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Abstract—Scattering by planar geometries with plane metal
inclusions are analysed. The metal inclusions can be of arbitrary
shape, and the material of the supporting slabs can be any linear
(bianisotropic) material. We employ the method of propagators to
find the solution of the scattering problem. The method has certain
similarities with a vector generalisation of the transmission line theory.
A general relation between the electric fields and the surface current
densities on the metal inclusions and the exciting fields is found.
Special attention is paid to the case of a periodic metal pattern
(frequency selective structures, FSS). The method is illustrated by a
series of numerical computations.
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1. INTRODUCTION

Wave propagation in planar geometries is a classical canonical
scattering and radiation problem and many excellent papers and books
treat this problem in great detail, see e.g., [2, 7, 12, 17]. Any attempt
to revisit this problem have to focus on a new systematic approach to
solve the problem. This is exactly the reason and motivation of this
paper. The concept of propagators that relates the total transverse
fields to each other provides such a new concept. Moreover, it provides
a systematic approach to analyse the solution of complicated scattering
problems. The use of propagators in science is old, e.g., in quantum
mechanics [1], but seems to have been of little use in electromagnetic
problems.

The work presented in this paper grew out of the analysis
presented in [9] where an integral representation technique was applied.
We present a novel approach — based on the concept of propagators
— to solve scattering problems in planar geometries with an arbitrary
number of metallic sheets imbedded in a slab. The method has
certain similarities with a vector generalisation of the transmission
line theory [3, 14]. Specifically, the propagator technique is a vector
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generalisation of the voltage-current transmission theory formulation
[3] or transmission (ABCD) matrix [14].

The material in the supporting slabs can be arbitrary linear
material, i.e., a bianisotropic material [12]. The integral representation
approach presented in [9] can be generalised to treat also the more
general case presented in this paper, but with an increasing complexity
in the analysis. The proposed method with propagators makes
considerable simplification in the analysis.

An important application of the theory presented in this paper is
the case when the metallic scatterers are arranged in a periodic pattern.
This is the frequency selective surface or structure case (FSS) and the
theory and analysis of this application is thoroughly given in [13]. In
the latter part of this paper the FSS geometry is analysed and the
advantages with the propagator approach become more transparent.
The importance of dielectric layers in the design of a frequency selective
surface is thoroughly treated in the excellent book of Munk [13].

The paper is organised in the following way: In Sections 2 and
3 the geometry and the prerequisites of the problem are presented.
The propagators and the concept of wave splitting are presented in
Section 4, and the general solution to the propagation problem is given
in Section 5. We specialise the analysis to the periodic case in Section 6
and give some numerical examples of the analysis in Section 7. The
paper ends with conclusions in Section 8.

2. GEOMETRY

The geometry of the problem analysed in this paper is depicted in
Figure 1. The depth parameter z is defined by the common normal
of the indicated parallel interfaces. There are N thin, plane, metallic,
perfectly conducting, scatterers (patches or apertures), S1, S2, . . . , SN ,
present, each of which is supported by a bianisotropic slab, i.e., there
are N + 1 slabs, occupying the region V1, V2, . . . , VN+1. The locations
of the thin scatterers are z = zn, n = 1, 2, . . . , N . The ends of the
structure are represented by the coordinates z0 and zN+1. Thus, the
location of the interfaces and the thin scatterers satisfies

z0 ≤ z1 < z2 < · · · < zN−1 < zN ≤ zN+1

We recall the time-harmonic (e−iωt) constitutive relations of the
general bianisotropic medium [15]:


D = ε0{ε ·E + η0ξ ·H}

B =
1
c0
{ζ ·E + η0µ ·H}
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Figure 1. The geometry of the problem with patches or apertures at
z = z1, . . . , zN .

The permittivity and permeability of vacuum are denoted by ε0 and
µ0, respectively. The speed of light in vacuum is c0 = 1/

√
ε0µ0 and

the intrinsic impedance of vacuum is η0 =
√
µ0/ε0. The bianisotropic

slabs may have varying material dyadics ε, ξ, ζ, µ, as functions of
depth z (and angular frequency ω), i.e., ε = ε(z) etc. In particular,
they can be homogeneous or stratified. In the lateral directions, x- and
y-directions, there are no variations in the material parameters. The
dynamics of the fields in the bianisotropic medium is modelled by the
time-harmonic Maxwell equations in a source-free region:{

∇×E = ik0c0B = ik0{ζ · E + η0µ ·H}
η0∇×H = −ik0c0η0D = −ik0{ε ·E + η0ξ ·H}

(1)

where k0 = ω/c0 is the vacuum wave number. The space outside the
slabs is assumed to be vacuous, which covers all situation of interest
in technical applications. The case of non-vacuous half spaces can be
obtained as a limit process z0 → −∞ and zN+1 →∞.

The sources of the problem are assumed to be confined to the
regions (may be at infinity) located to the left or the right of all
inhomogeneities, i.e., they are contained in the vacuous half-spaces
z < z0 and z > zN+1.
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3. LATERAL FOURIER TRANSFORM OF THE FIELDS

With the geometry adopted in this paper, it is natural to decompose
the fields in a spectrum of plane waves. The Fourier transform E(kt, z)
of a time-harmonic field E(r), r = x̂x+ ŷy + ẑz, with respect to the
lateral position vector ρ = x̂x+ ŷy is defined by

E(kt, z) =
∫∞∫
−∞

E(r)e−ikt·ρdx dy

where the real vector
kt = x̂kx + ŷky

is the lateral wave vector and the non-negative (real) number

kt =
√
k2
x + k2

y

is the lateral wave number. By the Fourier inversion formula,

E(r) =
1

4π2

∫∞∫
−∞

E(kt, z)eikt·ρdkx dky (2)

Observe that only the argument of the field indicates whether the field
itself E(r) or its Fourier transform E(kt, z) w.r.t. ρ is intended, and
that the (real) unit vectors{

ê‖(kt) = kt/kt

ê⊥(kt) = ẑ × ê‖(kt)

constitute a orthogonal basis for the lateral vectors (vectors in the
x-y-plane).

3.1. Consequences for the Maxwell Equations

As a consequence of lateral Fourier transformation of the electric
and magnetic fields, the Maxwell equations (1) for the bianisotropic
medium are transformed into the system of six coupled ordinary
differential equations (ODE)



d

dz
J ·E(kt, z) + ikt ×E(kt, z) = ik0(ζ(z) ·E(kt, z) + µ(z) · η0H(kt, z))

d

dz
J · η0H(kt, z) + ikt × η0H(kt, z) = −ik0(ε(z) ·E(kt, z) + ξ(z) · η0H(kt, z))
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where the dyadic J = ẑ × I2 represents a projection in the x-y-plane
and a rotation of π/2 around the z-axis. One has J = ê⊥ê‖ − ê‖ê⊥.

By utilising the unique decomposition of the fields in their lateral
components, Exy(kt, z) and η0Hxy(kt, z), and their corresponding
longitudinal (z) components, Ez(kt, z) and η0Hz(kt, z), i.e.,{

E(kt, z) = Exy(kt, z) + ẑEz(kt, z)
H(kt, z) = Hxy(kt, z) + ẑHz(kt, z)

and by introducing these decompositions in the Maxwell equations,
it follows that the longitudinal field components can be eliminated.
A system of ODE:s for the lateral fields, the fundamental equation
for one-dimensional time-harmonic wave propagation in bianisotropic
materials [15], remains:

d

dz

(
Exy(kt, z)

J · η0Hxy(kt, z)

)
= ik0M(kt, z) ·

(
Exy(kt, z)

J · η0Hxy(kt, z)

)
(3)

where the linear map M(kt, z) : C2 × C2 → C
2 × C2 depends on

the material dyadics. A detailed representation of M(kt, z) in terms
of ε(z), ξ(z), ζ(z), µ(z), kt, and k0 is given in [15]. In homogeneous
regions, the map M(kt, z) is independent of z, i.e., M(kt, z) = M(kt).
Specifically, in vacuum, M(kt) is given by

M0(kt) =


 0 −I2 + 1

k2
0
ktkt

−I2 − 1
k2
0
kt × (kt × I2) 0


 (4)

where the identity dyadic in R2 for lateral vectors I2 = ê‖ê‖ + ê⊥ê⊥
introduced.

The eigenvalues of the vacuum quantity k0M0(kt) defined in (4)
are found to be kz, kz,−kz, and −kz, where the longitudinal wave
number kz is

kz =
(
k2

0 − k2
t

)1/2
=




√
k2

0 − k2
t for kt < k0

i
√
k2
t − k2

0 for kt > k0

(5)

and the standard convention of the square root of a non-negative
argument is intended. Consequently, kz is a real non-negative number
for propagating waves and a purely imaginary number with non-
negative imaginary part for evanescent waves. Thus, for plane waves
in vacuum regions, the general solution is of the form{

E(kt, z) = E+(kt)eikzz +E−(kt)e−ikzz

H(kt, z) = H+(kt)eikzz +H−(kt)e−ikzz
(6)
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where E±(kt) and H±(kt) are constant, complex vectors.

4. PROPAGATION IN THE STRATIFIED REGION

The wave propagator concept for the total Fourier transformed
lateral electromagnetic field proved almost indispensable in [15]. The
propagator maps the Fourier transformed lateral fields at z to another
position z′. Formally we write(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
= P(kt, z, z′) ·

(
Exy(kt, z′)

η0J ·Hxy(kt, z′)

)
(7)

This formulation is a vector generalisation of the voltage-current
transmission theory formulation [3] or transmission (ABCD) matrix
[14]. The propagator satisfy the same system of ODE:s as the lateral
fields (3), i.e.,


d

dz
P(kt, z, z′) = ik0M(kt, z) ·P(kt, z, z′)

P(kt, z′, z′) = I4

The augmented initial condition when both z-arguments of the
propagator P coincide is due to the fact that the lateral fields at z
then are mapped onto themselves, i.e., the identity mapping I4 in C4.

Several examples of explicit expressions of the propagators are
found in [15]. Specifically, the propagator for vacuum is [15]

P0(kt, z, z′) = eik0(z−z′)M0(kt)

= I4 cos kz(z − z′) +
ik0

kz
M0(kt) sin kz(z − z′) (8)

where the longitudinal wave number kz is given by (5).

4.1. Wave Splitting

We introduce a wave-splitting technique that decomposes any Fourier
transformed field into two components that transport power in the +z-
or the −z-directions, respectively. An alternative characterisation of
the wave splitting transformation is that this transformation projects
out the incident and reflected (transmitted) fields out of the total field.
The wave-splitting technique in vacuum is presented in detail in e.g.,
[15]. We have(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
=

(
I2 I2

−W−1(kt) W−1(kt)

)
·
(
F+(kt, z)
F−(kt, z)

)

(9)
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where†

W−1(kt) =
k0

kz

(
I0 +

1
k2

0

kt × (kt × I2)
)

= ê‖ê‖
k0

kz
+ ê⊥ê⊥

kz
k0

where, as above, I2 is the identity dyadic in the x-y-plane. The inverse
of this dyadic in the x-y-plane is

W(kt) =
kz
k0

(
I0 −

1
k2
z

kt × (kt × I2)
)

= ê‖ê‖
kz
k0

+ ê⊥ê⊥
k0

kz

and we have(
F+(kt, z)
F−(kt, z)

)
=

1
2

(
I2 −W(kt)
I2 W(kt)

)
·
(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
(10)

To see the physical implications of this transformation, we proceed
by finding the PDE for the split fields F± in vacuum. The transverse
fields Exy(kt, z) and Hxy(kt, z) satisfy, see (3) and (4)

d

dz

(
Exy(kt, z)

J · η0Hxy(kt, z)

)
= ikz

(
0 −W(kt)

−W−1(kt) 0

)

·
(

Exy(kt, z)
J · η0Hxy(kt, z)

)

since 


I2 −
1
k2

0

ktkt =
kz
k0

W(kt)

I2 +
1
k2

0

kt × (kt × I2) =
kz
k0

W−1(kt)

An application of (9) and (10) gives

d

dz

(
F+(kt, z)
F−(kt, z)

)
= ikz

(
I2 0
0 −I2

)
·
(
F+(kt, z)
F−(kt, z)

)

From this equation we see that the split fields F± decouple in vacuum
and the solution is

F±(kt, z) = F±(kt, z0)e±ikz(z−z0)

† This dyadic is related to the admittance dyadic Y (kt).

Y (kt) =
1

k0kz

{
k2
0ê⊥ê‖ − k2

z ê‖ê⊥
}

= J ·W−1(kt)
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4.2. Propagators

The notion of propagator, defined in (7), is a very powerful tool for
the analysis of wave propagation for a geometry as depicted Figure 1.
In each of the bianisotropic regions we have (n = 0, . . . , N)(

Exy(kt, z+n )
η0J ·Hxy(kt, z+n )

)
= P(kt, zn, zn+1) ·

(
Exy(kt, z−n+1)

η0J ·Hxy(kt, z−n+1)

)

(11)
where the wave propagator

P(kt, zn, zn+1) =

(
Pee(kt, zn, zn+1) Pem(kt, zn, zn+1)
Pme(kt, zn, zn+1) Pmm(kt, zn, zn+1)

)

for the general linear medium was presented in [15]. Similarly, for the
two vacuous half spaces(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
= P(kt, z, z0) ·

(
Exy(kt, z0)

η0J ·Hxy(kt, z0)

)
,

z < z0 (12)(
Exy(kt, z)

η0J ·Hxy(kt, z)

)
= P(kt, z, zN+1) ·

(
Exy(kt, zN+1)

η0J ·Hxy(kt, zN+1)

)
,

z > zN+1 (13)

where the propagators are given explicitly by (8).
In the following section these relations between the transverse

fields at different z-coordinates are exploited more in detail, and their
use to solve the wave propagation problem becomes clear.

5. GENERAL FORMULATION OF PROBLEM

We are now in a position of combining the results of the previous
sections together. The main concepts in the context are the notion
of propagators, i.e., the equations in Section 4 (8), and the wave
splitting concept presented in Section 4 (7). The latter concept makes
the necessary decomposition of the fields outside the slabs in order to
identify the correct input and output components of the field.

Since the longitudinal components of the fields have been
eliminated, and only the transverse components remain, the boundary
conditions imply that the field quantities, Exy(kt, z) and η0Hxy(kt, z),
are continuous in z over any non-metallic interface. Moreover, at the
thin, metallic sheets the electric field Exy(kt, zn) is continuous in z,
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since it is zero from both sides at the metallic parts, i.e., zero at z+n
and at z−n and continuous in z everywhere outside the metallic parts.
However, the magnetic field Hxy(kt, zn) has a jump discontinuity in z
due to the presence of the induced surface currents on the metal parts.
The total induced current distributions (sum from both sides) on the
N different screens are

JS(kt, zn) = J ·Hxy(kt, z+n )− J ·Hxy(kt, z−n ), n = 1, . . . , N (14)

where, as above, the dyadic J = ẑ × I2.
Equation (11) is now used to relate the fields at different z-

positions. We apply (11) directly to the the internal slabs, i.e., for
n = 1, . . . , N − 1. The exterior slabs, i.e., for n = 0 and n = N ,
is next to a half space, and to identify the correct input and output
parts of the fields, we first apply the wave splitting transformation,
(10). This is necessary in order to identify the pertinent reflection and
transmission quantities of the entire slab and its metal scatterer. The
result of the wave splitting transformation is(

F+(kt, z0)
F−(kt, z0)

)
=

1
2

(
Pee −W ·Pme Pem −W ·Pmm

Pee + W ·Pme Pem + W ·Pmm

)

·(kt, z0, z1)
(

Exy(kt, z1)
η0J ·Hxy(kt, z−1 )

)
(15)

and(
F+(kt, zN+1)
F−(kt, zN+1)

)
=

1
2

(
Pee −W ·Pme Pem −W ·Pmm

Pee + W ·Pme Pem + W ·Pmm

)

·(kt, zN+1, zN ) ·
(

Exy(kt, zN )
η0J ·Hxy(kt, z+N )

)
(16)

where W is the vacuum wave splitting operator. In these expressions
the incoming transverse fields from the left and the right hand side
of the slab are F+(kt, z0) and F−(kt, zN+1), respectively. Similarly,
the scattered transverse fields in the half spaces are F−(kt, z0) and
F+(kt, zN+1), respectively.

To solve the propagation problem for the entire slab, we use
equations (11), (15), and (16) to express the scattered fields, F−(kt, z0)
and F+(kt, zN+1), and the doubly represented magnetic fields at the
screens, Hxy(kt, z±n ), n = 1, . . . , N , in terms of the incoming fields,
F+(kt, z0) and F−(kt, zN+1) and the electric fields at the screens,
Exy(kt, zn), n = 1, . . . , N , (note that the electric field is continuous at
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zn and, therefore, it is irrelevant which side of the metallic scatterer
the transverse electric field is evaluated). Finally, by equation (14),
the current densities at the screens, JS(kt, zn), n = 1, . . . , N , can be
related to the electric fields at the screens, Exy(kt, zn), n = 1, . . . , N .

To this end, we write equation (11) (for n = 1, . . . , N − 1) in the
form‡(

η0J ·Hxy(kt, z+n )
η0J ·Hxy(kt, z−n+1)

)
=

(
Pmm ·P−1

em Pme −Pmm ·P−1
em ·Pee

P−1
em −P−1

em ·Pee

)

·(kt, zn, zn+1) ·
(

Exy(kt, zn)
Exy(kt, zn+1)

)

Hence, using equation (14),

η0JS(kt, zn) = Ann−1(kt) ·Exy(kt, zn−1)
+Ann(kt) ·Exy(kt, zn) (n = 2, . . . , N − 1) (17)
+Ann+1(kt) ·Exy(kt, zn+1)

where


Ann−1(kt) = −P−1
em(kt, zn−1, zn)

Ann(kt) =
(
Pmm ·P−1

em

)
(kt, zn, zn+1) +

(
P−1
em ·Pee

)
(kt, zn−1, zn)

Ann+1(kt) =
(
Pme −Pmm ·P−1

em ·Pee

)
(kt, zn, zn+1)

(18)
Equation (17) is a relation between the surface current at the interior
screens and the transverse electric fields at the screen and at its two
neighbours. Similarly, using (14), the relations between the transverse
magnetic fields the exterior screens and the transverse electric fields at
the screen and its closest neighbour are found to be

η0J ·Hxy(kt, z+1 ) =
(
Pmm ·P−1

em Pme −Pmm ·P−1
em ·Pee

)
(kt, z1, z2)

·
(
Exy(kt, z1)
Exy(kt, z2)

)
(19)

and

η0J ·Hxy(kt, z−N ) =
(
P−1
em −P−1

em ·Pee

)
(kt, zN−1, zN )

·
(
Exy(kt, zN−1)
Exy(kt, zN )

)
(20)

‡ The formula is written in an economical form, and the dependence on the parameters
must be read with caution. For instance, (Pmm ·P−1

em)(kt, zn, zn+1) should be interpreted
as Pmm(kt, zn, zn+1) ·P−1

em(kt, zn, zn+1). This convention is used throughout this section.
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On the other hand, the scattering relations (15) and (16) can be
written as

F−(kt, z0) = C0(kt) · F+(kt, z0) + C1(kt) ·Exy(kt, z1) (21)

where


C0(kt) =
(
(Pem + W ·Pmm) · (Pem −W ·Pmm)−1

)
(kt, z0, z1)

C1(kt) =
(
−1

2
(Pem + W ·Pmm) · (Pem −W ·Pmm)−1

· (Pee −W ·Pme) +
1
2
(Pee + W ·Pme)

)
(kt, z0, z1)

(22)
This expression is a relation between the input field from the left,
F+(kt, z0), and the (unknown) scattered field to the left, F−(kt, z0)
which consists of both a reflected and a transmitted part, and the
(unknown) electric field on the first scatterer, Exy(kt, z1). Similarly,
at the other side of the entire slab we get

F+(kt, zN+1) = DN+1(kt) ·F−(kt, zN+1)+DN (kt) ·Exy(kt, zN ) (23)

where


DN+1(kt) =
(
(Pem −W ·Pmm) · (Pem + W ·Pmm)−1

)
(kt, zN+1, zN )

DN (kt) =
(
−1

2
(Pem −W ·Pmm) · (Pem + W ·Pmm)−1

· (Pee + W ·Pme) +
1
2
(Pee −W ·Pme)

)
(kt, zN+1, zN )

(24)
This expression is a relation between the input field from the
right, F−(kt, zN+1) and the (unknown) scattered field to the right,
F+(kt, zN+1) which consists of both a reflected and a transmitted part,
and the (unknown) electric field on the last scatterer, Exy(kt, zN ).

Moreover, from the relations (15) and (16) have the relations

η0J ·Hxy(kt, z−1 ) = 2(Pem −W ·Pmm)−1(kt, z0, z1) · F+(kt, z0)

−
(
(Pem −W ·Pmm)−1 · (Pee −W ·Pme)

)
(kt, z0, z1) ·Exy(kt, z1)

(25)

and

η0J ·Hxy(kt, z+N ) = 2(Pem+W ·Pmm)−1(kt, zN+1, zN ) · F−(kt, zN+1)

−
(
(Pem−W ·Pmm)−1 · (Pee+W ·Pme)

)
(kt, zN+1, zN ) ·Exy(kt, zN )

(26)
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at the exterior screens.
To proceed, we divide the analysis in two separate paths,

depending on whether there are one screen (N = 1) or whether there
are several (N > 1). These cases are different due to the fact that in
the first case the screen has the two half spaces next to the screen. In
the second case there is always a screen as a neighbour.

5.1. Special Case — Several Screens (N > 1)

The goal of this section is to find the expression that relates the surface
currents on the screens, JS(kt, zn), to the electric field on the screens,
Exy(kt, zn), and to the excitations of the entire slab, F+(kt, z0) and
F−(kt, zN+1).

We express the surface current at the first screen by a combination
of the equations (19) and (25). The result is

η0JS(kt, z1) = A11(kt) ·Exy(kt, z1) + A12(kt) ·Exy(kt, z2)
+A10(kt) · F+(kt, z0) (27)

where


A11(kt) = (Pmm · P−1
em)(kt, z1, z2)

+
(
(Pem −W ·Pmm)−1 · (Pee −W ·Pme)

)
(kt, z0, z1)

A12(kt) = (Pme −Pmm · P−1
em ·Pee)(kt, z1, z2)

A10(kt) = −2(Pem −W ·Pmm)−1(kt, z0, z1)

By combining equations (20) and (26) we get the surface current at
the last screen

η0JS(kt, zN ) = ANN−1(kt) ·Exy(kt, zN−1) + ANN (kt) ·Exy(kt, zN )
+ANN+1(kt) · F−(kt, zN+1) (28)

where


ANN−1(kt) = −P−1
em(kt, zN−1, zN )

ANN (kt) = (P−1
me ·Pee)(kt, zN−1, zN )

−((Pem + W ·Pmm)−1 · (Pee + W ·Pme))(kt, zN+1, zN )
ANN+1(kt) = 2(Pem + W ·Pmm)−1(kt, zN+1, zN )

Equations (17), (27), and (28) constitutes a set of equations that can
be combined into a single expression (n = 1, . . . , N)

η0JS(kt, zn) =
N∑
m=1

Anm(kt) ·Exy(kt, zm)
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+δn1A10(kt)·F+(kt, z0)+δnNANN+1(kt)·F−(kt, zN+1)
(29)

which is the starting point for the Galerkin procedure. Note that the
sum in the expression above only has at most three terms, since all
matrices Anm vanish if m �= n, n ± 1. The equation (29) can be
written in compact form by composing the square (2N × 2N) matrix
of band block type

A(kt) = (Anm(kt))

from the square (2× 2) matrices Anm(kt), m, n = 1, . . . , N , i.e.,

A =




A11 A12 0 · · · · · · · · ·
A21 A22 A23 0 · · · · · ·
0 A32 A33 A34 0 · · ·
...

...
...

. . .
...

...
· · · · · · 0 AN−1N−2 AN−1N−1 AN−1N

· · · · · · · · · 0 ANN−1 ANN




The simple block band characteristics of the matrix A(kt) have
several advantages that is used below. Moreover, by introducing
the inverse B = A−1 of A, which is not of band block type, and
decomposing this matrix as

B(kt) = (Bnm(kt))

where the dimension of the block matrices Bnm(kt), m, n = 1, . . . , N,
is 2× 2, equation (29) can be inverted and the transverse electric field
Exy(kt, zn) can be found in terms of the surface currents JS(kt, zm):

Exy(kt, zn) =
N∑
m=1

Bnm(kt) · η0JS(kt, zm)

−Bn0(kt)·F+(kt, z0)−BnN+1(kt)·F−(kt, zN+1) (30)

where Bn0(kt) = Bn1(kt) · A10(kt) and BnN+1(kt) = BnN (kt) ·
ANN+1(kt).

Equations (29) and (30) constitute the final set of equations for
the case of several screen. The first equation, (29), is the most suitable
for the analysis of the aperture case, while the second one, (30), is
more adapted to the the patch case. These observations are exploited
further below.
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5.2. Special Case — One Screen (N = 1)

The case of one screen is special in that the screen has a half space
on each side of it. There are, therefore, no interior screens, and we
need to consider this case separately. Again, the goal of this section
is to find the expression that relates the surface current on the screen,
JS(kt, z1), to the electric field on the screen, Exy(kt, z1), and to the
excitations of the entire slab, F+(kt, z2) and F−(kt, z2).

We let N = 1 and combine (25) and (26) to get

η0JS(kt, z1) = A11(kt) ·Exy(kt, z1) + A10(kt) · F+(kt, z0)
+A12(kt) · F−(kt, z2) (31)

where


A11(kt) = −
(
(P em + W · Pmm)−1 · (Pee + W ·Pme)

)
(kt, z2, z1)

+
(
(Pem −W ·Pmm)−1 · (Pee −W ·Pme)

)
(kt, z0, z1)

A12(kt) = 2(P em + W ·Pmm)−1(kt, z2, z1)
A10(kt) = −2(Pem −W ·Pmm)−1(kt, z0, z1)

(32)
Equation (31) is a special case of (29) for one screen. It is, however,
not possible to obtain this case from the general case.

The relation (31) can be inverted and the transverse electric field
Exy(kt, z1) can be found in terms of the surface currents JS(kt, z1).
The result is

Exy(kt, z1) = B11(kt) · η0JS(kt, z1)−B10(kt) · F+(kt, z0)
−B12(kt) · F−(kt, z2) (33)

where 


B11(kt) = A11(kt)−1

B10(kt) = B11(kt) ·A10(kt)
B12(kt) = B11(kt) ·A12(kt)

Equation (33) is a special case of (30) for the one screen case.

5.2.1. Connection to Reflection Dyadics Representation

The conventional way of solving scattering problems in planar ge-
ometries is by introducing the appropriate reflection and transmission
dyadics of the slabs — see the references cited in the introduction. As
already should be obvious from above, this approach is not used in
this paper. However, the reflection and the transmission dyadics can
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Figure 2. The geometry of a slab with two patch FSS supported by
arbitrary, general slabs.

be identified from our approach for the one screen case. We like to
stress that there are no advantages obtained in the numerical solution
of the problem by such an identification, but there could be some ped-
agogical advantages in showing the connections to the more standard
procedure. This identification parallels the connection in transmission
line theory between the voltage-current or transmission (ABCD) ma-
trix formulation and the scattering matrix formulation [3, 14]. The
technical details in this identifications are omitted here, and we refer
the reader to Ref. [10] for the details.

6. THE PERIODIC CASE — FSS

In the previous section, we analysed the case of a finite number of
patches or apertures of arbitrary shape on each screen. We now let
the number of patches or apertures on each screen be infinite, and,
moreover, they are arranged in a periodic pattern on each screen. This
situation comprises the important application of frequency selective
surfaces or structures (FSS) [13].

To this end, we assume that all the patches or apertures on
scatterer Sn are periodically distributed over the plane z = zn for
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Figure 3. The unit cell U (patch case) generated by a and b with
lengths a = |a| and b = |b|.

n = 1, 2, . . . , N , see also Figure 2. The periodicity is assumed to be
the same or commensurate on all screens. Consequently, a unit cell
relevant for all the screens can by defined by two linearly independent,
lateral vectors, say a a ∈ R2 and b ∈ R2 with lengths a = |a| and
b = |b|, respectively, see Figure 3. The periodic pattern can be
obliquely oriented and φ0 denotes the (smallest) angle between the
axes of periodicity defined by cosφ0 = a · b/(ab). We denote the unit
cell by U , its area AU = |a × b| = ab sinφ0, and the metallic parts in
the unit cell by Sσ.

In the previous sections, the excitation was arbitrary and there
could be sources on both sides of the slab, i.e., in the regions z < z0
and z > zN+1 We now assume the incident wave to be a plane wave
only from the left, i.e., F−(kt, zN+1) = 0. Explicitly, we have

Ei(r) = Ei
0e
iki·r

where ki = k0k̂
i
is the constant real wave vector of the incident wave,

and Ei
0 is a constant complex vector, such that Ei

0 ·ki = 0. The Fourier
transform of the lateral part of this field evaluated at z = constant is

F+(kt, z0)eik
i
z(z−z0) = Ei

xy(kt, z) = 4π2Ei
0xye

ikizzδ2(kt − kit) (34)
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where the wave vector has been decomposed in lateral and longitudinal
parts as ki = kit + ẑkiz, i.e., kiz = ki · ẑ and kit = I2 · ki. The
components of ki in the x- and y-directions are denoted by kix and
kiy, respectively, i.e., kit = x̂kix + ŷkiy, and the spherical angles of
ki are denoted θ (polar angle) and φ (azimuth angle), i.e., ki =
k0(x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ).

To apply the results from the previous sections we need to find
the relations between the Fourier transformed quantities used above
and the Fourier coefficient of the pertinent periodic quantities that
are appropriate in this section. To this end, Floquet’s theorem [6]
is applied. Consequently, the electric and magnetic fields and the
current densities can be expanded in infinite exponential series with
(lateral) wave numbers, which for the special geometry in Figure 3,
where a = x̂a and b = x̂b cosφ0 + ŷb sinφ0 are (Z denotes the set of
integers)

kmn = x̂

(
2πm
a

+ kix

)
+ ŷ

(
2πn
b sinφ0

− 2πm
a

cotφ0 + kiy

)
, m, n ∈ Z

(35)
Notice that k00 = kit.

Applying Floquet’s theorem [6] to the induced surface current
densities at the screens, JS(ρ, zj) = J · (H(ρ, z+j )−H(ρ, z−j )), which
in non-zero on the metallic parts, Sσ, and zero elsewhere on the plane
z = zj , gives

JS(ρ, zj) =
1
AU

∞∑
m,n=−∞

JS |U (kmn, zj)eikmn·ρ, j = 1, 2, . . . , N, ρ ∈ R2

where the lateral wave numbers kmn are given by equation (35),
and the coefficient JS |U (kmn, zj) is the lateral Fourier transform of
JS(ρ, zj) restricted to the unit cell U and evaluated at kmn, i.e.,

JS |U (kmn, zj) =
∫∫
U

JS(ρ, zj)e−ikmn·ρdxdy, j = 1, 2, . . . , N

Notice that this quantity is identical to the Fourier coefficient of the
periodic function JS(ρ, zj)e−ik

i
t·ρ. The symbol |U is used here and

below to emphasise that the quantity is a lateral Fourier transform of
an aperiodic quantity with support in the unit cell U and to distinguish
between JS(kt, zj) and JS |U (kmn, zj). Consequently, the connection
between the lateral Fourier transforms of the surface current densities,
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JS(kt, zj), and its restriction to the unit cell, JS |U (kmn, zj), is, cf. (2)

JS(kt, zj) =
4π2

AU

∞∑
m,n=−∞

JS |U (kmn, zj)δ2(kt−kmn), j = 1, 2, . . . , N

(36)
This connection can now be used in the results in the previous sections.

Similarly, applying Floquet’s theorem to the lateral electric fields
at the screens, Exy(ρ, zj), yields

Exy(ρ, zj) =
1
AU

∞∑
m,n=−∞

Exy|U (kmn, zj)eikmn·ρ, j = 1, 2, . . . , N

and

Exy(kt, zj) =
4π2

AU

∞∑
m,n=−∞

Exy|U (kmn, zj)δ2(kt−kmn), j = 1, 2, . . . , N

(37)
Finally, since kit = k00, the excitation from the left (34) can be

written as

F+(kt, z0) = 4π2F+(k00, z0)δ2(kt − k00) (38)

where F+(k00, z0) = Ei
0xye

ikizz0 .
In this section, we analyse only the patch case in some detail.

The corresponding analysis of the aperture case is found in e.g.,
[10]. Substituting equations (36), (37), and (38) into the relation
(30) between the electric fields, the surface current densities, and the
excitation from the left gives

Exy|U (kmn, zj) =
N∑
k=1

Bjk(kmn) · η0JS |U (kmn, zk)

−AUBj0(k00) · F+(k00, z0)δm0δn0, j = 1, 2, . . . , N
(39)

where the B-matrices were defined in Section 5. This equation holds
when N > 1. When N = 1, plugging into (33) gives an identical result

Exy|U (kmn, z1) = B11(kmn) · η0JS |U (kmn, z1)
−AUB10(k00) · F+(k00, z0)δm0δn0

The current density JS(ρ, zj) can be expanded with arbitrary precision
in a pertinent complete set of entire domain or local basis functions
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jp(ρ, zj) (supported on the patches), i.e.,

JS(ρ, zj) =
∑
p∈χ

Cjpjp(ρ, zj), j = 1, 2, . . . , N ; ρ ∈ U

where χ is a (countable) set of indices and the scalars Cjp are the
unknown expansion coefficients. It suffices to define the basis functions
jp(ρ, zj) in the unit cell U . The lateral Fourier transform of this
expansion is

JS |U (kmn, zj) =
∑
p∈χ

Cjpjp(kmn, zj), j = 1, 2, . . . , N

where

jp(kmn, zj) =
∫∫
U

jp(ρ, zj)e
ikmn·ρdxdy, j = 1, 2, . . . , N ; p ∈ χ

We assume that an appropriate set of weight functions wp(ρ, zj)
(supported on the patches) has been defined. In the Galerkin’s method
the functions jp(ρ, zj) are used. The lateral Fourier transform of the
weight functions wp(ρ, zj) is defined as

wp(kmn, zj) =
∫∫
U

wp(ρ, zj)e−ikmn·ρdxdy, j = 1, 2, . . . , N

The starting point in the Galerkin’s method is the identity∫∫
U

wp(ρ, zj)∗ ·Exy(ρ, zj)dxdy = 0, j = 1, 2, . . . , N ; p ∈ χ

and modifying the Parseval theorem for Fourier series to Floquet
expansions gives

∞∑
m,n=−∞

wp(kmn, zj)∗ ·Exy|U (kmn, zj) = 0, j = 1, 2, . . . , N ; p ∈ χ

in which equation (39) can be substituted and a system of equations
for the unknown Cjp is obtained. Specifically,

∞∑
m,n=−∞

wp(kmn, zj)∗ ·
N∑
k=1

Bjk(kmn) · η0
∑
q∈χ

Ckq jq(kmn, zk)

= AUwp(k00, zj)∗ ·Bj0(k00) · F+(k00, z0), j = 1, 2, . . . , N ; p ∈ χ
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If χ is an infinite set of indices, the above equation is an infinite
system of linear equations for the unknown current coefficients Ckq
From the solution of the Galerkin method presented in this section the
reflected and the transmitted fields are easily computed. The details
in these computations are found in Ref. [10].

7. NUMERICAL EXAMPLES

In this section, we illustrate the algorithms presented above. The
code is verified by comparisons with the Periodic Method of Moment
program (PMM) [13] and with scattering matrix formulation [4, 5, 16].

In Figure 4, we depict the reflection and transmission coefficients
for a skewed array of dipoles. This geometry is not intended to be
useful in applications, but it is used to verify the implementation of the

Figure 4. The reflection and transmission coefficients for a skewed
array of dipoles. The onset of the grating lobes is at 21.3 GHz.
The dashed curves are computed by the Periodic Method of Moment
program (PMM) with 3 piecewise sinusoidal modes taken into account.
The solid curves are computed by the present method using 3 basis
functions, namely 2 even (cosine) and 1 odd (sine) dipole basis function.
Moreover, (2× 5 + 1)2 Floquet modes are included.
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present method. The results are compared with the Periodic Method
of Moment program (PMM) [13]. The agreement is excellent.

In Figure 5, the reflection coefficient for a gangbuster FSS type
3 [8] is shown. For parallel polarization, the electric field is parallel
to the linear dipoles. Thus, for parallel polarization, the elements will
resonate when the length of the dipole arms is about λ/2, where λ is
the wavelength in the substrate. However, for orthogonal polarization,
the electric field is orthogonal to the dipole arms, which means that
the reflected field is scattered from the substrate alone. The first
resonance of the substrate occurs when the thickness of the substrate is
λ0/(2

√
ε− sin2 θ), where λ0 is the wavelength in vacuum. For the data

in Figure 5, this resonance occurs at approximately 6.1 GHz. In the
figure, the present method is compared to the scattering matrix method

Figure 5. The reflection coefficient for a gangbuster FSS type 3 [8].
The length of the dipole arms is 18 mm, while the width is 0.5 mm.
The plane of incidence is parallel to the dipoles (i.e., φ = 18.4◦), and
the angle of incidence is θ = 30◦. The solid curve is computed with the
present method using 3 basis functions and (2×5+1)2 Floquet modes.
The dashed curve is computed by the scattering matrix approach
[4, 5, 16] using scattering matrices of the size 2(2×N+1)2×2(2×N+1)2,
with N = 4, i.e., interaction modes up to order N = 4 are included.
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[4, 5, 16]. Both methods agree very well. However, the computation
times differ substantially. A rough estimate of the difference in
evaluation time between the computations shown in Figure 5 is that
the present method is more than 200 times faster than the traditional
scattering matrix method. More numerical experiments have to be
made in order to see whether this reduction of computation time is
true in general.

8. CONCLUSIONS

A new powerful method to compute the scattering properties in planar
geometries with planar metal inclusions has been presented in this
paper. The method employs the propagator technique [15], which is
thoroughly discussed. The main advantage with this method is that all
effects of the complex interaction between the metal inclusions and the
materials are included in the formulation. This type of geometry can
also be analysed with other methods, e.g., the Green’s function method
[9], but the present method is superior in its systematic structure. As
a consequence, there is no need to identify the numerous reflection and
transmission dyadics of the individual bianisotropic slabs that support
the metal inclusions and, moreover, no cascade procedure is needed.

Several extensions of the method presented in this paper are
possible. The Green’s dyadic for a geometry depicted in Figure 1 is
straightforward to compute and these results are reported elsewhere.
Other boundary condition, such as the perfectly conducting ground
plane is treated in [11]. The propagators are also an excellent
instrument for the analysis of possible surface waves in the slab. This
analysis is postponed to a separate paper, see also [11].

ACKNOWLEDGMENT

The work reported in this paper is supported by grants from
the Swedish Defence Materiel Administration (FMV) and by the
Swedish Foundation for Strategic Research (SSF), which are gratefully
acknowledged.

REFERENCES

1. Bjorken, J. D. and S. D. Drell, Relativistic Quantum Mechanics,
McGraw-Hill, New York, 1964.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE
Press, Piscataway, NJ, 1995.



24 Kristensson, Poulsen, and Rikte

3. Collin, R. E., Foundations for Microwave Engineering, second
edition, McGraw-Hill, New York, 1992.

4. Cwik, T. A. and R. Mittra, “The cascade connection of planar
periodic surfaces and lossy dielectric layers to form an arbitrary
periodic screen,” IEEE Trans. Antennas Propagat., Vol. 35,
No. 12, 1397–1405, December 1987.

5. Cwik, T. A. and R. Mittra, “Correction to ‘The cascade
connection of planar periodic surfaces and lossy dielectric layers
to form an arbitrary periodic screen’,” IEEE Trans. Antennas
Propagat., Vol. 36, No. 9, 1335, September 1988.

6. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and
Scattering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1991.

7. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons,
New York, 1986.

8. Kornbau, T. W., “Analysis of periodic arrays of rotated linear
dipoles, rotated crossed dipoles, and of biplanar dipole arrays
in dielectric,” Ph.D. thesis, The ElectroScience Laboratory, The
Ohio State University, Department of Electrical Engineering,
Columbus, Ohio 43212, USA, 1984.

9. Kristensson, G., M.
◦
Akerberg, and S. Poulsen, “Scattering

from a frequency selective surface supported by a bianisotropic
substrate,” Progress In Electromagnetics Research, PIER 35, 83–
114, 2001.

10. Kristensson, G., S. Poulsen, and S. Rikte, “Propagators and
scattering of electromagnetic waves in planar bianisotropic slabsan
application to frequency selective structures,” IEE Proc. —
Microwaves, Antennas and Propagation, Vol. 150, No. 6, 477–483,
2003.

11. Kristensson, G., P. Waller, and A. Derneryd, “Radiation ef-
ficiency and surface waves for patch antennas on inhomoge-
neous substrates,” Technical Report LUTEDX/(TEAT-7100)/1-
48/(2001), Lund Institute of Technology, Department of Elec-
troscience, P.O. Box 118, S-221 00 Lund, Sweden, 2001.
http://www.es.1th.se.

12. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen,
Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech
House, Boston, London, 1994.

13. Munk, B., Frequency Selective Surfaces: Theory and Design, John
Wiley & Sons, New York, 2000.

14. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New



EM waves in planar bianisotropic slabs 25

York, 1998.
15. Rikte, S., G. Kristensson, and M. Andersson, “Propagation

in bianisotropic mediareflection and transmission,” IEE Proc.
Microwaves, Antennas and Propagation, Vol. 148, No. 1, 29–36,
2001.

16. Shuley, N. V., “Analytical and numerical study of two-
dimensional multilayer structures for use as dichroic surfaces,”
Technical Report TR 8404, Division of Network Theory, Chalmers
University of Technology, 1984.

17. Wait, J. R., Electromagnetic Waves in Stratified Media, second
edition, Pergamon, New York, 1970.

Gerhard Kristensson received the B.S. degree in mathematics
and physics in 1973 and the Ph.D. degree in theoretical physics in
1979, both from the University of Gothenberg, Sweden. He held
positions at the University of Gothenberg and the Royal Institute of
Technology before being appointed Chair of Electromagnetic Theory
at Lund Institute of Technology. He has held visiting positions
at Ames Laboratory (Iowa State University) and at the University
of Canterbury (New Zealand). His main research interests are in
electromagnetic wave propagation in inhomogeneous media, with
special emphasis on inverse scattering problems.
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