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Abstract—We study the energy conservation property and loss
condition of a left-handed material (LHM). First we argue by energy
conservation that an LHM has to be a backward-wave material
(BWM). Then we derive the equivalence of the loss and the Sommerfeld
far-field radiation conditions for BWM. Next, we solve the realistic
Sommerfeld problem of a point source over an LHM half space and
an LHM slab. With this solution, we elucidate the physics of the
interaction of a point source with an LHM half space and an LHM
slab. We interpret our observation with surface plasmon resonance at
the interfaces as well as the resonance tunneling phenomenon. This
analysis lends physical insight into the interaction of a point source
field with an LHM showing that super-resolution beyond the diffraction
limit is possible with a very low loss LHM slab.
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1. INTRODUCTION

There has been much recent interest in novel materials. The potential
for fabricating novel materials at optical wavelength also looms larger
than ever before, due to progress in fabrication technology and nano-
technology. Many conjectures have been made about these novel
materials [1–20].

A material of particular interest is the double negative material
where both µ and ε are negative [1]. There are issues about the
realizability of such a material, the ability to provide super-resolution,
its time-reversal property and so on. We will address some of these
issues in this paper.

2. SYMMETRY IN PHYSICAL LAWS

It was once thought that the laws of physics do not change under
reflection, namely, that a physical law remains unchanged in the
mirrored world as in the real world. This fact was known as the
conservation of parity. The conservation of parity also implies that
there is no preferred right-handedness or left-handedness in physical
laws [21].

Take for example, the laws of electromagnetics: the fact that
we have used right-hand rule in describing these laws is strictly by
convention. Also, there are vectors known as pseudo vectors (or axial
vectors) whose sign is strictly defined by convention. For instance,
the direction of the B field, which is defined to point from the north
pole to the south pole, is strictly by convention. Hence, the laws of
electromagnetics could have been written with a left-hand rule with
the sign of magnetic field changed. There is no preference for right-
handedness or left-handedness for the laws of electromagnetics. We
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can see this further by looking at Maxwell-Heaviside equations:

∇× E = −µ0
∂H

∂t

∇× H = ε0
∂E

∂t
+ J

∇ · ε0E = ρ

∇ · µ0H = 0

(1)

From the above, we can see that if the right-hand rule is replaced by
the left-hand rule, the sign change can be rectified by changing the
sign of the magnetic field H.

Even though the laws of electromagnetics satisfy parity, there
are some laws of weak decay that do not [22]. Hence, parity is not
truly conserved, and some laws of physics have the preference for
right-handedness or vice versa. However, it is believed by physicists
that for every matter that exists in our real world, there is also an
antimatter counterpart, an example of which is the positron versus
electron–positron is the antimatter of electron. If our world prefers
right-handedness, then the world of antimatter prefers left-handedness
[21].

3. LEFT-HANDED VACUUM VERSUS RIGHT-HANDED
VACUUM

Let us assume that a vacuum exists such the the signs of ε0 and µ0 are
opposite to those of ours. If we were to change the sign of ε0 and µ0

in Equations (1), we arrive at:

∇× E = µ0
∂H

∂t

∇× H = −ε0
∂E

∂t
+ J

∇ · ε0E = −ρ

∇ · µ0H = 0

(2)

Once a solution to Equations (1) is obtained, we can obtain a solution
to Equations (2) from the first solution by changing the sign of H, J ,
and ρ. Hence power flow, which is defined to be E × H, points in
the opposite direction for solutions of Equations (2) compared to that
of solutions of Equations (1), or the left-hand rule has to be applied
to get the correct direction of power flow. We shall call this medium
a left-handed vacuum (LHV) and the conventional vacuum the right-
handed vacuum (RHV). Notice that in an LHV, the sign of charge or



4 Chew

current has to change as well. This seems to agree with the assertion by
physicists that in the world of antimatters, electrons become positrons,
and a right-handed world becomes a left-handed world [21].

4. MIXING OF LHV AND RHV

In a vacuum, ε0 and µ0 are independent of frequency. An interesting
question to ask is if an LHV can coexist with an RHV, i.e., can space
be filled with non-overlapping LHV regions and RHV regions? A
conservation law for power flow can be easily derived for a source-free
region to be:

∇ · (E × H) = −1
2
∂

∂t
{µ|H|2 + ε|E|2} (3)

or in integral form via the use of Gauss’ divergence theorem:
∮

S
dS · (E × H) = −1

2
∂

∂t

∫
V
dV {µ|H|2 + ε|E|2} (4)

In the above, when LHV and RHV co-exist and mix with each other,
ε and µ can have different signs for different regions. Hence, with
a proper choice of surface and volume, the right-hand side of the
above can be zero, while the left-hand side is non-zero violating energy
conservation! Hence, we cannot mix an LHV with an RHV without
violating energy conservation unless sources and sinks are added at the
interfaces between these vacuums.

This problem can be further clarified by constructing the following
thought experiment: the case of a plane electromagnetic wave incident
at a planar interface between an RHV and an LHV. For simplicity, we
consider a normally incident plane wave. For a source free vacuum, a
plane wave solution where the fields are proportional to exp(ik ·r) can
be easily obtained for both Equations (1) and (2). In this case,

k = ±ω
√
µ0ε0 (5)

It is also seen that the group velocity and the phase velocity are
frequency independent.

On the left-hand side, we have an RHV, and the steady-state,
time-harmonic solution of a normally incident wave is:

E = x̂E0e
ikz (6)

H = ŷ
E0

η
eikz (7)
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where k = ω
√
µ0ε0 > 0, assuming e−iωt time dependence.

On the right-hand side, we have an LHV, and in order to match
the boundary condition of continuity of tangential E and tangential H
field, the steady-state, time-harmonic solution of a normally incident
wave is:

E = x̂E0e
−ikz (8)

H = ŷ
E0

η
e−ikz (9)

One can show from Maxwell-Heaviside equations that for such
half spaces, tangential E and tangential H are still continuous across
a source-free interface. Furthermore, one can add a reflected wave to
the incident wave above, and easily show that the reflected wave is zero.
Nevertheless, the above fields alone satisfy the boundary condition.

Since the above solution, being a solution in a non-dispersive
vacuum, is valid for all frequencies, we can easily Fourier transform
the above solution to form a time-domain solution. The time-domain
counterpart of the above solution corresponds to two identical pulses
travelling to the boundary and disappearing as shown in the top part
of Figure 1.

Figure 1. At an LHV/RHV interface, two pulses can move toward the
interface and annihilate each other, or two pulses can be spontaneously
generated at the interface and move away from the interface. These
solutions violate energy conservation in the traditional sense.

Another way to set up a solution that satisfies the boundary
condition is to switch the signs of k and H in the above solution.
Again, the time-domain counterpart of this solution corresponds to
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two identical pulses emerging from the boundary, and travelling away
from the boundary (see the bottom part of Figure 1).

Both the above solutions violate energy conservation. However,
if we postulate that sources and sinks exist at the interface between
LHV and RHV, energy conservation law need not be violated.

5. FREQUENCY DISPERSIVE LEFT-HANDED
MATERIAL

In the above example, we see that if a left-handed material (LHM)
is non-dispersive, the group velocity (energy velocity) is in the same
direction as the phase velocity, giving rise to irreconcilable violation of
energy conservation. It has been known that negative µ and negative
ε material (double negative material) can be constructed over a finite
bandwidth of frequency [3]. If the group velocity and the phase velocity
of such material are in the same direction, we can construct the same
thought experiment as in the previous section, where two narrow band
pulses will disappear into an interface or emerging spontaneously from
an interface, violating energy conservation.

In order not to violate energy conservation, it is necessary that
such frequency dispersive LHM have group velocity in the opposite
direction to that of the phase velocity. Such material is also known as
a backward wave material (BWM). (However, not all backward waves
have to come from LHM, as is obviated in photonic band gap structures
— photonic band gap structures can produce a backward wave with
group velocity opposite in direction the phase velocity by using an
array of interfering rods and objects.)

At a planar interface between and LHM and RHM, the k vectors
represent the directions of the phase velocities, and in order for energy
to be conserved, they have to point toward the interface so that in
the LHM (also a BWM), energy will flow away from the interface.
Together with the phase-matching condition, this gives rise to the
phenomenon of negative refraction (see Figure 2). It is to be noted that
the phenomenon of negative refraction is due to the backward wave
nature, and not restricted to the left-handed nature of the material. In
other words, non-LHM with backward wave phenomenon also exhibits
negative refraction.

6. FAR FIELD RADIATION AND LOSS CONDITIONS
FOR BWM

The far field radiation condition, also known as the Sommerfeld
radiation condition, for an unbounded conventional medium is well
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Figure 2. Negative refraction at an RHM/LHM interface is entirely
due to the backward wave nature of one of the media, and is not a
property restricted to LHM.

known [24, p. 35]. It is required to guaranteed uniqueness in a solution
in an unbounded region. The far-field condition for a lossless medium
can be derived by first introducing an infinitesimal amount of loss in
the medium, and finally letting the amount of loss vanish. In the
limit of vanishing loss, the far field condition is also the same as an
outgoing wave condition [24, p. 35]. The outgoing wave corresponds
to the convection of energy to infinity. This outgoing wave condition
is often expressed as an impedance-like boundary condition in the far
field

lim
r→∞

r

[
∂φ(r)
∂r

− ikφ(r)
]

= 0 (10)

However, the far field condition in the past has always been derived
assuming that we have a medium where the group and phase velocities
are in the same direction. In the case of LHM or BWM, the phase and
the group velocities have to be opposite in their directions. In such a
medium, a finite size source that produces a wave that carries energy
to infinity has to be proportional to a spherical wave of the form

e−ikr

r
(11)

for e−iωt dependence. Therefore, when there is a small amount of loss
in the unbounded BWM, this wave has to vanish at infinity. This gives
rise to the following condition for loss

k = k′ − ik′′ (12)

where the imaginary part of k has to be negative. The corresponding
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impedance boundary condition at infinity is

lim
r→∞

r

[
∂φ(r)
∂r

+ ikφ(r)
]

= 0 (13)

We can also obtain the loss condition from complex Poynting
theorem in the frequency domain which reads

∮
S
dS · (E × H∗) = iω

∫
V
dV {µ|H|2 + ε|E|2} (14)

In an LHM when µ and ε are complex corresponding to lossy media, we
assume them to be of the form µ = −µ′ + iµ′′ and ε = −ε′ + iε′′ where
µ′, µ′′, ε′ and ε′′ are all positive real numbers. When the complex µ
and ε are substituted into (14), the resultant equation is
∮

S
dS·(E×H∗)=−iω

∫
V
dV {µ′|H|2+ε′|E|2}−ω

∫
V
dV {µ′′|H|2+ε′′|E|2}

(15)
The first integral on the right-hand side represents the reactive energy
stored in the field which is purely imaginary, and hence does not
contribute to the real part of the complex Poynting power. The second
integral represents the energy absorbed by the lossy medium, which by
energy conservation, has to be negative to represent a net energy flow
into the volume V . Therefore, even when the real parts of µ and ε are
negative, their imaginary parts have to be positive in order to conserve
energy and our assumption right after Equation (14) is correct.

When the above form of µ and ε are used to compute k via the
formula

k = ±ω
√
µε = ±ω

√
(µ′ − iµ′′)(ε′ − ε′′) (16)

It is clear from the above that when the branch of the square root is
chosen so that the real part of k is positive, the imaginary part of k
has to be negative as suggested by Equation (12). This loss condition
is also in agreement with that in [10] via a more elaborate argument.

7. POINT SOURCE OVER AN LHM HALF SPACE

The solution of a point source over an LHM half space can be solved
in closed form in terms of Sommerfeld integrals. The Sommerfeld
integrals provide an excellent theoretical model that allows us to
elucidate the physics of the problem, and gain further insight into the
physical interaction of a source with an LHM half space and later, an
LHM slab.
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Figure 3. A point source over an LHM half space. The point source
is located in the upper half space which is an RHM.

Without loss of generality, we consider the case of a vertical
electric dipole on top of a half space where the upper half space is
vacuum while the lower half space is an LHM (see Figure 3). The field
generated by such a dipole is transverse magnetic with respect to z,
the vertical axis. (If transverse electric field is desired, one can use a
vertical magnetic dipole. But the physics of the problem is not greatly
altered by polarization.) In the upper half space, the z component of
the electric field can be expressed as [23, 24]

E1z = − I�

4πε1

∫ ∞

0
dkρ

k3
ρ

k1z
J0(kρρ)

[
eik1z |z−z′| + Reik1z(z+d1+|d1+z′|)

]
(17)

where the source is located at ρ = 0 and z = z′, while the interface is
located at z = −d1. In the lower half space, it is

E2z = − I�

4πε1

∫ ∞

0
dkρ

k3
ρ

k1z
J0(kρρ)Teik1z |d1+z′|−ik2z(z+d1) (18)

where
R =

ε2k1z − ε1k2z

ε2k1z + ε1k2z
; T = 1 + R (19)

In the above,
kiz =

√
k2

i − k2
ρ; k2

i = ω2µiεi (20)

for the i-th region.
The above integrals are not uniquely defined until the branch of

the square root in kiz is specified. There will be four branch points
corresponding to ±ki, i = 1, 2 for the above problem. To obtain a
unique solution to the above problem, an infinitesimal small loss is first
assumed in its formulation, and the lossless solution is then obtained
by making the loss vanishingly small [24, p. 59] (see Figure 4). For a
traditional medium, the branch in (20) is taken such that 
e(kiz) is
positive and �m(kiz)is positive. Figure 5 shows the snap shot of the



10 Chew

Integration Path

k1
k2

Im(kρ)

k1

Im(k2z)> 0
Im(k1z )> 0

Re(kρ)

Im(k1z )=0

k2

Im(k2z)=0Im(k1z)=0

Im(k2z )=0

Integration Path
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Figure 4. The branch cuts and Riemann sheets for a point source
on top of the lossy RHM/LHM half spaces, (left) unmatched case and
(right) matched case. 
e(k1z) > 0, 
e(k2z) < 0 on the integration
path. For 2D problems, the integration path is from −∞ to +∞,
while for 3D problems as in this paper, it is from 0 to +∞.
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Figure 5. A point source at an ordinary RHM interface generates
spherical and lateral waves as seen in this figure [24, p. 109]. x and z
are in units of free space wavelengths.



Progress In Electromagnetics Research, PIER 51, 2005 11

field generated by a point source over an ordinary RHM half space
where spherical wave and lateral wave can be observed.

However, if the lower half space is a BWM, the choice of the branch
of k2z is such that 
e(k2z) is negative and �m(k2z) is positive. This
will give a backward wave in medium 2 for the propagating spectrum,
while ensuring that the wave is decaying in the lower half space for
the evanescent spectrum when z → −∞. The backward wave for the
propagating spectrum is for energy conservation, while the decaying
wave for the evanescent spectrum is for the convergence of the integral.
Consequently, along the integration path, we have the condition that

�m(k1z) > 0, �m(k2z) > 0, 
e(k1z) > 0, 
e(k2z) > 0. (21)

In the perfectly matched case, as shown in Figure 4 (right), the
branch points coalesce to one point, pinching the integration path,
making the integral undefined. This is one difficulty we face with the
perfectly matched LHM half space. Another difficulty will be discussed
in the next section.

8. SURFACE PLASMON RESONANCE

When the lower half space is a single negative material (e.g., where
ε2 is negative, but µ2 is positive), a surface plasmon pole exists along
the path of integration [24, p. 100], because the reflection coefficient
defined in (19) can have poles when its denominator vanishes or

ε2k1z + ε1k2z = 0 (22)

We shall call this the plasmon resonance condition. This surface
plasmon mode gives rise to a surface wave that decays exponentially
away from the interface. Figure 6 shows the location of such a pole
on the complex plane. The above condition differs from the Brewster-
angle condition which is

ε2k1z − ε1k2z = 0 (23)

When the lower half space is an LHM in addition to being a BWM,
there are two cases to consider: the unmatched case, and the matched
case. For the unmatched case, where µ2 �= −µ0 and ε2 �= −ε0, the
above integral in the lower half space will converge due to the decay of
the evanescent waves. As for the pole locations, when kρ < ki, i = 1, 2,
the plasmon resonance condition in Equation (22) cannot be satisfied
along the path of integration, and a closer study shows that the poles
are located where the Sommerfeld poles or the Zenneck surface wave
poles are located. These poles have caused quite a bit of controversy in
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Figure 6. (Left) The contour plot of the magnitude of the reflection
coefficient for a single negative material for the lower half space.
A pole corresponding to the surface plasmon mode is observed. A
branch point is on the real axis while the other branch point is on the
imaginary axis [p. 100] [24]. (Right) Plot of the reflection coefficient
magnitude along the real axis showing peaking near the pole. Here,
ω = µ0 = ε0 = 1.

the literature [25], but they are located in the part of the complex plane
topologically far from the integration path, namely, in the “wrong”
Riemann sheets. As discussed in [24, p. 99], these poles are located
only on two of the four Riemann sheets.

Figure 7 shows the locations of the poles for the unmatched case.
They again occur on two Riemann sheets, one is close to the top shore
of the �m(k1z) = 0 branch cut near the real axis, and the other one is
close to the bottom shore of the �m(k2z) = 0 branch cut near the real
axis. But they are not coincidental with the path of integration.

When the lower half-space is tuned to be perfectly matched
to the upper half space such that µ2 = −µ0 and ε2 = −ε0, a
strange phenomenon occurs. For the propagating wave in the above
integral that corresponds to kρ < k, the reflection coefficient is
zero while the transmission coefficient is one. On the contrary, for
the evanescent wave corresponding to kρ > k with the choice of
branch cut suggested above, the reflection coefficient is infinite and
the transmission coefficient is infinite for all the evanescent waves due
to the denominator of the reflection coefficient defined in (19) becoming
zero. This is because the evanescent waves satisfy the surface plasmon
resonance condition at the interface given by (22). Hence, in the
perfectly matched case, every evanescent wave component excites its
corresponding surface plasmon mode. For the lossless case, the Q’s of
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Figure 7. (Left) The contour plot of the magnitude of the reflection
coefficient for an unmatched double negative material for the lower
half space. Two poles are observed. (Right) Reflection coefficient plot
along the real axis shows no large values along the real axis. Here,
ω = µ0 = ε0 = 1.

these surface plasmon modes are infinite, and hence, a time-harmonic
oscillation will drive their fields to infinity. (This is the second difficulty
we face with the LHM half space solution.) Therefore, for the lossless,
perfectly matched case, the Sommerfeld integral becomes undefined,
and it is well defined only if a small amount of loss is introduced.
Figure 8 shows the amplification of the reflected and transmitted
evanescent field by a surface plasmon resonance. An evanescent field
with unit amplitude is generated at z = 0, but when the loss in the
LHM becomes smaller, the reflected field swamps the source field.

When the medium is slightly lossy, Figure 9 shows the location of
the poles where the plasmon resonance condition is exactly satisfied,
and that the plasmon resonance condition is almost satisfied by the
evanescent spectrum. When the amount of loss diminishes, the
plasmon resonance condition (22) is even better satisfied by the
evanescent waves, making the reflection coefficient even larger for
kρ > k. On the other hand, the propagating spectrum satisfies
the Brewster angle condition (23) making the reflection coefficient
vanishingly small for kρ < k.

We may wonder if the other choice of square root for k2z for the
evanescent wave would have avoided this problem. In this case, the
reflection coefficient is zero for the perfectly matched case, and the
transmission coefficient is one. The evanescent wave, however, will
grow with distance away from the interface giving rise a nonphysical
solution and to a divergent integral.
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Figure 9. (Left) The contour plot of the magnitude of the reflection
coefficient for a matched double negative material for the lower half
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the real axes shows large values for evanescent spectrum (to the right
of the branch point) for different loss tangents. ω = µ0 = ε0 = 1.
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Figure 10. The transmitted field through a matched LHM half
space at at distance h = 1 below the interface for different losses.
ω = µ0 = ε0 = 1.

From the above, we can also see that the perfectly matched LHM
half space does not time-reverse the evanescent wave, but only the
propagating wave. The lossless case give rise to nonphysical infinite
amplitude surface plasmon resonances yielding infinite field in the lower
half space, while the lossy case can be made to amplify the evanescent
spectrum through plasmon resonance, but it will not be amplified in
the right proportion (see Figure 10) to yield the exact replication of
the evanescent wave at the focal point. Hence, super-resolution cannot
be achieved in this case.

9. ASYMPTOTIC ANALYSIS–RAY OPTICS SOLUTION

With an analytic solution such as a Sommerfeld integral, one can
perform asymptotic analysis using methods such as the stationary
phase method (or the saddle point method) on the integral when the
frequency is high to obtain ray optics solution to the integrals.

Assume that the source point is at the origin, and is at a height
h1 above the interface. Then for an observation point at a distance h2
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Figure 11. (Left) The parameters for the condition given by Equation
(24) for focussing. The rays for the unmatched case (center) form a
caustic along the vertical z axis while the rays for the matched case
(right) form a caustic at the focal point.

below the interface displaced ρ horizontally away from the origin, one
can show that the stationary-phase condition is:

−h1 tan θ1 + h + 2 tan θ2 + ρ = 0 (24)

The relationship between θ1 and θ2 is determined by phase matching,
or Snell’s law (see Figure 11). When the medium is unmatched, θ1 �= θ2

and the refracted rays will not meet at a point. However, the refracted
rays will form a convergent cone toward any point giving rise to a
low order caustic (see Figure 11). The field will be infinite at the
caustic, but this is due to the well-known mathematical failure of
the geometrical optics approximation at caustics, but not due to the
focussing effect.

For the matched case, assuming that the surface plasmon
resonances are mitigated by some loss, the propagating spectrum will
be focussed at a focal point giving rise to a caustic. Again the infinite
field at the focal point is a mathematical deficiency rather than a
physical reality.

Figure 12 shows the Sommerfeld integral modeling of a point
source over an unmatched LHM half space, and over a matched LHM
half space. In the first case, there is no focal point, and the field is
unfocussed but generating a larger field along the caustic, while in the
latter, partial focussing occurs at the focal point.
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Figure 12. A point source above an LHM half space. (Left)
The unmatched case gives rise to unfocussed wave along a caustic.
(Right) The matched case gives rise to a partially focussed wave
as the evanescent spectrum is not “time-reversed” even though the
propagating spectrum is “time-reversed”. Dimensions are in free-space
wavelength. The source field is clipped at 3 to emphasize the other
field.

10. POINT SOURCE OVER AN LHM SLAB

When a vertical electric dipole is placed over an LHM slab, the field in
each region can be derived. The field in the upper half space in region
1 is

E1z = − I�

4πε1

∫ ∞

0
dkρ

k3
ρ

k1z
J0(kρρ)

[
eik1z |z−z′| + R̃eik1z(z+d1+|d1+z′|)

]
(25)

In the slab region, or region 2, the field is

E2z = − I�

4πε1

∫ ∞

0
dkρ

k3
ρ

k1z
J0(kρρ)

[
Aeik2zz + Be−ik2zz

]
(26)

In the lower half space, or region 3, the field is:

E3z = − I�

4πε1

∫ ∞

0
dkρ

k3
ρ

k1z
J0(kρρ)T̃ eik1z |d1+z′|−ik3z(z+d2) (27)

In the above [23, 24],

R̃ = R12 +
T12T21R23e

2ik2zh

1 −R21R23e2ik2zh
=

R12 + R23e
2ik2zh

1 −R21R23e2ik2zh
(28)
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T̃ =
T12T23e

2ik2zh

1 −R21R23e2ik2zh
(29)

where the interfaces are located at z = −d1 and z = −d2, h is the slab
thickness, and

Rij =
εjkiz − εikjz

εjkiz + εikjz
; Tij = 1 + Rij (30)

The detail definitions of A and B are given in reference [24, p. 50] and
is unimportant for the following discussion.

As is well known with a slab solution, it is independent of the
choice of the square root for k2z. An interesting case to notice here is
that for the perfectly matched case, the value of T̃ remains finite, and
the value of R̃ = 0.

For the propagating spectrum, we always have T̃ reducing to

T̃ → eik2zh, 
e(k2z) < 0 (31)

for the perfectly matched case irrespective of the choice of the square
root for k2z. Different choices of square root will yield Rij = 0 or
Rij = ∞ giving rise to the same result above. In other words, the LHM
slab regresses the phase of the propagating spectrum, as is expected
of a backward wave medium. This is not a surprising result, as we
have seen in the half-space analysis that the LHM “time-reverses” the
propagating wave.

For the evanescent spectrum, due to the absence of branch point
at k2, by letting k2z = ±iα always results in

T̃ → eαh α > 0 (32)

Moreover, the reflection coefficient, which was infinite for the half-
space case, becomes zero for this case, and the transmission coefficient
remains a finite value. This is a surprising departure from the LHM
half space — an LHM slab amplifies the evanescent spectrum. Hence,
with a proper choice of the LHM slab thickness, such that the slab
thickness is exactly the same as the height of the point source above
the slab, the decay of the evanescent field can be exactly compensated
by the LHM slab, and the phase progression of the propagating wave
can be exactly compensated by the phase regression in the LHM slab.
(Such amplification has also been found in circuit equivalence models
[17, 20].)

The above is a case of resonance tunnelling. As mentioned in
the half-space analysis, the evanescent spectrum satisfies the plasmon
resonance condition, generating infinities in the one-interface reflection
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Figure 13. The propagation of the plane evanescent field from the
source point at z = 0 into a thin LHM slab (left) and thick LHM slab
(right).

and transmission coefficients. These resonances at the two interfaces
interact with each other to yield a saturated field in the slab region,
giving rise to no reflection, and amplification of the transmitted field.

As seen in Figure 13, a plane evanescent field in an RHM region
decays away from the source point, and when it enters the LHM
slab, the evanescent field experiences an exponential growth due to
resonance coupling between the two interfaces, and the field is amplified
by the slab. As the evanescent field leaves the slab, it decays again from
the slab. As can be seen from the figure, the reflected evanescent field
decreases for decreasing loss because of better matching, and in the
limit of very small loss, the field can replicate itself at z = −2 for the
thin slab. For the thick slab, the field is replicated at z = −2 inside the
slab and at z = −3 outside the slab. For the lossy case, considerable
more reflected wave is observed in the thick slab.

11. SUPER-RESOLUTION ANALYSIS

To gain further insight into the super-resolution nature of an LHM
slab, we can study the contour plot of the generalized transmission
and reflection coefficients on the complex plane in Figures 14 and 15.
The contour plot indicates no poles, save for the branch point. The
transmission coefficient is large at the right half of the figure, while the
reflection coefficient also becomes larger. The next set of figures reveal
more on the character of these transmission and reflection coefficients.

Figure 16 shows the magnitude of the generalize transmission and
reflection coefficients given by (29) and (28) for the LHM slab as a
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Figure 14. The contour plot of the magnitude of the LHM slab
transmission coefficient (left) and the same coefficient along the real
axis (right). Here, ω = µ0 = ε0 = h = 1.
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Figure 15. The contour plot of the magnitude of the LHM slab
reflection coefficient (left) and the same coefficient along the real axis
(right). Here, ω = µ0 = ε0 = h = 1.

function of kρ for different loss tangents of the slab. The transmitted
evanescent spectrum (kρ > k) is amplified by the slab up to some
kρmax where the transmission coefficient is maximum. After that the
transmission coefficient diminishes and the amount of amplification
depends on the loss in the slab-the more loss, the less the amplification.
Meanwhile, the reflection coefficient, which is small, becomes large for
large kρ implying that the high spatial frequency evanescent spectrum
cannot penetrate the LHM slab.

When kρ is large, the generalized transmission coefficient (29) can
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Figure 16. The magnitude of the LHM slab transmission coefficient
(left) and reflection coefficient (right) along the real axis integration
path for decreasing loss tangents. The circles are the asymptotic
approximation to the formula for large kρ. Here, ω = µ0 = ε0 = h = 1.

be approximated by

T̃ ∼ (1 − r12)(1 − r23)e−kρh

1 − r21r23e−2kρh
, kρ → ∞ (33)

where
rij =

εj − εi
εj + εi

(34)

The above equation, and a similar equation for the reflection coefficient,
are plotted as circles in Figure 16. For the matched interface with small
loss,

rij = − 2
i(lt1 + lt2)

(35)

where lti is the loss tangent of medium i. With the above
approximations, we can derive

kρmax ≈ 1
h

ln(|r12|) ≈
1
h

ln(2/(lt1 + lt2)) (36)

Hence, the minimum spatial wavelength that can be regenerated by
the RHM slab is

λmin = 2πh/ ln(2/(lt1 + lt2)) = 2πh/ ln(2/(lt2)), if lt1 = 0. (37)

The resolution of an image is about 0.5λmin. Hence, super-resolution
is possible where the resolution is controlled by the thickness and the
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Figure 17. Required loss tangent of the LHM slab versus resolution
in wavelength for different slab thicknesses.

loss of the LHM slab. Defining the resolution R = 0.5λmin, obtain that

lt1 = 2e−πh/R (38)

Figure 17 shows the required loss tangent for the LHM slab
for resolution in terms of free-space wavelength for different slab
thicknesses. It is seen that when the resolution is small, and the
slab thickness is large, the required loss tangent is very small! To
put things in perspective, an optical fiber with a loss of 0.5 dB/km at
1.6µm wavelength requires a loss tangent of approximately 3× 10−11.

Since an deep evanescent field (large kρ) becomes exponentially
small when it reaches the LHM slab interface, before it is amplified,
any surface imperfection or roughness will also limit the super-resolving
capability of the slab. The above analysis has not taken this into
account.

Figure 18 shows the use of an LHM slab properly placed and
with thickness selected so that the field due to the source is refocussed
exactly at the point at the bottom interface of the slab. For the thin
slab, a hot spot is refocussed at the bottom interface of the slab at
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Figure 18. Contour plot of a snap shot of the field magnitude
for a point source above an LHM slab. The source is placed at
(ρ, z) = (0., 0.5) above the slab. The LHM slab is matched and has a
thickness of 0.5 (left) and 1.0 (right). Dimensions are in wavelength.
The source field is clipped at 3 to emphasize the other field.

(ρ, z) = (0.,−0.5). The source field at (ρ, z) = (0., 0.5) is clipped at 3
to limit its value.

For the thick slab, a hot spot is refocussed inside the LHM slab,
as well as one below the LHM slab. Also, a hot spot is noticed at the
top interface directly below the source point. This is due to that the
high spatial frequency evanescent spectrum cannot penetrate the slab
(see Figure 16), giving rise to accumulation of field for this hot spot.

The above result suggests that an LHM slab can “teleport” a
point source to a new location where the point source is reconstituted
to beyond the diffraction limit. Supposedly, such a slab can be used to
teleport an illuminated planar image to another plane that allows sub-
wavelength features to be captured without having to perform near
field scanning microscopy directly. However, an extremely high Q or
low loss slab is needed to achieve such a teleportation. One possibility
is the use of active material to counter the loss in the LHM slab.

12. CONCLUSIONS

Some reflections on the physical character of double negative, left
handed medium is given in this paper. In particular, we perform
theoretical modelling with Sommerfeld integral to gain a better
physical insight into the interaction of a point source (that generates
both propagating waves and evanescent waves) with an LHM half space
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and an LHM slab. Loss condition has been derived for LHM so that it
can be used to decide the choice of Riemann sheets for the Sommerfeld
integration path. Consequently, a more precise understanding of the
problem can be gained compared to FDTD simulations.

This analysis shows that an LHM half space cannot refocus the
point source field to super-resolution, because the evanescent spectrum
is not reconstituted in the correct proportion. A lossless LHM dielectric
slab can refocus the field to super-resolution if the point source is
properly located with respect to the slab; namely, the thickness of the
LHM slab is exactly the same as or larger than the distance of the
point source above the slab. If the slab thickness is exactly the same
as this distance, the point source is refocussed at the point directly
at the bottom interface to high resolution. If the thickness of the
slab is larger than the distance of the dipole from the interface, it can
refocus the point source to a point below the dielectric slab, but a
very low loss LHM slab is needed for such a purpose. However, the
super-resolution is limited by the loss of the LHM slab. In fact, the
loss in the dielectric slab causes the high spatial frequency evanescent
field to be reflected, giving rise to hot spots at the dielectric interface.
This analysis also clarifies confusions about the time-reversal super-
resolution capabilities of LHM.

Furthermore, we suggest that high-resolution teleportation is
possible with a layered medium consisting of alternating RHM and
LHM materials although it will be limited by the loss in the LHM
slab. A pressing requirement in this field is the fabrication of novel
LHM with very low loss, or the study of the use of active material to
counter the loss in the LHM slab.
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