has an average
value of 0.93. In the remaining spectrum, it fluctuates approximately
from 0.15 to 0.96.

The calculation of the corresponding T (ω), shown in Fig. 10, is
achieved by using the arithmetic method of the Taylor expansion [9].
In Fig. 10, it is confirmed that the matching transformer operates
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Table 1. Al2O3-air transformer founded empirically, for 100 unit cells.

�1Al2O3
1.925 mm �1air 13.694 mm

�2Al2O3
9.075 mm �2air 86.673 mm

�3Al2O3
1.1 mm �3air 13.427 mm

 

Figure 8. Stationary waves of the finite periodic medium for 100 unit
cells. Its matching transformer is found by empirical selection of its
layers.

well in the frequency region (2.999–3.018) GHz. In the range (3–
3.004) GHz, where the transformer has its optimum performance, an
average dispersion rate of −0.023µsec/MHz, is obtained. Therefore,
it is possible for compression to be achieved in a spectrum near
3.002 GHz.

Since the |S21(ω)| and T (ω) have been calculated for the
mentioned matched finite structure, a Fourier analysis is carried out
to examine pulse compression phenomena. In general, a stepping
frequency input signal waveform is assumed for the incident wave in
the finite periodic structure as follows,

Eyo

(
α

2
, 0, t

)
= sin

(
π

a
x

) M∑
i=1

cos (ωit− β(ωi)z)w
(
t− ti
wi

)
(23)

where the quantities ωi (circular frequency), wi (width of a pulse) and
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Figure 9. |S21(ω)| of the finite periodic medium for 100 unit cells. Its
matching transformer is found by empirical selection of its layers.

Figure 10. T (ω) of the finite periodic medium for 100 unit cells. Its
matching transformer is found by empirical selection of its layers.

ti (time beginning of a pulse) for i = 1, 2, . . . ,M are defined in Fig. 11.
The output pulse waveform is computed by using the inverse

Fourier transformer,

Eyo

(
α

2
, L, t

)
=

1
2π

+∞∫
−∞

Ṡ21(ω)ėyo
(
α

2
, 0, ω

)
eiωtdω (24)
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Figure 11. Stepping frequency pulse waveform.
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Figure 12. Stepping frequency waveform of three pulses inserted in
the matched periodic medium of 100 unit cells, resulting in an output
compressed pulse.

where

ėyo

(
α

2
, 0, ω

)
=

1
2π

tM−1+wM∫
0

Eyo

(
α

2
, 0, t

)
e−iωtdt (25)

is the Fourier transformer of the incident wave, L is the length of the
finite structure and α the largest dimension of its orthogonal cross
section.

In Fig. 13, the compression pulse at the exit of the finite periodic
structure under investigation, due to a stepping frequency input signal
of three pulses Fig. 12, is presented. Each pulse has a unity amplitude.
The first, the second and the third pulse have respectively durations of
0.5µsec, 0.4226µsec, 0.16µsec and carrier frequencies of 2.99668 GHz,
3.00252 GHz, 3.017162 GHz. The selected carrier frequencies are
located in and very close to the area, where matching has been
achieved. Since the output compressed pulse has approximately 1.5
amplitude, a gain of G = 2.25 is achieved.
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Figure 13. Computed output pulse waveform for a compressed pulse
versus time.

3.2. Al2O3 Finite Periodic Waveguide of 100 Unit Cells:
Matching Transformer Selection Based on the Powell
Method

To achieve stronger phenomena of dispersion, for the same finite
periodic structure the matching should be improved. Methods of
optimization [9], are used to determine combinations of three alumina
and three air thickness layers of the matching transformer, which
will deliver optimum matching. The function to be optimized is the
following,

G
(
�1Al2O3

, �2Al2O3
, �3Al2O3

, �1air, �
2
air, �

3
air

)
=

ωo+
∆ω
2∫

ωo−∆ω
2

∣∣∣∣∣∣S11

(
�1Al2O3

, �2Al2O3
, �3Al2O3

, �1air, �
2
air, �

3
air, ω

)∣∣∣− θ
∣∣∣ dω (26)

The
∣∣∣S11

(
�1Al2O3

, �2Al2O3
, �3Al2O3

, �1air, �
2
air, �

3
air, ω

)∣∣∣ represents the abso-
lute value of the reflection coefficient. The constant θ is confined in the
interval 0 ≤ θ ≤ 1, since the maximum possible absolute value of the
reflection coefficient is 1. The constant ∆ω represents the spectrum of
frequencies, at which matching has to be achieved. The independent
variables of the function G represent the thickness of the layers of the
matching transformer.

Once a local minimum is found, the corresponding combination
of the �1Al2O3

, �2Al2O3
, �3Al2O3

, �1air, �
2
air, �

3
air is given, so that the absolute
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reflection coefficient in the spectrum ∆ω is almost equal to θ. Powell
arithmetic method [9] is used for optimization.

Since there are restrictions in the independent variables, penalty
functions are used solving the problem of minimization in the area of
interest. In our case, the independent variables are greater or equal to
zero, since they represent length. Also they are less or equal to 0.1 m,
so that the reflection coefficient achieved corresponds to a structure
that has practical meaning. The penalty function and the penalty
term, mentioned in [10], are given by the following expressions,

q(µ, 0x) = G(0x) + µP (27)

and

P =
6∑

κ=1

[
(min {0, g2κ−1(yκ)})2 + (min {0, g2κ(yκ)})2

]
(28)

respectively, with 0x =
(
�1Al2O3

, �2Al2O3
, �3Al2O3

, �1air, �
2
air, �

3
air

)
, µ a non-

negative term and yκ = �κAl2O3
, for κ = 1, 2, 3 and yκ = �κ−3

air for
κ = 4, 5, 6. The space at which the local minima are determined, is
F =

{
0x ∈ IR6 : gj(yκ) ≥ 0∀j∀κ, j = 1, . . . , 12, κ = 1, . . . , 6

}
where,

gj(yκ) =

{
0.1− yκ j = 2κ

yκ j = 2κ− 1
(29)

represent the conditions of restriction. Therefore, when the
components of 0x, corresponding to the min

�x∈IR
{q(µ, 0x)} of a local valley,

do not satisfy the conditions of restriction, the P �= 0. Then,
µ is selected so that, the q(µ, 0x) can be shifted to a new valley
of a local minima. The non-limited problem is solved again, until
the components of 0x, corresponding to a local minima, satisfy the
conditions of restriction.

A combination of thickness �1Al2O3
, �2Al2O3

, �3Al2O3
, �1air, �

2
air, �

3
air,

giving a satisfactory |S21(ω)|, is determined, based on the above
mentioned analysis. The layers’ (Table 2) are positioned at the input
of the structure, in the same order, as in Fig. 7.

In Fig. 14 the vswr is presented. In the spectrum (2.9945–
2.999) GHz where matching is weak and dispersion is the strongest, the
vswr is high and oscillates from 1 to 14.1. In the remaining spectrum,
where good matching is achieved the vswr fluctuates between 1–1.8.

The |S21(ω)|, represented in Fig. 15, fluctuates between 0.16–
0.91 in the bandwidth (2.9945–2.999) GHz, since in that area the
reflected power and the losses are great due to mismatch and to high
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Figure 14. Stationary waves of the finite periodic medium for 100
unit cells. Its matching transformer is found by using Powell method.

 

Figure 15. |S21(ω)| of the finite periodic medium for 100 unit cells
with matching transformer calculated with the help of Powell method.
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Table 2. Al2O3-air transformer founded with the help of Powel
method for 100 unit cells.

�1Al2O3
47.3 mm �1air 96.7 mm

�2Al2O3
18.5 mm �2air 66.3 mm

�3Al2O3
67.1 mm �3air 51.7 mm

Figure 16. T (ω) of the finite periodic medium for 100 unit cells with
matching transformer, calculated with the help of Powell method.

vswr respectively. In the remaining spectrum the ripples have almost
disappeared and the |S21(ω)| has an average value of 0.93.

The T (ω) in Fig. 16 is smoother than in the previous case, except
in the cut off region where the matching is weak. Strong dispersion
is achieved at the frequency regions (3.0017–3.0027) GHz, (3.0027–
3.0047) GHz and (3.0047–3.0127) GHz with average rates of −0.0278
µsec/MHz, −0.0171µsec/MHz and −0.0095µsec/MHz, respectively.

3.3. Al2O3 Finite Periodic Waveguide of 645 Unit Cells with
Matching Transformer Calculated with the Help of Powell
Method

The next step is to find other Al2O3 periodic structures of stronger
compression phenomena. This can be achieved by applying the
Powell method in the transfer function of a single unit cell of the
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Figure 17. T (ω) of the infinite periodic structure is presented for 645
unit cells.

Table 3. Al2O3-air transformer founded with the help of Powel
method for 645 unit cells.

�1Al2O3
25.5 mm �1air 64.8 mm

�2Al2O3
21.1 mm �2air 75.3 mm

�3Al2O3
70.43 mm �3air 38.9 mm

infinite periodic medium, so that its layers’ thickness providing strong
phenomena of dispersion, can be determined.

In Fig. 17, the T (ω) of the infinite periodic medium is presented,
corresponding to an equivalent finite periodic structure of 20 m. Each
unit cell consists of an Al2O3 and air layers of thickness �Al3O2 = 15 mm
and �air = 16 mm, respectively. The structure consists of 645 unit cells.
Using again the Powell method and penalty functions, the thickness
combination of the finite structure transformer presented in Table 3,
is determined. The transformer results in a matching for a bandwidth
of 11 MHz. Also in this example, the layers’ are positioned in the same
order as in Fig. 7, at the input of the structure.

The |S21(ω)|, presented in Fig. 18, fluctuates from 0.0003–0.2724.
It is too low, since the total Al203 thickness of the finite structure is
9.91 m, in contrast to the previous cases where 1.1242 m and 1.3658 m
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Figure 18. |S21(ω)| of the finite periodic medium for 645 unit cells
with matching transformer, calculated with the help of Powell method.

are used.
The vswr, shown in Fig. 19, fluctuates between 1.05–3.9. It is high

near the cut off area where the dispersion is stronger. However, in this
area it is much less higher compared to the examples that have already
been mentioned, since the matching is much better. This is the reason
why the |S21(ω)| is smoother in that case.

The T (ω), shown in Fig. 20, presents strong average dispersion
rate of −1.872µsec/MHz, −0.4665µsec/MHz and −0.09µsec/MHz
corresponding to the frequency regions (2.999–3) GHz, (3–3.002) GHz
and (3.002–3.01) GHz. In comparison with the previous cases is
smoother without ripples, wider and presents stronger phenomena of
dispersion, in a spectrum of 11 MHz.

In conclusion, since the percentage of the propagating power is
low, the compression likely to be achieved may be of no use,

3.4. TiO2 Finite Periodic Waveguide of 1695 Unit Cells with
Matching Transformer Calculated with the Help of Powell
Method

In the effort to find stronger compression phenomena, a dispersive
medium of a low loss material, titanium dioxide TiO2 (εr1 = 25,
tan(δ) = 4 ∗ 10−5) is used instead of Al2O3. With the help of
Powell method, applied in an infinite length periodic medium, a finite
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Figure 19. Stationary waves of the finite periodic medium for 645
unit cells with matching transformer, calculated with the help of Powell
method.

Figure 20. T (ω) of the finite periodic medium for 645 unit cells with
matching transformer, calculated with the help of Powell method.

structure was found with its unit cell, consisting of an air and a TiO2

layers of �air = 7.2 mm and �TiO2 = 4.6 mm thickness, respectively.
The equivalent finite periodic structure consists of 1695 unit cells and
has a length of 20 m.

Using again the Powell method and penalty functions, in order
matching to be achieved, the combination of Table 4 of three TiO2

and three air layers’ thickness was found. And in this case, the layers’
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Table 4. Table 4. TiO2-air transformer founded with the help of
Powel method for 1695 unit cells.

�1TiO2
64.3 mm �1air 63.2 mm

�2TiO2
24.6 mm �2air 30.2 mm

�3TiO2
15.6 mm �3air 64.5 mm

Figure 21. Stationary waves of the finite periodic medium for 1695
unit cells of TiO2 with matching transformer, calculated with the help
of Powell method.

are positioned at the input of the structure in the same order as in
Fig. 7.

In Figures 21, 22, and 23, the vswr, the |S21(ω)| and the
corresponding T (ω) are presented. In this case, the T (ω) has
a positive inclination, it has no ripples and compared with the
previous cases, it has the highest maximum value of approximately
11µsec. Phenomena of high dispersion appear in frequency regions
(2.9983–3.0063) GHz, (3.0063–3.0083) GHz and (3.0083–3.0093) GHz
with average rates of 0.1825µsec/MHz, 0.9741µsec/MHz and
5.6915µsec/MHz, respectively.

For the same bandwidths the vswr oscillates between 1–4.7 and
the |S21(ω)| between 0.01–0.53, respectively. The |S21(ω)| is very low
again, especially at the region where the phenomenon of dispersion is
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Figure 22. |S21(ω)| of the finite periodic medium for 1695 unit cells
of TiO2 with matching transformer, calculated with the help of Powell
method.

Figure 23. T (ω) of the finite periodic medium for 1695 unit cells of
TiO2 with matching transformer, calculated with the help of Powell
method.

strong, since the thickness of TiO2 used is 7.9 m. Therefore, also in
that case the compression to be possibly achieved, is probably of no
use.

The next step is to carry out, experimentally, the example of
Section 3.2, since it is the only periodic medium that has practical
meaning. As the construction of 100 unit cells is of high cost, a periodic
medium of 14 unit cells was built. In Fig. 24, the corresponding
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Figure 24. T (ω) of a finite periodic medium of 14 unit cells with
matching transformer calculated with the help of Powell method

simulation of the T (ω) with the highest value of 156 nsec is presented.
Strong phenomena of dispersion appear in the frequency regions

(2.9961–2.9971) GHz, (2.9971–2.9991) GHz and (2.9991–3.0071) GHz
with average rates of −0.042µsec/MHz, −0.021µsec/MHz and
−0.003µsec/MHz, respectively.

3.5. Comparison of the Transmission Coefficients in the
Cases of the Matched Periodic Mediums of 14 Unit Cells,
with and without Metallic Envelope

Up to now, the losses due to the metallic envelope of the waveguide are
not included in the results. The attenuation of the propagating waves
[11] can be found from,

ap =
Ap
2

(30)

with Ap, representing the percentage of losses per unit length in the
direction of propagation z, due to the metallic envelope. It is expressed
as the ratio of the power losses in the perimeter Pa(W/m) of the
waveguide towards the total power Pσ inserted. In case that only
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the TE10 mode propagates, the expression of Ap is,

Ap =
Pa
Pσ

=
2

(
1 +

2b
a

(
f10

f

)2
)

Zσδsb

(
1−

(
f10

f

)2
)1/2

(31)

where

δs =
(

1
πfµoσ

)1/2

(32)

with σ = 5.8 ∗ 107 the conductivity of copper, Z = 120π the wave
impedance in the air, f10 = 1.736 GHz the cut off frequency of the
TE10 mode and a, b the dimensions of the orthogonal cross section of
the waveguide of type WR-340.

In Fig. 25 the |S21(ω)| is presented for both cases in a bandwidth of
100 MHz. The solid line graph presents the situation without losses and
the dot line one with losses. Comparing the two graphs, it is observed
that the power propagated through the finite matched periodic medium
of 14 unit cells, for both situations, is almost the same.

Figure 25. |S21(ω)| of a finite periodic medium of 14 unit cells with
and without the metallic envelope.



326 Thirios, Kaklamani, and Uzunoglu

4. EXPERIMENTAL STUDY OF THE FINITE
PERIODIC WAVEGUIDE OF 14 UNIT CELLS

The final step of the survey is the comparison of theoretical and
experimental results and their similarity. In the structure that is
analyzed, the layers of alumina Al2O3 are almost impossible to be
placed with accuracy at the coordinates that have been calculated by
the theoretical analysis. For this reason, a material of stable form,
the doou, is used instead of the air, which has relative permittivity of
approximately 1.18, at the spectrum of interest.

The experimental structure, is a periodic waveguide medium of 14
unit cells without matching transformers at its input and output. At
the ends of it, short-circuited waveguides of a much smaller length,
are placed. In each of them, a unipolar antenna has been placed
at a distance (λ/4) m from the short-circuit side. The wavelength
λ corresponds in the central frequency of the spectrum of interest.
The antenna ends are connected to a male N -type connector. Via
the N -type connectors the structure is connected to the network
analyzer HP8718D. By using the network analyzer, the S-parameters
are calculated with the help of the TRL (Through Reflection Line)
method.

In Fig. 26, the parameters S11 (solid line) and S21 (dot line) in
dB are presented. As it can be observed, the band pass region has
been shifted by approximately 42.1MHz compare with the theoretical
one, in the cut off frequency area near 2.956 GHz. The displacement

Figure 26. S11 (solid line) and S21 (dot line) in dB for the periodic
waveguide of 14 unit cells without matching transformer.
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in the spectrum is due to the fact that the thickness of the layers of
Al2O3 and of doou is not identical to the ones calculated in the theory.
Also, the real and imaginary parts of their relative permittivities differ
from the ones assumed in the simulations. Another assumption taken
in the simulations is that the assumed layers of the materials were
identical. It is not known however, whether the method used for the
construction of the alumina layers in the experimental structure was
recursive. Furthermore, as the construction of the alumina layers
is very difficult, the produced ones have not uniformed interfaces
perpendicular to the direction of propagation. The dissimilarities
of the alumina layers oscillate between 0.2 mm–0.5 mm and these of
the doou between 0.01 mm–0.1 mm. Finally, the Al2O3 layers do not
fit completely inside the waveguide. During their position, they are
damaged and a small number of them is not placed perpendicular to the
direction of propagation. The particular method is of high sensitivity
and requires high accuracy for the dimension parameters to the level
of 10−4–10−5 m.

In Fig. 27, the power losses of the propagating waves through the
finite periodic waveguide are presented. The losses in some spectrums
of the band pass area, fluctuate between 14.5%–27% and in some others
they oscillate from 74%–77%. They are mainly due to the imaginary
part of the Al2O3. This has been expected, since the losses of a
material depend on its crystal structure. Thus, for the achievement
of the needed losses, a suitable elaboration is required, which is very
expensive. Finally, some losses appeared at the band stop spectrum.

Figure 27. Power losses of the propagating waves through the finite
periodic waveguide of 14 unit cells without matching transformer.
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Figure 28. T (ω) for the finite periodic structure of 14 unit cells
without matching transformer.

This false result is due to calibration problems in the TRL method.
The T (ω) is shown in Fig. 28. Since matching transformers are

not used, it does not decline smoothly from the frequency 2.959 GHz
to 3.0212 GHz. Between these values of spectrum, a number of local
maxima are interpolated in areas near the frequencies 2.959 GHz,
2.9695 GHz, 2.988 GHz and 3.0095 GHz. Their corresponding T (ω)
values are approximately 71.1 nsec, 51.4 nsec, 43.4 nsec and 29 nsec.
Also local minima are interpolated in areas near the frequencies
2.9639 GHz, 2.9781 GHz, 2.9989 GHz and 3.0212GHz, corresponding
approximately to T (ω) values of 8 nsec, 7 nsec, 10 nsec and 5 nsec.
Therefore, it is clear that the T (ω) of the experimental structure
deviates from the one derived from the simulation. The frequency
regions, that reveal a weak phenomenon of dispersion and are
presented in areas of negative slope, near the local maxima, are
(2.9591–2.9639) GHz, (2.9696–2.9748) GHz, (2.9882–2.995) GHz and
(3.0095–3.0155) GHz. Their corresponding average dispersion rates
are −0.0125µsec/MHz, −0.0081µsec/MHz, −0.0039µsec/MHz and
−0.0031µsec/MHz.

A matching transformer has been built, but it was not used
because its experimental dimensions did not coincide with the
theoretical ones and therefore, no matching could be achieved. Finally,
the experimental structure is not periodic since the thickness of the
layers is not the same for every unit cell due to construction accuracy
problems.
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Completing the examination of the characteristics of the
experimental structure, it is in question whether it is capable of
providing compression. In Fig. 28 there are four areas of relative
high dispersion. Therefore, a number of them will be used, so that
compression can be achieved. In the next example, three pulses
are transmitted consecutively in the following order, with carrier
frequencies 2.961 GHz, 2.972 GHz, 2.994 GHz and with duration of
230 nsec. The order has been chosen so that the carrier frequencies,
which correspond to high T (ω), propagate through the medium first,
and the ones with smaller T (ω) follow. The carrier frequencies of the
pulses have been selected so that compression can arise.

In Fig. 29 the time interval, corresponding to the horizontal side
of a single box, is 100 nsec. Also, the amplitude intervals, which
correspond in the perpendicular side of a single box, are 200 mV and
20 mV, for the top and the bottom graphs respectively. Finally, their dc
levels differ by approximately 1150 mV, which confirms that the losses
of the propagating wave through the dispersive medium are high.

The time position of the compression achieved is shown at the
bottom of the graph of Fig. 29. At the top of the graph of Fig. 29,
the corresponding time positions of the sinusoidal pulses are shown.
The output compressed pulse, is originated, mainly, from the first two
sinusoidal pulses and its absolute amplitude is 119 mV. An unwanted
pulse appears between the second and the fourth pulse in Fig. 29. Its
appearance is due to source constraints.

The arrangement of Fig. 30 provides the results of Fig. 29. It
consists of a source of two ports, with each port producing consecutive
sinusoidal pulses of the same duration but of different frequency.

Figure 29. Time positions of the output compressed pulse and of
the consecutive sinusoidal pulses inserted in the periodic medium,
presented at the bottom and the top graphs respectively.
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IQ modulator 

Oscilloscope 
Finite 
periodic 
medium 

Generator

Microwave Carrier 
signal (2.95 GHz) 

Figure 30. This arrangement provides the results of Figure 29.

The signals between the two ports have a 90o phase difference and
their frequencies are digitally controlled. Limitations of the source
capabilities, are that the durations of the consecutive pulses, must
be the same and their frequencies must differ by a constant amount.
The signals, in their turn, are inserted in an IQ modulator, which
is connected to a generator operating in 2.95 GHz. The modulator,
initially, shifts the spectrum, corresponding to the pulses originated
from the source, to the microwave carrier frequency and in succession,
it suppresses the left sideband region and the carrier frequency of the
derived signal. Finally, the single sideband signal is inserted in the
periodic structure and its output is ejected in an oscilloscope.

5. CONCLUSION

A finite length dielectric loaded rectangular cross section metallic wall,
exhibiting phenomena of dispersion, has been studied theoretically
and experimentally, aiming at the achievement of pulse compression.
Equivalent infinite periodic structures have been used, since, in that
case, high dispersion conditions can be found even in a single element.
An infinite structure gives a very good approximation of intensity,
steepness as well as of the position of a dispersion phenomenon in
the spectrum, of the equivalent finite structure.

The stronger, the wider and the smoother the phenomenon of
dispersion of a structure is, the higher the power losses are, since the
quantity of the Al2O3 and of the TiO2 used is greater. Therefore, there
is a balance between the transmission coefficient and the characteristics
of dispersion of the finite periodic structure.

Furthermore, a comparison is carried out of the dispersion
characteristics between finite periodic structures of the same length,
containing high quantity of Al2O3 in one case and TiO2 in the other,
in equal intervals of frequencies. The above comparison has shown that
the smaller the tan(δ) and the higher the real part of the dielectric is,
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the more intense and steep the group delay versus ω is.
Having taken into consideration the simulation and the experi-

mental results regarding the finite periodic structures, it is concluded
that the pulse compression capability is weakened. This is due to the
magnitude and shape of dispersion, which is not able to cause strong
compression for the stepping frequency input signals of three sinusoidal
pulses mentioned in Sections 3.1 and 4.

In practice, this kind of transfer function and incident wave Fourier
transformer are required, so that the inverse Fourier transformer of
their product, presenting the output compressed pulse, can be as strong
as possible, in the smallest possible time interval.

It should be underlined that, the particular method is of high
sensitivity and requires high accuracy for the dimension parameters, so
that the theoretical and the experimental characteristics can coincide.
This is confirmed, by the displacement of the cut off frequency of the
second band pass area in the experimental structure, in relation to the
cut off one of the theoretical structure of 14 unit cells.
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