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Abstract—In this paper a method is introduced and applied to
calculate the effects of an external field on a circular symmetric
microstrip transmission line. The primary/secondary field idea is used
for this purpose. The primary field is determined analytically for
the cases of normal TMz and TEz incidence. The secondary field
is determined using multi-conductor transmission line theory. The
method is applied to a special structure and some useful results are
obtained.
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1. INTRODUCTION

Circular Symmetric Multi-conductor Microstrip Line (CSMSL) is a
recently introduced multi-conductor structure useful for a variety
of signal transmission tasks [1–3], especially in high frequency and
microwave IC packaging, in which large number of high frequency
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connections and routings are to be made throughout the package. The
effect of external field exposure on terminal voltages and currents of
a transmission line is a phenomenon that should be well understood
before making any judgment over EMC/EMI properties of the line.
This turns out to be critical in high frequency integrated circuit design
due to the importance of prediction and control of EMI between
neighboring components.

 

(a) (b) 

Figure 1. A CSMSL structure (a) The cross section (b) A three
dimensional view.

Fig. 1 shows the so called CSMSL with N strips symmetrically
surrounding the dielectric layer and a metallic core with a radius of
“a”. The z-axis is assumed to lay along the axis of the metallic
core. Suppose that there are N comparatively thin strips surrounding
the structure and each strip is located in the domain φi − θi < φ <
φi + θi (i = 1, 2, . . . , N) on a cylinder with radius of “b”. The space
between the core and strips is occupied with a dielectric material
with relative electric permittivity of εr. The strips and their relative
currents and voltages are numbered (indexed) from the one at φ = 0
in a counter clockwise fashion.

To develop a prime understanding about EMI in the CSMSL
structure, a method first developed by Bernardi [4] earlier in 1990
is used. The total electric and magnetic field is divided into a primary
and a secondary part. The primary part belongs to the field solution
in the absence of metal strips and the secondary part belongs to the
Quasi-TEM mode in the multi-conductor transmission line. In this
paper, Bernardi’s method is used for CSMSL structures. First the
strips are removed from the CSMSL and a uniform TMz and TEz plane
wave is exposed to determine the primary field. Then a transmission
line formulation with distributed excitation sources is developed and
solved. Finally a comprehensive example is presented.
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2. DETERMINATION OF PRIMARY FIELD

This section deals with calculation of the so called “primary field”. A
far field plane wave is applied to a long CSMSL structure in which the
metal strips are not present. For the sake of simplicity, it is assumed
that the incident wave propagates towards positive x direction. Two
different polarizations are possible, one the TMz and other the TEz.
All relations are expressed in the frequency domain and our notion is
compatible to that of [5].

2.1. TMz Primary Field

Here a normally incident field is assumed such that its electric
component is aligned in the +z direction. Mathematically speaking
this field is expressed as


Ei = E0e
−jk0xx̂ = E0

( ∞∑
m=−∞

j−mJm(k0ρ)ejmφ

)
ẑ (1)
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in which k0 = ω
√
µ0ε0 and η0 =

√
µ0/ε0 are the propagation

coefficient and wave impedance in the free space. It is assumed that a
penetrating field inside the dielectric layer and a scattered field outside
the structure form up. These are denoted by the letters “d” and “s” for
dielectric and scattered, respectively. Each of these components can
be expressed using the electric and magnetic field potential vectors, as
follows
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Primes in superscripts represent derivative of functions with respect to
their arguments.

The unknown coefficients am, bm and cm in (3)–(6) are to be
obtained such that boundary conditions for electric and magnetic fields
are satisfied. Boundary conditions at ρ = a and ρ = b are respectively
as follows

Ed
z = 0 (7)

and

Ei
z + Es

z = Ed
z (8a)

H i
φ +Hs

φ = Hd
φ (8b)

Using (1)–(8), the following relations are obtained.
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Relations in (9) form a linear set of algebraic equations to which a
non-trivial solution is the answer to our primary field problem.

2.2. TEz Primary Field Calculation

Here a normally incident field is assumed such that its electric
component is aligned in the −y direction. Mathematically speaking
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this is expressed as
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Here scattered and penetrating components of the electric field can be
expressed as
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The unknown coefficients am, bm and cm in (12)–(15) are to be
obtained such that boundary conditions for electric and magnetic fields
are satisfied. Boundary conditions at ρ = a and ρ = b are respectively
as follows

Ed
φ = 0 (16)

and

H i
z +Hs

z = Hd
z (17a)
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Ei
φ + Es

φ = Ed
φ (17b)

The following relations are obtained, again from (10)–(17).
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Here again, relations in (18) form a linear set of algebraic equations to
which a nontrivial solution is the answer to our primary field problem.

3. TRANSMISSION LINE EQUATIONS AND THEIR
SOLUTIONS

In this section, exposed multi-conductor transmission line equations
and their solution are presented in frequency domain. Once the
frequency domain voltage and currents obtained, FFT can be used
to find the time domain responses.

Incorporating the definitions of capacitance and inductance
matrices, using some algebraic manipulation and rewriting the
resultant equations in matrix form, the so called “multi conductor
transmission line equations with distributed forcing functions” are
obtained as [6]

∂

∂z
V (ω, z) + jωLI(ω, z) = V F (ω) (19)

∂

∂z
I(ω, z) + jωCV (ω, z) = IF (ω) (20)

in which V and I are N × 1 voltage and current vectors, respectively
and C and L are capacitance and inductance matrices of the lines,
respectively that can be obtained using a similar method to that of [1]
or [7] for CSMSL structure. Also, V F and IF are N × 1 distributed
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forcing sources and regarding to [6] can be obtained as follows.

V F (ω) = jωµ0




...
ρ=b∫
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
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Defining the state vector X = [V I]T and combining (19) and (20),
we get

∂

∂z
X(ω, z) + AX(ω, z) =

[
V F (ω)
IF (ω)

]
(22)

in which

A =

(
0 jωL

jωC 0

)
(23)

The solution of (22) can be written as

X(ω, z) = e−Az


X(ω, 0) +

z∫
0

eAz′
[

V F (ω)
IF (ω)

]
dz′


 (24)

in which

e∓Az = T




e∓λ1z 0 · · · 0 0
0 e∓λ2z · · · 0 0
...

...
. . .

...
...

0 0 · · · e∓λN−1z 0
0 0 · · · 0 e∓λNz




T−1 (25)

In (25) T is a N ×N matrix formed by putting the eigen-vectors of A
together in columns and λ1, λ2, λN represent eigen-values of A. The
solution (24) comes like[

V (ω, z)
I(ω, z)

]
=

[
P (z) Q(z)
R(z) S(z)

] ([
V (ω, 0)
I(ω, 0)

]
+

[
F V (ω, z)
F I(ω, z)

])
(26)
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in which[
F V (ω, z)
F I(ω, z)

]

= T




(e+λ1z−1)/λ1 0 · · · 0 0

0 (e+λ2z−1)/λ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · (e+λN−1z−1)/λN−1 0

0 0 · · · 0 (e+λN z−1)/λN




T−1
[

V F (ω)
IF (ω)

]
(27)

and [
P (z) Q(z)
R(z) S(z)

]
= e−Az (28)

Also, the terminal conditions at z = 0 and z = d, are

V (ω, 0) = V L − ZLI(ω, 0) (29a)
V (ω, d) = V R + ZRI(ω, d) (29b)

in which sub-indices L and R stand for ‘Left End’ and ‘Right End’,
respectively. Using (26) at z = d and (29), one can obtain the left end
and the right end terminals’ voltages and currents.

I(ω, 0) = (ZR(S(d) − R(d)ZL) + P (d)ZL − Q(d))−1

·((P (d) − ZRR(d))(V L + F V (ω, d))
−V R + (Q(d) − ZRS(d))F I(ω, d)) (30a)

V (ω, 0) = V L − ZLI(ω, 0) (30b)

Once this is achieved, (26) is applicable to calculate the voltage and
current vectors at any point along the z-axis

4. EXAMPLES AND RESULTS

As an example a CSMSL with four equally width strips covering 20% of
the surface of a dielectric rod, which is 2b = 3.0 mm thick in diameter
and contains an a = 1.0 mm metallic core, is exposed to both TMz

and TEz polarizations of a plane wave radiation with an electric field
strength of 1.0 V/m and in the direction of +x. Relative dielectric
constant of the line or εr, is either 2.54 or 10.0. It is assumed that
termination source voltage vectors, i.e., V L and V R, are zero and
that both left and right end of each line is connected to a 50 Ω load.
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The excitation is assumed to occur at a frequency of 3.0 GHz and the
line is d = 20 cm long (twice the wavelength in free space). Primary
field components and force functions are calculated using a program
written in Maple. Then a simple Matlab program is used to calculate
the resulting termination voltage and current vectors.

Table 1. The distributed force voltage and current functions of
CSMSL with εr = 2.54 and normal incidence.

TMz TEzεr=2.54 
|VF| [mV] <VF [deg.] |IF| [µA] <IF [deg.] |VF| [mV] <VF [deg.] |IF| [µA] <IF [deg.] 

Line 1 107.24 3.84 0 - 0 - 0 - 
Line 2 125.28 28.20 0 - 0 - 818.48 89.70 
Line 3 154.12 46.19 0 - 0 - 0 - 
Line 4 125.28 28.20 0 - 0 - 818.48 -90.30 

Table 2. The distributed force voltage and current functions of
CSMSL with εr = 10.0 and normal incidence.

TMz TEzεr=10.0 
|VF| [mV] <VF [deg.] |IF| [µA] <IF [deg.] |VF| [mV] <VF [deg.] |IF| [µA] <IF [deg.] 

Line 1 107.54 3.85 0 - 0 - 0 - 
Line 2 125.61 28.19 0 - 0 - 796.64 89.63 
Line 3 154.50 46.18 0 - 0 - 0 - 
Line 4 125.61 28.19 0 - 0 - 796.64 -90.37 

Tables 1 and 2 show the distributed force voltage and current
functions for εr = 2.54 and εr = 10.0, respectively. Figs. 2 and 3
depict the magnitude of voltage and current along the CSMSL length,
for εr = 2.54 and εr = 10.0, respectively. Also, Fig. 4 depicts the
power delivered to the loads on the right or left end of CSMSL versus
load values again for both εr = 2.54 and εr = 10.0.

From Figs. 2–4 and Tables 1–2, it is understood that in the TEz

normal incidence only side strips No. 2 and 4 are excited, while in the
TMz normal incidence all four strips are excited and excitation in the
TMz polarization is much stronger than that of in the TEz polarization.
Also, the power(s) delivered to the line(s) behind the metallic core is
smaller than that of other lines. This is a special property of circulant
structures, which is not observed in planar ones. Also, as seen in
Fig. 4, one can state that the powers delivered to the loads become
maximum corresponding to a certain values of the loads and these
powers decrease as the permittivity of the dielectric increases. So, one
can conclude that it is better to choose the permittivity of the substrate
as large as possible.
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Figure 2. Magnitude of voltage and current along the CSMSL length
with 50 Ω loads, εr = 2.54 and normal incidence a) |V | for TMz b) |V |
for TEz c) |I| for TMz d) |I| for TEz.

Figure 3. Magnitude of voltage and current along the CSMSL length
with 50 Ω loads, εr = 10.0 and normal incidence a) |V | for TMz b) |V |
for TEz c) |I| for TMz d) |I| for TEz.
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Figure 4. The power delivered to the loads of right or left end
of CSMSL exposed by normal incidence, versus the load values a)
εr = 2.54 and TMz b) εr = 2.54 and TEz c) εr = 10.0 and TMz

d) εr = 10.0 and TEz.

5. CONCLUSION

In this paper a primary/secondary field regime is used to calculate the
effect of external field illumination on a Circulant Symmetric Multi-
conductor Microstrip Line or CSMSL structure. For both possible
TEz and TMz polarizations, primary field components are calculated
analytically. Then the net effect of excitation on line voltage and
current is obtained. The method is examined to obtain the effect of
external illumination on a four strip CSMSL. It has been concluded
that the powers delivered to the line(s) behind or in front of the metallic
core are negligible in the case of TEz incidence and the power delivered
to the line(s) behind the metallic core is smaller than that of the other
lines in both polarizations. Also, the delivered powers decrease as
the permittivity of the dielectric rise. Although the method has been
applied to a CSMSL, it is worthy of mention that symmetry of the
strips is not a necessary or restricting condition to the applicability of
the method.
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