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Abstract—We are interested in first order v/c velocity effects
in scattering problems involving motion of media and scatterers.
Previously constant velocities have been considered for scattering
by cylindrical and spherical configurations. Presently time-varying
motion — specifically harmonic oscillation — is investigated. A first-
order quasi-Lorentz transformation is introduced heuristically, in order
to establish relations to existing exact Special-Relativistic results.

We then consider simple problems of plane interfaces, normal
incidence, and uniform motion, in order to introduce the model:
Starting with an interface moving with respect to the medium in which
the excitation wave is introduced, then considering the problem of an
interface at rest and a moving medium contained in a half space. The
latter corresponds to a Fizeau experiment configuration. Afterwards
these configurations are considered for harmonic motion. This provides
the method for dealing with the corresponding problems of scattering
by a circular cylinder, involving harmonic motion.

The present formalism provides a systematic approach for solving
scattering problems in the presence of time-varying media and
boundaries.
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1. INTRODUCTION

Most remote-sensing systems in use are based on scattering of external
excitation waves. In many cases the geometry of the system prescribes
back scattering, e.g., when the data collection is performed by flying
machines (airplanes, balloons, missiles), or satellites, by ground
or airborne radar systems, or when we are dealing with acoustic
ultrasound systems. One of the main difficulties for performing such
measurements, especially forward scattering remote sensing, is the fact
that the scattered wave is often irretrievably masked by the excitation
wave, especially in situations where we need narrow spectrum signals.
In these cases traditional wide spectrum methods like time gating,
used in radar and ultrasound, might not be feasible. It is therefore
suggestive that we look for possibilities to distinguish between the
excitation and reflected waves using spectral methods.

In order to achieve this goal, we need some modulating mechanism
that will create new frequencies, e.g., mechanisms based on mechanical
motion of the scatterer, which will then modulate the excitation wave
and produce new spectral components. The mechanical oscillations
can be artificially induced, or inherently present in the scatterer, due
to its structural functionality, like the rotation of the helicopter blades,
or other rotation or vibration modes of structures.

Once the mechanical motion creates new spectral components,
these can be filtered out from the scattered wave, and unhampered
by the presence of the excitation wave frequency, the multi-spectral
scattered waves can be exploited to study the scatterer’s signature,
which might reveal further properties regarding its material properties,
shape, orientation, etc.

The theoretical interest in scattering problems involving motion is
motivated by two reasons: The extension of various canonical problems
facilitates a better understanding of the general class of velocity-
dependent scattering. And, since motion is almost always involved
with new spectral components, the associated scattering problems
allow for multi-spectral models for remote-sensing scatterers.
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The modeling of such scattering problems is sometimes controver-
sial. In acoustics there was a debate whether new spectral components
are due to motional effects of the scatterer, the so called Doppler-effect
kind, or result from the compression of the medium occurring when the
scatterer moves, see relevant discussions and citing of earlier references
in [1–3]. In electromagnetic wave scattering other complications arise,
resulting from the lack of a definitive first principles model for the
boundary conditions, transformation of fields, and transformation of
coordinates for arbitrary non-uniform motion.

Before proceeding to the problems at hand, two comments are in
order: Note that some symbols appear in different contexts, because of
their similar role. On one hand this contributes to a clear presentation,
but some care is called for. Note also that only first order in v/c
terms are retained. This implies in a perturbation-iteration sense
that in expressions multiplied by the velocity, the parameters are not
unknowns, but are supposedly already known from the corresponding
problem in which the velocity vanishes.

2. FIRST ORDER LORENTZ TRANSFORMATION

Einstein’s Special-Relativity [4–6] involves inertial (un-accelerated)
frames of reference moving at constant velocities. Coordinates are
related by the Lorentz transformation, which to the first order in v/c,
where c is the speed of light in free space, becomes

r′ = r − vt
t′ = t− v · r/c2 (1)
v̂ = v/v, β = v/c, v = |v|

In (1) r is the position vector, and v is the velocity of the primed frame,
as observed from the unprimed one. It is sometimes claimed that for
low velocities the second equation (1) becomes t′ = t, reducing (1) to
the Galilean transformation. This is an incorrect statement if the two
equations (1) are to be consistently considered to the first order in v/c.
For convenience, the quadruplet of coordinates r, t is compacted using
the Minkowski four-vector notation, as R = (r, ict). For brevity, (1)
can be represented as R′ = R′[R].

It has been observed previously, see for example [6, 7], that the role
of spatiotemporally-dependent velocity needs special considerations,
and in fact leads to a breakdown of the perfect axiomatic structure of
relativistic electrodynamics. This is a well-known problem in physics:
In his book [8] (see p. 162 ff.), Bohm discusses the hypothesis of
the locally co-moving un-accelerated frame, whereby at each point in
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space and instance in time we attach to the accelerated system an
inertial system, and use it until the discrepancy in the instantaneous
velocity requires to define a new co-moving inertial frame. If we accept
this idea, it follows that in (1) a local and instantaneous varying
velocity v = v(R) must be employed. But if one does not wish to
treat the instantaneous velocity as a constant, as in the following
problems involving oscillating boundaries and media, this heuristic
proviso cannot be implemented and (1) must be modified.

As (1) stands, it is invertible, satisfying to the first order in v/c

r = r′ + vt′

t = t′ + v · r′/c2
(2)

which can be represented as R = R[R′]. Clearly for v = v(R) the
invertibility is lost. We can look at it in another way: According to
(1), r = r′ + vt is an equation of motion for a fixed initial position
r = r′ at time t = 0. It follows that dr/dt = v, in accordance with the
definition of velocity. On the other hand, if we use v = v(R), then we
get dr/dt = v+ t(dv/dt), defying invertibility. Anyway, in general the
position of a point along a trajectory should be given as an integral of
the incremental distances covered by this point in time, which is not
satisfied by simplistically using v = v(R) in (1), (2). This point has
been mentioned before [9]. Consequently, a new modified first order
quasi-Lorentz transformation suggests itself

r′ = r −
∫ R

R 0

v(R)dt

t′ = t′ − c−2
∫ R

R 0

v(R) · dr
(3)

In (3)R0 is a fixed reference position in Minkowski’s space, and the bar
indicates the integration variable, which is subsequently suppressed,
assuming that the integration variable can be identified from the
context. In (3) we have line integrals in the Minkowski space. The
differentials of (3) yield

dr′ = dr − v(R)dt

dt′ = dt− v(R) · dr/c2
(4)

but since ∂r × r = 0 is identically zero, the first line (4), hence also
the first line (3), both require that the velocity field be laminar, i.e.,
∂r × v = 0. Furthermore, deriving the second line (4) from the second
line (3) also requires that v(R) · dr/c2, be an entire differential, in



Non-relativestic scattering by time-varying bodies and media 253

order for the integral to be independent of the limits, which in turn
entails ∂r × v = 0 once more.

Because of the restriction ∂r × v = 0, the present transformation
(4) does not apply, for example, to systems rotating with a uniform
angular velocity. See discussion on rotating media and references to
the literature in Van Bladel [7]. Some results for scattering by rotating
systems is given elsewhere [10].

For dr′ = 0 we now obtain dr/dt = v(R) from the first line (4),
retaining the original definition of the velocity. By substituting into
the second line (4) we find the time dilatation dt′ = dt(1−(v/c)2) � dt,
which is a second order phenomenon in v/c, and therefore negligible
in our present model.

Consequently, (4), and therefore (3), satisfies the relativistic
transformation for velocities to the first order in v/c, becoming

u′ = (u− v)/(1− u · v/c2) (5)

To the first order in v/c (4) can be recast as

dr = dr′ + v(R′)dt′

dt = dt′ + v(R′) · dr′/c2, v(R′) = v(R[R′])
(6)

where in (6) v(R′) is understood as the initial velocity field, expressed
in terms of the primed coordinates. In this sense (4) and (6) constitute
a pair of invertible transformations, in the same sense as we had for
the constant velocity in (1), (2).

We will be interested in the phase of plane waves. which can be
represented as a line integral in Minkowski space, e.g., see [6]

θ(R) =
∫ θ(R)

θ(R0)
dθ =

∫ R

R0

∂Rθ(R) · dR =
∫ R

R0

K(R) · dR

∂R =
(
∂r,−

i

c
∂t

)
, K = (k, iω/c2)

(7)

where the last term in (7) defines the spectral-space coordinate
quadrupletK, also a Minkowski four-vector. Written in this manner as
an entire differential, the line integral is independent of the integration
path, depending on the limits only. This is tantamount to having
∂R × K(R) = 0, but such a four-dimensional rotor operation is
meaningless, and must be considered as symbolizing six equations
∂Ki
∂Rj
− ∂Kj∂Ri

, i, j = 1, 2, 3, 4. This amounts to writing in three dimensions
and time

∂r × k(R) = 0

∂tk(R) + ∂rω(R) = 0
(8)
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where (8) is the so-called Sommerfeld-Runge law of refraction [11],
whereby the first line (8) is recognized as the well-known Snell law
(see also [6]).

To the first order in v/c, the relativistic transformation for the
components of K becomes

k′ = k − v(R)ω/c2

ω′ = ω − v(R) · k
(9)

where the first line (9) is related to the Fresnel drag effect, and the
second line is the so-called relativistic Doppler effect. Similarly to (1),
we can represent (9) as K ′ = K ′[K]. Once again, to the first order in
v/c, the inverse of (9), similarly to (2), is written as K = K[K ′]

k = k′ + v(R′)ω′/c2

ω = ω′ + v(R′) · k′, R′ = R′[R]
(10)

Note that in (9) we allow a field v(R), hence all the variables become
spatiotemporally-dependent and in (9) all terms are dependent on
space-time coordinates

k′(R′) = k(R)− v(R)ω(R)/c2

ω′(R′) = ω(R)− v(R) · k(R)
(11)

In the present context, according to (4), it is easily shown that to
the first order in v/c

θ(R) =
∫ R

R 0

K(R) · dR = θ′(R′) =
∫ R′

R′0

K ′(R′) · dR′

R′ = R′[R], K(R) · dR = k · dr − ωdt
(12)

often referred to as “the invariance of the phase” or “covariance of
the phase”. For constant K (12) becomes after integration θ(R) =
K ·R = θ′(R′) = K ′ ·X ′. with K ·R = k · r − ωt.

We are now ready to analyze scattering problems. For this we need
boundary conditions. From relativistic electrodynamics considerations
it is known that the velocity affects the field amplitudes too. To the
first order in v/c we thus have

E′(R′) = E(R) + v(R)×B(R)

B′(R′) = B(R)− v(R)×E(R)/c2

D′(R′) = D(R) + v(R)×H(R)/c2

H ′(R′) = H(R)− v(R)×D(R)

(13)
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where in (13) we also include the quasi-relativistic assumption that the
formulas hold for spatiotemporally varying velocity. In the same sense
as (9), (10), also (13) is invertible. It has been shown [12–14], that
first order in v/c relativistic boundary conditions as in (13), and non-
relativistic considerations based on the Lorentz force formulas lead to
the same boundary conditions.

In the next sections, in order to introduce concepts and notation,
we start with simple problems involving uniform motion and plane
interface boundaries.

3. UNIFORMLY MOVING PLANE INTERFACE

The non-relativistic or quasi-relativistic first order in v/c model for
scattering in velocity-dependent systems has been introduced and
applied recently [12–14]. Instead of duplicating the essentials of the
model, simple problems involving plane interface scattering will be
analyzed.

The problem involves a plane interface and normal incidence.
Two problems are considered: The first problem involves a half-space
characterized by medium {2}, moving through an ambient material
medium designated as {1}, in which the excitation and reflected waves
propagate. In the next section the associated problem is analyzed,
involving an interface at rest with respect to medium {1}, while
medium {2} moves with respect to the boundary.

In the first example we consider a medium {1} with given
parameters ε(1), µ(1), in which the excitation wave is given by

Eex = x̂Eexe
iθex , Hex = ŷHexe

iθex , Eex/Hex = (µ(1)/ε(1))1/2 = ζ(1)

θex = kexz − ωext, kex/ωex = (µ(1)ε(1))1/2 = 1/v(1)
ph (14)

The boundary is a plane interface moving through medium {1}
according to

zT = z − vt (15)

In (15) zT denotes some arbitrary reference position in a local
coordinate system of the boundary. The interface is at location zT = Z.
The origin zT = 0 moves according to z = vt.

The phase of the wave (14) at zT = 0 is given by

θex0 = θex|zT=0 = −ωexT t, ωexT = ωex(1− β(1)), β(1) = v/v
(1)
ph

(16)
Note that eiθex0 is not a wave, satisfying the wave equation, it is rather
a signal.
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According to (4) and the following remarks, to the first order in v/c
it is immaterial whether we use t or tT , i.e., whether the measurements
are performed in the initial frame of reference attached to medium
{1}, using sensors at different positions as prescribed by (15), or if
measurements are performed by an observer attached to the boundary,
in terms of tT . This will be used for similar expressions below where the
expressions refer to the vicinity of the boundary. The new frequency
ωexT in (16) is recognized as the first order in v/c relativistic Doppler
frequency effect, as given in the second line (9).

To compute the phase shift between zT = 0 and other points,
specifically zT = Z, we need to consider the effect of the moving
medium, i.e., we need to include the Fresnel drag effect [5, 7, 15]
embodied by the first line (9). The effect is usually associated with
the celebrated Fizeau experiment (e.g., see [7]). Accordingly the phase
shifts measured in a moving medium are different from those in the
same medium at rest, or in free space, and are subject to the “drag
effect” according to (9) and represented in the term of A(1) below.

In our case the phase at the boundary becomes

θexT = kexTZ − ωexT t, kexT = kex − vωex/c2 = kex(1− β(1)A(1)),

= qexT (1− β(1)A(1))/(1− β(1)) � qexT (1− β(1)(A(1) − 1)) (17)

qexT = ωexT /v
(1)
ph , A(1) = (v(1)

ph /c)
2

In free space v(1)
ph = c, therefore A(1) = 1 and the Fresnel drag effect

vanishes.
An effective phase velocity can be defined using (17), to the first

order in v/c

veff,ex=ωexT /kexT =v(1)
ph (1−β(1))/(1−β(1)A(1))�v(1)

ph (1+β(1)(A(1)−1))
(18)

and for free space (18) reduces to veff,ex = c as expected. As long as
we deal with locations zT = Z in the vicinity of zT = 0, we can leave
the time as t, otherwise we have to replace it by t′ = tT according to
(1).

Except for the rare cases of dense materials where A(1) is on the
order of β(1), the velocity effect on the propagation vector cannot be
ignored. Ignoring the effect and assuming kexT = kex is tantamount
to substituting a Galilean transformation in the phase (14), something
we already know to be invalid for electromagnetic fields, because it
violates Special-Relativity.

To find the reflected and transmitted fields the the boundary-value
problem must be solved. Boundary conditions based on the Lorentz
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force concept have been recently proposed [12–14]. Essentially they
involve (13). Accordingly, the boundary conditions are given by

n̂(b) ×
(
E

(1)
eff −E(2)

)
= 0, n̂(b) ×

(
H

(1)
eff −H(2)

)
= 0

E
(1)
eff = E(1) + v ×B(1), H

(1)
eff = H(1) − v ×D(1)

(19)

In (19) superscripts correspond to media {1} and {2}, and E(1)
eff , H

(1)
eff

are the effective fields due to motion of medium {1} when observed
from the boundary, which is at rest with respect to medium {2}. To
the first order in v/c, the unit vector n̂(b), normal to the boundary, is
the same whether measurements are performed in {1} or {2}.

Incorporating (14), (17), (19), we have at the boundary

EexT = x̂EexT e
iθexT , HexT = ŷHexT e

iθexT ,

EexT /Eex = HexT /Hex = 1− β(1)
(20)

The reflected (scattered) wave is chosen as

Esc = x̂Esce
iθsc , Hsc = −ŷHsceiθsc , Esc/Hsc = ζ(1)

θsc = −kscz − ωsct, ksc/ωsc = 1/v(1)
ph

(21)

Similarly to (16)

θsc0 = θsc|zT=0 = −ωscT t, ωscT = ωsc(1 + β(1)) = ωexT

ωsc/ωex = ksc/kex = (1− β(1))/(1 + β(1)) � 1− 2β(1)
(22)

The proviso ωscT = ωexT in (22) is prescribed by the boundary
conditions (19): at the boundary the two waves must have identical
time-dependence in order for the boundary conditions to be satisfied.

Similarly to (17), (18), (20), we have

EscT = x̂EscT e
iθscT , HscT = −ŷEscT eiθscT /ζ(1),

EscT /Esc = HscT /Hsc = 1 + β(1) θscT = −kscTZ − ωexT t,
kscT = ksc + vωsc/c2 = ksc(1 + β(1)A(1)) = ωexT /veff,sc

= qexT (1 + β(1)(A(1) − 1))

veff,sc = ωexT /kscT � v(1)
ph (1− β(1)(A(1) − 1))

(23)

Similarly to (14), in medium {2} we stipulate a plane wave as well

Ein = x̂Eine
iθin , H in = ŷHine

iθin , Ein/Hin = (µ(2)/ε(2))1/2 = ζ(2)

θin = κzT − ωexT t, κ/ωexT = (µ(2)ε(2))1/2 = 1/v(2)
ph (24)
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where in (24) ωexT is prescribed by the boundary conditions at zT = Z,
ensuring the same time-dependence of all fields at the boundary.

We have now all the ingredients needed for the solution of the
problem: The amplitude and phase for the excitation, scattered and
internal waves are given by (17) and (20), (23), and (24), respectively,
providing equations for determining the scattering and transmission
coefficients Esc/Eex, Ein/Eex, respectively. As a simple example,
consider a perfectly conducting interface, prescribing the vanishing of
the total tangential electrical field at the boundary, i.e.,

EexT +EscT = 0

Eex(1−β(1))eiKex(1−β
(1)A(1))+Esc(1+β(1))e−iKsc(1+β

(1)A(1)) =0

Esc/Eex � −ei(Kex+Ksc)
[
eiβ

(1)(Ksc−Kex)A(1)
(1− 2β(1))

]
� −ei(Kex+Ksc)(1− 2β(1)), Ksc = kscZ, Kex = kexZ

(25)

Interestingly, since Ksc −Kex is already of first order in β(1), the drag
effect vanishes for this case to the first order in v/c. Clearly for β(1) = 0
the problem reduces to the trivial case of scattering by a perfectly
conducting plane in the absence of motion. For the special case Z = 0
the expression becomes even simpler, but for any scattering problem
except the plane interface this simplification is inapplicable.

For an arbitrary medium {2} we have instead of (25)

EexT +EscT = EinT , HexT +HscT = H inT , K = κZ

Eex(1− β(1))eiKex(1−β
(1)A(1)) + Esc(1 + β(1))e−iKsc(1+β

(1)A(1))

= Eine
iK

Eex(1− β(1))eiKex(1−β
(1)A(1)) − Esc(1 + β(1))e−iKsc(1+β

(1)A(1))

= Eine
iKζ(1)/ζ(2) (26)

and (26) is solved for Esc/Eex, Ein/Eex in an obvious manner.
Note that ωexT computed above is a first order approximation in

v/c, hence the dispersion properties of medium {2} are only taken into
account within this approximation.

4. UNIFORMLY MOVING HALF SPACE

Associated with the above moving boundary scattering problem, we
have the so-called Fizeau experiment problem. Here the boundary is
at rest with respect to medium {1}, while medium {2}moves (cf. (15))
according to

z = ζ − vt, z = zT (27)
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i.e., observed from medium {1}, a fixed point ζ = const. in medium
{2} is seen to move in the −ẑ direction, and observed from {2}, the
boundary appears to move in the +ẑ direction.

We start with the excitation wave (14), and stipulate the scattered
wave as (21) with (23) taken for the simple case β(1) = 0, i.e.,
ωex = ωexT = ωsc = ωscT . Instead of (24) we now consider a plane
wave in the medium {2} at rest, according to (27)

Ein = x̂Eine
iθin , H in = ŷHine

iθin , Ein/Hin = (µ(2)/ε(2))1/2 = ζ(2)

θin = κζ − ωint, κ/ωin = (µ(2)ε(2))1/2 = 1/v(2)
ph (28)

The analog of (16) yields the phase at some reference location, say
z = 0

θ0in = θin|z=0 = −ωext = −ωint(1− β(2)), β(2) = v/v
(2)
ph (29)

In (29) ωex ensures that at the boundary all the waves have the same
time-dependence. The analog of (17), (18), taking into account the
Fresnel drag effect, includes the relative phase shift from z = 0 to the
location z = Z of the interface, yielding

θinT = κTZ − ωext, κT = κ− vωin/c2 = κ(1− β(2)A(2))

= ωin(1− β(2)A(2))/v(2)
ph = ωex/veff,in (30)

veff,in = v
(2)
ph

(
1 + β(2)(A(2) − 1)

)
, A(2) = (v(2)

ph /c)
2

Similarly to (19), the boundary conditions are now given by

n̂(b) ×
(
E

(2)
eff −E(1)

)
= 0, n̂(b) ×

(
H

(2)
eff −H(1)

)
= 0

E
(2)
eff = E(2) + v ×B(2), H

(2)
eff = H(2) − v ×D(2)

(31)

where E(2)
eff , H

(2)
eff are the effective fields due to motion of medium {2},

as observed at the boundary at rest with respect to medium {1}. In
(19) v is the velocity of the boundary observed from medium {1} at
rest, in (31) v is the velocity of the boundary observed from medium
{2} at rest, therefore the signs in (19) and (31) are identical.

Accordingly, the analog of (20) is

EinT = x̂EinT e
iθinT , H inT = ŷHinT e

iθinT

EinT/Ein=HinT/Hin = 1−β(2), Eint/HinT =(µ(2)/ε(2))1/2 =ζ(2) (32)
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We are now ready to compute the scattering coefficients. The
boundary conditions (31) and the definitions of the various fields
prescribe at z = Z yield the analog of (26)

EexT +EscT = EinT , HexT +HscT = H inT

Eexe
iKex + Eexe−iKex = Ein(1− β(2))eiK(1−β(2)A(2)) (33)

Eexe
iKex − Eexe−iKex = Ein(1− β(2))eiK(1−β(2)A(2))ζ(1)/ζ(2), K = κZ

providing two equations for the two unknownsEsc/Eex, Ein/Eex. Thus
the problem is considered solved.

5. OSCILLATING PLANE INTERFACE

To the first order in v/c the above results are consistent with the
relativistic formalism, for example see [16]. However, the present first
order non-relativistic formalism is simpler to apply, and facilitates the
solution of more intricate problems, as discussed in [12–14]. In the
present study, examples involving non-uniform motion are investigated.
Some relevant literature citations and results can be found in [7].

We start with the incident wave (14), and replace (15) by the
equation of motion

zT = z − z0SΩt, SΩt = sin Ωt (34)

which is commensurate with (3). Using (4) for dr′ = 0, i.e., zT = const.
in (34), the instantaneous velocity v(R) is derived

v(t) = dz/dt = v0CΩt, v0 = z0Ω, CΩt = cos Ωt (35)

From (34) the local origin zT = 0 moves according to z = z0SΩt.
Substituting in (14) yields the phase at this point (cf. (16))

θex0 = θex|zT=0 = kexz0SΩt − ωext, eiθex0 = ΣnIne−iωnt

ωn = ωex − nΩ, In = Jn(kexz0), Σn = Σn=∞n=−∞
(36)

where in principle the integer n in (36) covers, the range −∞ to
∞, see (e.g., [17], p. 372), however the Bessel functions Jn spectrum
tapers off as the sideband number n increases, therefore an adequate
approximation is provided by truncating the series at some point.

Corresponding to (9), (17), (18) we compute for each frequency ωn
the phase shift from zT = 0 to zT = Z, essentially using the effective
phase velocity veff,ex as in (18). Hence the phase θn, corresponding to
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each frequency ωn in (36) becomes

θin = knTZ − ωnt
knT = ωn/veff,ex = kn

(
1− β(1)

0 (A(1) − 1)CΩt

)
(37)

kn = ωn/v
(1)
ph , β

(1)
0 = v0/v

(1)
ph

Upon including the amplitude effect as expressed in (20), we find
the corresponding expression

EexT = x̂EexT , HexT = ŷHexT = ŷEexT /ζ
(1)

EexT = (1− β(1)
0 CΩt)EexΣnIn(kexz0)eiθn

(38)

Inasmuch as the Fresnel drag effect in (37) is a first order velocity
effect, EexT in (38) is recast as

EexT = EexΣnIne
iKn

(
1−β(1)

0 (A(1)−1)CΩt

)
−iωnt

(1− β(1)
0 CΩt)

= EexΣnIneiKn−iωnt
(
1 + β(1)

0 Bn(eiΩt + e−iΩt)
)

= EexΣnIneiKn
(
e−iωnt + β(1)

0 Bn(e−iωn+1t + e−iωn−1t)
)

= ΣnEex;ne−iωnt (39)

Eex;n = Eex
(
Ine

iKn + β(1)
0

(
Bn−1In−1e

iKn−1 +Bn+1In+1e
iKn+1

))
Bn =

(
iKn(1−A(1))− 1

)
/2, Kn = knZ

where in (39) indices have been judiciously raised and lowered in order
to end up with a spectrum of sidebands ωn.

The internal field which was monochromatic in (24) must now
have the spectral structure prescribed by (36)–(39), hence

Ein = x̂Ein, H in = ŷHin = ŷEin/ζ
(2)

Ein = ΣnEin;neκnzT−iωnt, κn/ωn = (µ(2)ε(2))1/2 = 1/v(2)
ph

(40)

where in (40) the coefficients Ein;n are to be determined by the
boundary conditions at zT = Z.

Unlike the monochromatic wave (21), the reflected wave must now
be stipulated with the spectrum prescribed by (36)–(40)

Esc= x̂Esc, Hsc=−ŷHsc=−ŷEsc/ζ(1), Esc=ΣνEsc;νe−iksc;νz−iωsc;νt

ωsc;ν = ωex − νΩ, ksc;ν/ωsc;ν = (µ(1)ε(1))1/2 = 1/v(1)
ph (41)
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At zT = 0 (41) becomes (cf. (22))

Esc|zT=0 = ΣνEsc;νe−iksc;νz0SΩt−iωsc;νt

= ΣνµEsc;νe−iωextJµ(ksc;νz0)ei(ν−µ)Ωt

= ΣνµEsc;νe−iωsc;ν−µtJµ(ksc;νz0) (42)

ωsc;ν−µ = ωex − (ν − µ)Ω, ksc;νz0 = kexz0 − νβ(1)
0

which is now more complicated by virtue of having in (42) a double
summation.

In order to satisfy the boundary conditions at all times, all signals
at the boundary must have identical frequencies. For harmonic motion
it has been shown in the transition from (36) to (39) that the phase
shift does not introduce new frequencies. Hence we require that the
frequencies in (36), (42) be identical, prescribing a constraint n = ν−µ.
This is tantamount to including in (42) a Kronecker delta function
δn;ν−µ. Therefore in (42) when an arbitrary fixed n is considered, the
time exponential e−iωsc;nt is independent of the summation variables
ν, µ, and due to the constraint, the double sum on ν, µ collapses to a
single sum, on either ν or µ. For all possible sidebands we have to sum
on n. In other words, when we eliminate µ, the double sum becomes
Σν;ν−n, but for any fixed ν, if we take n from −∞ to +∞, ν − n will
cover the same range. Thus (42) is rewritten as

Esc|zT=0 = Σne−iωntE′sc;n, E
′
sc;n = ΣνEsc;νJν−n(ksc;νz0), ωn = ωsc;ν−µ

(43)
From (19) and similarly to (38), (39), the amplitude effect

introduces an additional factor into (43), yielding

EscT /Esc = EscT ;ν/Esc;ν = HscT /Hsc = HscT ;ν/Hsc;ν = 1 + β(1)
0 CΩt

(44)
Similarly to (39), and using results from (23), the phase shift from
zT = 0 to zT = Z is now included too, yielding

EscT = x̂EscT , HscT = −ŷHscT = −ŷEscT /ζ(1)

EscT = ΣnE′sc;ne
−iKn(1+β

(1)
0 (A(1)−1)CΩt)−iωnt(1 + β(1)

0 CΩt)

= ΣnE′sc;ne
−iKn−iωnt

(
1 + β(1)

0 B′n(e
iΩt + e−iΩt)

)
(45)

= ΣnE′sc;ne
−iKn

(
e−iωnt + β(1)

0 B′n(e
−iωn+1t + e−iωn−1t)

)
= Σne−iωntEscT ;n

EscT ;n = E′sc;ne
−iKn+β(1)

0

(
B′n−1E

′
sc;n−1e

−iKn−1 +B′n+1E
′
sc;n+1e

−iKn+1

)
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B′n =
(
iKn(1−A(1)) + 1

)
/2

Inspecting (39), (40), (45) reveals that at the boundary all the
signals possess the same spectra, and by applying the boundary
conditions EexT +EscT = EinT , HexT +HscT = H inT , the amplitude
for each spectral component can be found. Thus the problem can be
considered as solved.

6. OSCILLATING HALF SPACE MEDIUM

The corresponding Fizeau experiment analog of the uniform motion
(27) can be extended to harmonic motion. Here the boundary is at
rest with respect to medium {1}, while medium {2} moves according
to (cf. (27))

z = ζ − ζ0SΩt (46)
which we associate with the velocity (cf. (35))

v(t) = dζ/dt = v0CΩt, v0 = ζ0Ω (47)

The excitation wave is given by (14), and because the boundary
is at rest with respect to medium {1}, the value of its signal at the
boundary at z = Z is simply

EexT = x̂EexT e
iθexT , HexT = ŷHexT e

iθexT , θexT = kexZ − ωext (48)

Without the motion of medium {2} we would be dealing with a
boundary at rest, hence no Doppler frequency shifts would have been
created. However, by virtue of the harmonic motion, medium {2} is
modulating the boundary condition. Consequently the reflected and
transmitted fields will display a harmonic spectrum.

This prescribes a harmonic spectrum in the transmitted wave
when at rest with respect to medium {2}, as we did for the scattered
wave in (42), (43). We therefore assume a spectrum of waves in medium
{2} at rest

Ein = x̂Ein, H in = ŷHin = ŷEin/ζ
(2), Ein = ΣνEin;νeiκνζ−iωνt

ων = ωex − νΩ, κν/ων = (µ(2)ε(2))1/2 = 1/v(2)
ph (49)

At z = 0, the origin for the coordinate system of the boundary
and medium {1}, substitution from (46) yields the signal (cf. (42))

Ein|z=0 = ΣνEin;νeiκνζ0SΩt−iωνt = ΣνµEin;νe−iωνtJµeiµΩt

= ΣνµEin;νe−iωνtJµ

Jµ=Jµ(κνζ0), κνζ0 =κζ0 − νβ(2)
0 , κ=ωex/v

(2)
ph , β

(2)
0 =v0/v

(2)
ph (50)

ωn = ωex − nΩ, n = ν + µ
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Using the instantaneous velocity (47), we take into account the
phase shift from z = 0 to z = Z. Exploiting the same arguments
that led to (16)–(18), (36)–(39), and including the amplitude effect
prescribed by (31) yields (cf. (39), (45))

EinT = x̂EinT , H inT = ŷHinT = ŷEinT /ζ
(2)

EinT /Ein = HinT /Hin = (1− β(2)
0 CΩt)

EinT = ΣνµEin;νµeiKn(1−β(2)
0 (A(2)−1)CΩt)−iωnt(1− β(2)

0 CΩt)

� ΣνµEin;νµe−iωnt
(
1 + β(2)

0 Bνµ(eiΩt + e−iΩt)
)

(51)

= ΣνµEin;νµ
(
e−iωnt + β(2)

0 Bνµ(e−iωn+1t + e−iωn−1t)
)

= Σνµe−iωntE′in;νµ, Ein;νµ = Ein;νe
iKnJµ

Kn = κnZ, Bνµ =
(
iKn(1−A(2))− 1

)
/2

E′in;νµ = Ein;νµ + β(2)
0 (Ein;ν;µ−1Bν;µ−1 + Ein;ν;µ+1Bν;µ+1)

The scattered field must now have the periodic spectral structure
prescribed by (51), hence at z = Z we assume

Esc = x̂Esc, Hsc = −ŷHsc = −ŷEsc/ζ(1),
Esc = ΣnEsc;ne−ksc;nZ−iωnt, ksc;n/ωn = (µ(1)ε(1))1/2 = 1/v(1)

ph

(52)

where in (52) the coefficients Esc;n are to be determined by the
boundary conditions. So far the expression n = ν + µ in (50) was
only a notation, but it is now realized that in order to have the same
frequencies at the boundary, this must be stipulated as a constraint,
namely a Kronecker delta function δn;ν+µ as in (42)–(45), hence (51)
is rewritten as

EinT = Σne−iωin;ntEinT ;n, EinT ;n = ΣνEin;ν;n−ν (53)

Thus we have now sufficient data for solving for the scattering
coefficients Esc;n in (52). In practice, an approximation will have to be
found by appropriately truncating the series on v in (53). With this
the problem is considered to be solved.

7. BOUNDARY-VALUE PROBLEM: OSCILLATING
CYLINDER

The problem of scattering by a uniformly moving cylinder has been
discussed before [12, 13, 18]. Relevant references are also given in
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[7, 15]. The particular model for scattering by a uniformly moving
cylinder in material media has been investigated in [13]. This is the
analog of the uniformly moving plane interface discussed above. Our
task here is to analyze the problem of the harmonically oscillating
cylinder, paralleling it with the analysis given above for the oscillating
plane interface.

It has been shown that in the case of a uniformly moving cylinder
a continuous spectrum is created due to the time-dependence [13, 18].
In the present case, in addition we also expect a discrete spectrum
effect due to the harmonic motion of the scatterer, as found for the
oscillating plane.

The geometry is defined by a circular cylinder of radius 	 whose
axis coincides with the direction of polarization of the excitation wave
(14), along the x-axis. The motion is along the z-axis, in accordance
with (34).

We start with the excitation wave (14), and derive (36) for the
signal at rT = 0, the center of the cylinder and the origin of the
boundary’s local coordinate system rT . We could choose an arbitrary
reference point instead, but the symmetry used here simplifies the
calculations.

Let us retrace the analysis up to (39), but here we substitute the
projection Z = 	CϕT , where ϕT is the azimuthal angle measured off
the z-axis towards the negative y-axis (in a right-handed orientation),
thus locating points on the cylinder’s rim rT = 	. Accordingly (39)
becomes (note the different definition of Bn below)

EexT = x̂EexT , HexT = ŷHexT = ŷEexT /ζ
(1)

EexT = ΣnEex;ne−iωnt, Eex;n = ΣmimEex;nmeimϕT

Eex;nm = Eex
[
InLnm − β(1)

0 (In−1Ln−1;m + In+1Ln+1;m)/2

−iβ(1)
0 (Bn−1In−1Ln−1;m−1 +Bn+1In+1Ln+1;m−1) (54)

+ iβ
(1)
0 (Bn−1In−1Ln−1;m+1 +Bn+1In+1Ln+1;m+1)

]
Bn = ikn	(1−A(1))/4, In = Jn(kexz0), Lnm = Jm(kn	)

In (54) we have achieved a representation of EexT at the boundary
as a superposition of terms characterized by orthogonal discrete
frequencies ωn, each term being an orthogonal series in terms of ϕT .
For the corresponding HexT we note first that

ŷ = −ϕ̂TCϕT − r̂TSϕT (55)

Using (54), (55), and judiciously raising and lowering m indices,
and exploiting a well known relation for cylindrical functions (see e.g.,
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[17] p. 360), or alternatively, making the observation that multiplying
Jm(kn	) by CϕT is tantamount to differentiating the function with
respect to the argument and multiplying by −i. The tangential field
at the boundary is obtained

r̂T×HexT = −x̂CϕTEexT /ζ(1), CϕTEexT = CϕTΣnEex;ne−iωnt,

CϕTEex;n = ΣmimEex;nmeimϕTCϕT = Σmim+1E′ex;nme
imϕT

E′ex;nm = −Eex [InL′nm − β
(1)
0 (In−1L

′
n−1;m + In+1L

′
n+1;m)/2

−iβ(1)
0 (Bn−1In−1L

′
n−1;m−1+Bn+1In+1L

′
n+1;m−1) (56)

+ iβ
(1)
0 (Bn−1In−1L

′
n−1;m+1+Bn+1In+1L

′
n+1;m+1)

]
,

L′nm = ∂kn�Jm(kn	)

Once again (56) constitutes an orthogonal series with respect to both
ωn and ϕT .

In the internal domain we have the simple solution of the wave
equation in media at rest. At the rim rT = 	 we have

EinT = x̂EinT , EinT = ΣnEin;ne−iωnt

Ein;n = ΣmimEin;nmJm(kin;n	)eimϕT (57)

kin;n/ωn = (µ(2)ε(2))1/2 = 1/v(2)
ph

where the coefficients Ein;nm are unknowns, to be found by solving the
boundary-value problem.

The corresponding field H inT can be found directly from
Maxwell’s equations

H inT =
(
r̂T	−1∂ϕT − ϕ̂T∂�

)
ΣnEin;ne−iωnt/(iωnµ(2)) (58)

For evaluation of the boundary-value problem we need the
component of (58) tangential to the surface, given by

r̂T ×H inT = −x̂Σnκn∂κnREin;n/(iωnµ
(2)) = x̂Σni∂κnREin;n/ζ

(2)

= x̂Σnmim+1Ein;nmJ
′
m(κn	)eimϕT /ζ(2) (59)

In order to construct the scattered wave, we start with a plane
wave superposition at frequencies corresponding to the expected
sidebands, propagating in an arbitrary direction α (see also [12–14]
for the uniform motion case)

Eα = x̂Eα, Hα = k̂α × x̂Hα = k̂α × x̂Eα/ζ(1), Eα = ΣµEαµeiθαµ

θαµ = kαµ · r − ωµt = kµrCϕ−α − ωµt = kµzz + kµyy − ωµt (60)

ωµ = ωex − µΩ, kµ/ωµ = (µ(1)ε(1))1/2 = 1/v(1)
ph
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The origin of the local coordinate system rT = 0 moves according
to (34). We obtain for Eα0, the field Eα of (60), evaluated at
z = z0SΩt, y = 0 (cf. (36))

Eα0 = Eα|rT=0 =ΣµEαµeiθαµ0 , θαµ0 = θαµ|rT=0 = kµz0CαSΩt − ωµt
eiθαµ0 = ΣσJσ(kµz0Cα)e−iωnt, ωn = ωex − nΩ, n = µ+ σ (61)

In (61) n = µ + σ is a constraint δn;µ+σ prescribed by (54).
Consequently (61) is rewritten as (cf. (42), (43))

Eα0 = ΣnE′αne
−iωnt, E′αn = ΣµEαµJn−µ(kµz0Cα) (62)

With each frequency in (62) we associate a phase shift according
to (9) (see also (37)) from the origin rT = 0 to the cylinder’s rim at
points rT = 	. Accordingly we replace in (61) −ωnt by the appropriate
θαnT . This is determined from the effective phase velocity prescribed
as in (37), affecting the component of the propagation vector along the
velocity.

θαnT = kαnT · 	r̂T − ωnt = kαnTy	SϕT + kαnTz	CϕT − ωnt
kαnTy = kαny, kαnTz = kαnz(1− β(1)

0 (A(1) − 1)CΩt), kαnz = knCα

θαnT = θαnR − β(1)
0 Kn(A(1) − 1)CΩtCαCϕT (63)

θαnR = kαn · 	r̂T − ωnt = KnCϕT−α−ωnt, Kn = kn	, kn = ωn/v
(1)
ph

We also multiply (61) by a factor 1 − β(1)
0 CΩtCα prescribed by the

boundary conditions (19) (cf. (38)), obtaining

EαT = x̂EαT , EαT = ΣnE′αne
iθαnT (1− β(1)

0 CΩtCα) = ΣnEαnT e−iωnt

�ΣnE′αne
iθαnR(1−β(1)

0 CΩtCα)(1−iKnβ(1)
0 (A(1)−1)CΩtCαCϕT )

�ΣnE′αne
iθαnR(1− β(1)

0 Bαn(eiΩt + e−iΩt)) (64)

Bαn =Cα(iKn(A(1) − 1)CϕT + 1)/2, EαnT = eiKnCϕT−αE′αn

−β(1)
0 (eiKn−1CϕT−αBα;n−1E

′
α;n−1+eiKn+1CϕT−αBα;n+1E

′
α;n+1)

The associated HαT field follows from (60). We employ (19), (35),
(55) and compute the amplitude of the tangential field HαT at the
boundary

r̂T×HαT = r̂T×(Hα − v ×Dα) = r̂T×
(
k̂α × x̂Hα − v × x̂ε(1)Eα

)
= Eα

(
r̂T × k̂α × x̂− r̂T × ŷβ(1)

0 CΩt

)
/ζ(1)



268 Censor

= Eα
(
r̂T×k̂α×x̂+r̂T×ϕ̂TCϕT β

(1)
0 CΩt

)
/ζ(1)

= −x̂Eα
(
CϕT−α − β

(1)
0 CϕTCΩt

)
/ζ(1) (65)

It follows that instead of the factor 1−β(1)
0 CΩtCα in (64) we now have

from (65) CϕT−α−β
(1)
0 CϕTCΩt, with (63) remaining unchanged, hence

r̂T ×HαT = −x̂Σne−iωntE′′αnT /ζ
(1)

Pαn = CϕT

(
1 + iCϕT−αCαKn(A

(1) − 1)
)
/2 (66)

E′′αnT = E′αne
iKnCϕT−αCϕT−α

−β(1)
0

(
Pα;n−1E

′
α;n−1e

iKn−1CϕT−α+Pα;n+1E
′
α;n+1e

iKn+1CϕT−α
)

Inspecting (64) it is seen that Kn−Kn±1 = ±Ω	/v(1)
ph , hence if we

restrict the discussion to cases where the oscillation amplitude z0 (34)
is on the order of the cylinder radius 	, then Ω	/v(1)

ph is on the order

of β(1)
0 , (37). Therefore, to the first order in β(1)

0 (64) can be rewritten
as

EαT = x̂EαT = x̂ΣnEαnT e−iωnt

EαnT = eiKnCϕT−α
(
E′αn − β

(1)
0 Bαn(E′α;n−1 + E′α;n+1)

) (67)

In cases where the radius is much larger than the oscillation
amplitude 	 � z0, (67) is not valid and (64) must be retained.

Now express E′αn as a Fourier series in terms of angle α

E′αn = Σmanmeimα (68)

Therefore EαnT , (67), becomes

EαnT = eiKnCϕT−αΣma′nme
imα

a′nm = anm − β(1)
0 BnΣν=n±1;µ=m±1aνµ

Bn = (iKn(A(1) − 1)CϕT + 1)/4 (69)
Σν=n±1;µ=m±1aνµ = an−1;m−1 + an−1;m+1 + an+1;m−1 + an+1;m+1

where in (69) we have raised and lowered m indices, and compacted
the notation of the sum.

Corresponding to (67)–(69), the scattered field signal is now
constructed as a superposition (integral) of properly weighted plane
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waves propagating in various directions α, with the proviso that it
leads to outgoing waves

EscT = x̂Σne−iωnt
1
π

∫
EαnTdα

= x̂Σnme−iωnt
1
π

∫
eiKnCϕT−αa′nme

imαdα

= x̂Σnme−iωntima′nmHm(Kn)eimϕT , (70)∫
=

∫ α=ϕT+(π/2)−i∞

α=ϕT−(π/2)+i∞

Following from the appropriate Sommerfeld integral (e.g., see [17]), in
(70) Hm denotes the Hankel function of the first kind. Note that the
dependence of EαnT on ϕT does not affect the integration on α in (70).
However, in the resulting series, a′nm(ϕT ) means that the series needs
to be modified once more in order to have an orthogonal series with
respect to ϕT . Thus we obtain

EscT = x̂Σnme−iωntimeimϕTFnm
Fnm = anmHm−β(1)

0 Σν=n±1;µ=m±1aνµHm/4 (71)

+β(1)
0 Vn(Σν=n±1;µ=m+1±1aνµHm+1−Σν=n±1;µ=m−1±1aνµHm−1)

Hm =Hm(Kn), Vn = Kn(A(1) − 1)/8

and (71) constitutes a double series, orthogonal with respect to the
two indices n, m, as needed for solving the boundary-value problem.

We now waive the approximation (67) and return to (64). By
inspection it becomes clear that the correct indices can be recovered
by using the proper indices of E′αn. Accordingly (70) is now replaced
by three integrals, with the same contour of integration, corresponding
to the three exponentials in the last expression (64)

EscT = x̂Σne−iωnt
1
π

∫ [
eiKnCϕT−αE′αn

−β(1)
0 eiKn−1CϕT−αBα;n−1E

′
α;n−1

− β(1)
0 eiKn+1CϕT−αBα;n+1E

′
α;n+1

]
dα (72)

where for (72) E′αn, Bαn are defined in (62), (64), respectively.
Manipulating the integrals in a similar manner and incorporaing

(68), we obtain the analog of (70)

EscT = x̂Σnme−iωnt
1
π

∫ [
eiKnCϕT−αanm
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−β(1)
0 eiKn−1CϕT−αBα;n−1an−1;m

− β(1)
0 eiKn+1CϕT−αBα;n+1an+1;m

]
eimαdα

Un = (iKn(A(1) − 1)CϕT + 1)/4

= x̂Σnme−iωnt
1
π

∫ [
eiKnCϕT−αanm

− β(1)
0 Σν=n±1;µ=m±1aνµUνe

iKνCϕT−α
]
eimαdα (73)

Expressing (73) in terms of Hankel functions series yields, similar
to (71)

EscT = x̂Σnme−iωntimeimϕT [anmMnm

− β(1)
0 Σν=n±1;µ=m±1aνµUνMνm

]
, Mnm = Hm(Kn) (74)

Like we did in (71), the series must be modified to become
orthogonal with respect to exponentials involving ϕT . This yields

EscT = x̂Σnme−iωntimeimϕTFnm
Fnm = anmMnm + β(1)

0 Σν=n±1;µ=m+1±1aνµVνMν;m+1

−β(1)
0 Σν=n±1;µ=m−1±1aνµVνMν;m−1 (75)

−β(1)
0 Σν=n±1;µ=m±1aνµMνm/4

and the consistency of (71), (75) can be easily verified.
We are now in the position of solving boundary-value problems.

For example, for a perfectly conducting cylinder (54), (75) are
combined to evaluate the boundary condition

EexT +EscT = 0|� (76)

For arbitrary material (57) is included in the form

EexT +EscT −EinT = 0|� (77)

but now we also need conditions on the component of the magnetic
field tangential to the boundary. Returning to (66) and implementing
the approximation used in (67) we derive

r̂T ×HαT = −x̂Σne−iωntE′′αnT /ζ
(1)

E′′αnT = eiKnCϕT−α
(
E′αnCϕT−α − β

(1)
0 Pαn(E′α;n−1 + E′α;n+1)

) (78)
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Incorporating (68) we obtain the analog of (69)

E′′αnT = Σma′′nme
iKnCϕT−αeimα, U ′n = CϕTKn(A

(1) − 1)/4

a′′nm = anmCϕT−α − β
(1)
0 CϕTΣν=n±1;µ=maνµ/2 (79)

−β(1)
0 iCϕT−αΣν=n±1;µ=m±1aνµU

′
n

Note that in (79) we can replace

CϕT−αe
iKnCϕT−α = −i∂KneiKnCϕT−α (80)

therefore the analog of (70) follows as

r̂T×HscT =−x̂Σne−iωnt
1
π

∫
E′′αnTdα/ζ

(1)

=−x̂Σnme−iωnt
1
π

∫
a′′nme

iKnCϕT−αeimαdα/ζ(1)

=−x̂Σnme−iωnt
1
π

∫
[−ianm∂Kn−β

(1)
0 CϕTΣν=n±1;µ=maνµ/2

−β(1)
0 Σν=n±1;µ=m±1aνµU

′
n∂Kn

]
eiKnCϕT−αeimαdα/ζ(1)(81)

In (81), similarly to (70), the dependence on ϕT does not affect the
integration on α. Like (70), we recast (81) in a series of cylindrical
functions

r̂T ×HscT = x̂Σnme−iωntimeimϕT
[
ianmH

′
m

+β(1)
0 CϕTΣν=n±1;µ=maνµHm/2

+ β
(1)
0 Σν=n±1;µ=m±1aνµU

′
nH
′
m

]
/ζ(1) (82)

Hm = Hm(Kn), H ′m = ∂KnHm(Kn)

Once again, similarly to (71), we recast (82) to obtain coefficients
independent of ϕT

r̂T ×HscT = x̂Σnme−iωntim+1eimϕTGnm/ζ
(1)

Gnm = anmH
′
m + β(1)

0 (Σν=n±1;µ=m+1aνµHm+1

−Σν=n±1;µ=m−1aνµHm−1)/4 (83)

+β(1)
0 Vn(Σν=n±1;µ=m+1±1aνµH

′
m+1

−Σν=n±1;µ=m−1±1aνµH
′
m−1)

Thus (83) is now an orthogonal series with respect to ϕT , as well as
the frequencies ωn.



272 Censor

Returning to (66), which led to the approximate expression (78),
we now wish to waive the approximation. Let us first inspect the
analogous expressions for the electric field. Here we started with
(64) and derived the corresponding approximate form (67). It is seen
that E′αn, E

′
α;n−1, E

′
α;n+1 retain their indices, and this is the clue for

recovering the indices for the remaining factors. This is consistent for
all expressions, e.g., compare (71), (75), all we have to do is to modify
the index of K. Similarly, the approximate (83) is replaced by the
exact expression

r̂T×HscT = x̂Σnme−iωntim+1eimϕTGnm/ζ
(1)

Gnm = anmM ′m+β(1)
0 (Σν=n±1;µ=m+1aνµMνµ

−Σν=n±1;µ=m−1aνµMνµ)/4

+β(1)
0 (Σν=n±1;µ=m+1±1aνµVνM

′
ν;m+1 (84)

−Σν=n±1;µ=m−1±1aνµVνM
′
ν;m−1)

Mnm =Hm(Kn), M ′nm = H ′m(Kn)

In addition to (77) we therefore have

r̂T × (HexT +HscT −H inT )|� = 0 (85)

together providing sufficient equations for deriving from the supposedly
known coefficients Eex;nm, E

′
ex;nm, (54), (56), respectively, the

unknowns Ein;n, (57), (59), and anm, (71) or (75) with (83) or (84),
respectively.

It is noted once more that the coefficients having β(1)
0 as a factor

are known — these are the coefficients for scattering by a cylinder in
the absence of motion, at the proper frequency involved.

8. DERIVATION OF THE SCATTERED FIELD

We have studied the boundary-value problem for the oscillating
cylinder. Now we have to demonstrate how the scattered field is
computed. The elements of the present approach have been discussed
before [13, 14], but here they are adapted to the specific problem at
hand. The method is based on the representation of the scattered field
as a plane wave superposition, with the phase invariance property (12)
holding when the phase is expressed in terms of rT , tT coordinates,
and the boundary conditions (19) excluded.

We therefore return to (64) and retain only terms multiplied
by β(1)

0 containing Kn, because these are the terms originating from
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the phase exponential and not the boundary conditions term (1 −
β

(1)
0 CΩtCα). We also replace Kn by Kn = knrT to take into account

various distances. This leads to the scattered field Esc, expressed in
terms of coordinates (rT , tT ). Accordingly we replace (71) by

Esc = x̂Σnme−iωntT imeimϕTFnm
Fnm = anmMnm + β(1)

0 V n(Σν=n±1;µ=m+1±1aνµHm+1

−Σν=n±1;µ=m−1±1aνµHm−1) (86)

V n = Kn(A(1) − 1)/8, Kn = knrn, Hm = Hm(Kn)

and similarly (75) is replaced by

Esc = x̂Σnme−iωntT imeimϕTFnm, Mnm = Hm(Kn)

Fnm = anmMnm + β(1)
0 Σν=n±1;µ=m+1±1aνµV νMν;m+1 (87)

−β(1)
0 Σν=n±1;µ=m−1±1aνµV νMν;m−1

Finally, by substitution of the initial space and time coordinates
(see (1), (34), (35))

zT = z − z0SΩt, yT = y, tT = t− v0zCΩt/c
2 (88)

the field can be expressed in terms of the initial coordinate system
parameters (r, t). The corresponding magnetic field Hsc is then found
by effecting Maxwell’s equation in terms of (r, t).

Unfortunately, the formulas given by (86), (87), are adequate for
small knrn only, i.e., in the instantaneous vicinity of the scatterer.
Such expressions are adequate for the solution of the boundary-value
problem, but fail for representing the scattered field at arbitrary
distances, as the scatterer moves away from some observer’s fixed
position r = constant. To overcome this difficulty we have to return to
(63), (64). Inasmuch as we are not trying to derive orthogonal series
here, we keep the original phase, retain the velocity-dependent term in
the exponent, and exclude the term 1− β(1)

0 CΩtCϕT . This yields

Eα = x̂ΣnE′αne
iθαnT = x̂ΣnEαneiθαnR

θαnT = kαnT · rT − ωntT = θαnR − β(1)
0 Kn(A(1) − 1)CΩtTCαCϕT

θαnR = kαn · rT − ωntT = KnCϕT−α − ωntT (89)

Eαn = E′αne
−iβ(1)

0 Kn(A(1)−1)CΩtT
CαCϕT

where in (89) the coefficients E′αn retain their original definition (62),
(68), and are by now supposedly known from the solution of the



274 Censor

boundary-value problem. Therefore instead of (68) we define now

Eαn = Σmanmeimα (90)

obviously Eαn in (90) is periodic in α, hence it can be considered as
a Fourier series with respect to α, with new coefficients. Similarly to
(70), the scattered wave is assembled as a superposition of plane waves,
resulting in an outgoing wave

Esc = x̂Σn
1
π

∫
Eαne

iθαnT dα = x̂Σne−iωntT
1
π

∫
eiKnCϕT−αEαn(α)dα

(91)
Note that in (91) the integration is on α, hence the dependence of Eαn
on ϕT , tT does not affect the integration.

In [13, 14], a method of using Twersky’s asymptotic or exact
differential-operator series in inverse powers of the distance [19, 20],
has been adapted. In the present case the asymptotic representation,
for example, reads

Esc = x̂Σne−iωntTDα
{
Eαn(α)

}

Dα
{
Eαn(α)

}
= H

(
1+

1+4∂2
α

i8Kn
− 9+40∂2

α+16∂4
α

128K2
n

· · ·
)
Eαn(α)

∣∣∣∣∣
α=ϕT

= H
∑
µ=0

(1+4∂2
α)(9+4∂2

α) · · · ([2µ−1]2+4∂2
α)

(i8Kn)µµ!
Eαn(α)

∣∣∣∣∣
α=ϕT

H = H(Kn) = (2/(iπKn))1/2eiKn (92)

Once again, to express (92) in terms of the native coordinates (r, t),
we have to substitute from (88). Once this is effected, the associated
magnetic fieldHsc is found by applying the relevant Maxwell equation.
Thus finally the problem is considered as solved.

9. BOUNDARY-VALUE PROBLEM: OSCILLATING
CYLINDRICAL MEDIUM

In the same way that the oscillating plane interface relates to the
oscillating half space medium, also the oscillating cylinder discussed
above can be related to a cylindrical boundary at rest with an
oscillating medium within. These problems are dubbed as the Fizeau
experiment configuration because the vessel containing the moving
medium is at rest relative to the experimenter.
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The incident wave is given by (14) and the tangential fields
evaluated at the cylinder rim r = 	, are given in terms cylindrical
functions

Eex = x̂Eexe
iθex = x̂EexΣmime−iωextJm(Kex)eimϕ

r̂ ×Hex = x̂EexΣmim+1J ′m(Kex)eimϕ/ζ(1), Kex = kex	
(93)

Inasmuch as the oscillating medium inside the cylinder is
harmonically affecting the boundary conditions, we assume a scattered
wave containing all the sidebands, similarly to (52). The tangential
fields at the cylinder rim r = 	, in terms of cylindrical functions
corresponding to outgoing waves, are given by

Esc = x̂Σnme−iωntimEsc;nmHm(Ksc;n)eimϕ

r̂×Hsc = x̂Σnme−iωntim+1Esc;nm∂Ksc;nHm(Ksc;n)eimϕ/ζ(1) (94)

ωn = ωex−nΩ, ksc;n/ωn = (µ(1)ε(1))1/2 = 1/v(1)
ph , Ksc;n = ksc;n	

In the interior medium at rest we define a reference system
ρ = ρ(ζ, η) = ρ(ρ, ψ), in Cartesian, and cylindrical coordinates,
respectively. and consider plane waves propagating in an arbitrary
direction α. Similarly to (60), we assume a spectrum of sidebands,
yielding

Eα = x̂Eα, Hα = κ̂α × x̂Hα = κ̂α × x̂Eα/ζ(2), Eα = ΣµEαµeiθαµ

θαµ = καµ · ρ− ωµt = κµρCψ−α − ωµt = κµζζ + κµηη − ωµt (95)

ωµ = ωex − µΩ, κµ/ωµ = (µ(2)ε(2))1/2 = 1/v(2)
ph

Using (46) and η = y we now find the phase θαµ (95) at r = 0.
To obtain the analog of (61) all we have to do is to interchange z0 of
(61) with ζ0, thusly

Eα0 = ΣµEαµeiθαµ0 , θαµ0 = κµζ0CαSΩt − ωµt
eiθαµ0 = ΣσJσ(κµζ0Cα)e−iωnt, ωn = ωex − nΩ, n = µ+ σ

(96)

The frequencies at the boundary must be the same in the external
and internal regimes, like the constraint we had in (42), (52), (61).
Here (94), (96) prescribe the constraint δn;µ+σ, hence we get, similarly
to (62)

Eα0 = ΣnE′αne
−iωnt, E′αn = ΣµEαµJn−µ(κµζ0Cα) (97)
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and the analog of (63), (64) follows

EαT = x̂EαT = x̂ΣnEαnT e−iωnt, EαnT =ΣnE′αne
iθαnT (1−β(2)

0 CΩtCα)

θαnT = καnT · 	r̂ − ωnt = θαnR − β(2)
0 Kn(A(2) − 1)CΩtCαCϕ

Kn = κn	, θαnR = καn · 	r̂ − ωnt = KnCϕ−α−ωnt (98)

Bαn = Cα(iKn(A(2) − 1)Cϕ+1)/2, EαnT = E′αne
iKnCϕ−α − β(2)

0

·
(
Bα;n−1E

′
α;n−1e

iKn−1Cϕ−α +Bα;n+1E
′
α;n+1e

iKn+1Cϕ−α
)

The analogs of (65)–(69) follow in an obvious manner, and will
not be shown in detail. Suffice it to say that in all these formulas
coefficients symbolized by a will now be replaced by a corresponding
A. The field in the internal domain will be constructed, similarly
to (70), as a superposition of plane waves, however, the integration
contour is now chosen to represent the nonsingular Bessel functions

EinT = x̂Σne−iωnt
1
2π

∫
EαnTdα= x̂Σnme−iωt

1
2π

∫
eiKnCϕ−αA′nme

imαdα

= x̂Σnme−iωntimA′nmJm(Kn)eimϕ,
∫

=
∫ α=2π

α=0
(99)

The analog of (71) now reads

EinT=x̂Σnme−iωntimeimϕΦnm, Λn = Kn(A(2) − 1)/8

Φnm=AnmJm−β0
(2)Σν=n±1;µ=m±1AνµJm/4 (100)

+β(1)
0 Λn(Σν=n±1;µ=m+1±1AνµJm+1−Σν=n±1;µ=m−1±1AνµJm−1)

Jm=Jm(Kn)

and the analog of (75) follows in an obvious manner.
Hence this outline demonstrates how the boundary-value problem

for the cylindrical Fizeau experiment configuration is solved, along the
lines of the corresponding boundary-value problem of the oscillating
cylinder.

10. CONCLUDING REMARKS

The feasibility of deriving a consistent model for scattering by time-
varying objects and media has been investigated. A quasi Lorentz
transformation for time-varying coordinates has been introduced.

The model used here is relativistically exact to the first order
in v/c and takes into account the Doppler frequency shifts and the
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change of the propagation velocity (phase velocity) in moving media,
also called the Fresnel drag effect. The boundary conditions are based
on the Lorentz force formulas, which to the first order in v/c agree
with the Special Relativity field transformations.

The geometry chosen for plane interfaces and circular cylinders,
as well as the harmonic oscillations and its direction of motion are
conducive to less complicated problems, thus bringing out the essentials
of this class of problems.

The most obvious effect is the creation of sidebands, due to the
modulation produced by the motion. It is hoped that such multi-
spectral scattering problems will lead to improved remote sensing
techniques. Typically, the solutions involve interactions between
scattering coefficients that are usually absent in velocity-independent
problems.

The present treatment is analytic. It is hoped to have in the future
simulations that will graphically reveal the effects of motion in specific
scattering problems.
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