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Abstract—Optimization and parameter estimation techniques have
been employed for many years as a method of improving and exploring
designs in numerous areas. As the designs of antennas and antenna
arrays become more complex in nature, optimization techniques such
as Bayesian estimation or genetic algorithms have become more
necessary in the design process. These techniques provide methods
for not only the design process, but also for operation simulations
such as element failure corrections as well. This paper will deal
with Bayesian optimization techniques for antenna and antenna array
design as an alternative to other techniques. Through the use of
Bayesian inference techniques, probability and information theory can
be applied to a design problem to improve the operation within a range
of specifications. Examples provided show that how this method allows
for the examination of an entire parameter space of a linear array so
that the best fitting solutions can be quickly and efficiently examined
and improvements can be implemented.
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1. INTRODUCTION

In the course antenna and antenna array design, often many
parameters and variables need to be taken into account to achieve
proper operation of the design in order to meet the design criteria.
In many antenna design methodologies simplification is achieved by
holding certain sets of parameters constant, such as the element
spacing in an array, so that other parameters, such as the element
phasing and amplitudes, may be determined independently. In the
past, analytic approximation techniques, such as Fourier or Woodward-
Lawson synthesis, have been used to assist in the design. These
methods, however, can be lacking in the flexibility that is often required
in many cases. Conversely, trying to fully explore a design with many
parameters becomes difficult due to computational limitations once the
number of parameters becomes large. As more parameters are added to
a design, simplification techniques used to find an answer can become
a huge disadvantage. This leads to designs that can be larger, more
costly, and less efficient.

One approach that many researchers have explored is the use of
genetic algorithms to search for the best fitting parameters of a design.
These methods attempt to use the principles of generic evolution to try
to “evolve” the parameters to find the best possible design parameters.
This method is not based on any mathematical theory and employs
decisions based on anecdotal observations. While there has been much
improvement on the technique recently, there is still a great deal
left unknown about it. Bayesian parameter estimation attempts to
accomplish many of the same goals as genetic algorithms, while trying
to base all the decisions in the optimization process on probability
and information theory. A parallel will be drawn between generic and
Bayesian techniques to compare and contrast their implementation.
The Bayesian estimation technique will be demonstrated to have the
ability to computationally explore a much wider range of parameters,
in a faster and more complete manner, than would be possible using
traditional and other alternative algorithms. In addition to detailing
the basic techniques used in Bayesian estimation, a few improvements
that enable faster convergence, such as the use of a space-filling curve
and simulated annealing will be explained.
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2. PARAMETER ESTIMATION FUNDAMENTALS

The goal of any estimation or optimization technique is to formulate an
efficient method to navigate through a large parameter space in order
to find the best set of parameters. In most techniques this involves
either an iterative approach of discretely examining the parameters
or a “random walk” through the parameters as a way to explore
the parameter space. Random walk methods have been employed in
statistics and information theory for many years as a way to effectively
sample or explore unknown distribution spaces. If done correctly the
“sampled” space will be able to represent the entire parameter space
with only its limited samples. In genetic algorithms this sampling is
achieved by combining the “genes” of two selected parents and then
performing a “mutation”. The hope is that by picking two parent
parameter sets who each have fairly good results, a combination of
them will achieve even better results. A random “mutation” can be
included that allows for a certain degree of randomness to be included.
The actual implementation of this can vary many different ways. In
Bayesian estimation a similar process will be done, but instead of using
evolutionary metaphors to randomly sample, a sampling technique
chosen from information theory will be used to move around our
space. As specified by the tenets of information theory, to sample
correctly there must be a sufficient number of independent samples
from the parameter space. The different techniques to sample from the
parameter space have varying degrees of speed to gather independent
samples. As might be noticed, what is being performed is a form of
Markov chain Monte Carlo (MCMC) simulation. The chains are being
assembled through the use of the random walk samples. Older random
walk techniques such as Metropolis or Gibbs [1] require many iterations
of sampling before a new sample can be considered independent. So
much care has to be given to choosing an efficient method of sampling.
Genetic algorithms can also share this same problem even though it
may not be so formally addressed.

Once a new set of parameters has been chosen, the next step
is to evaluate the “fitness” of the parameter set. In the case of
designing antennas, the fitness is related to how closely the parameter
set allows the antenna to perform as was specified in the design criteria.
This, perhaps, could be how close it comes to matching a specific
radiation pattern or perhaps shows certain sidelobe levels. In the case
of Bayesian estimation, the evaluation of the parameter set will give a
number related to the probability that the parameters are the correct
ones. By using related probability, the user will have at the end some
degree of certainty with the results. This is an important advantage
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over genetic algorithms that will simply provide an answer with no
measure of confidence in the assumption that the returned data is the
best set possible.

In both techniques these two steps are done in parallel with many
separate and independent sets performed simultaneously. This allows
for both a more complete and a faster exploration of the parameter
space and also for an easily parallelizable code. After the evaluation
of the various sets has taken place, a final step is used to allow for
better use of the number of sets available. In genetic algorithms this
becomes a “survival” step in which many, if not all, of the “weaker” or
less fit sets are thrown away in favor of repeating some of the stronger
parameter sets. There are many and varied implementations of this in
genetic algorithms, which can lead to the loss in the efficiency gained
by this step, or even prevent the technique from converging if not
done correctly. In the Bayesian techniques, this can be achieved by
importance or weighted sampling of the various sets available. This
type of resampling effectively allows the system to throw away some of
the least likely sets using its own probability to determine if it stays. By
allowing some of the sets with a low probability to remain, the system
is allowed to explore a greater portion of the space. The sets that are
replaced by ones with a higher probability then allow the system to
focus more of its computations on areas that have a greater likelihood
of producing high probability sets. The whole process is then repeated
until some set final conditions are met.

It should be made clear that genetic algorithms often share many
of the same concepts as Bayesian parameter estimation in that both are
in essence Markov chain Monte Carlo methods as has been explained
in [1]. However, genetic algorithms often make choices that are not
based in any mathematical theory, but rather in broad mathematic
metaphors to evolutionary processes. While Bayesian methods are
based on information and sampling theory, as well as statistical
methods.

3. PROGRAM ORGANIZATION

This section will detail one possible implementation of the Bayesian
parameter estimation technique as well as some improvements to
possible problems encountered in general optimization techniques. The
technique will be similar to the order presented in the above section
and is shown in Table 2.

The first step shown in the process is to initialize all the
independent chains. During each iteration, the separate chains will
move around the parameter space independent from one another. The
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Table 1. Comparison of genetic and Bayesian techniques.

Step Genetic Algorithms Bayesian Estimation 
Choosing of a parameter set 

to be evaluated 
Combining the genes  of 
selected parents  then a 
possible random mutation 

Use of an efficient sampling 
technique from Monte Carlo 

methods 
Evaluation of Parameter Set Various methods, up to 

programmer 
Use of Bayesian techniques 

to establish a related 
probability 

Resample Parameter Set Various methods related 
some survivability  of the 

fittest 

Use of weighted or 
importance sampling 

Exit Process A parameter set passes below 
some arbitrarily set 

 error level 

The criteria for sampling 
theory has been met 

Table 2. Program psuedo-code.

Step 

1. Choose random starting points for      
n-number of independent chains 

2. Start simulated annealing loop 
with t=0 

3. Use slice sampling to move from 
old parameter set to new set 

4. Evaluate probabilities for all new 
parameter sets 

5. Resample parameter sets 
6. Increase annealing temperature 

7. Repeat until annealing complete 
8. Use all collected samples to 

characterize parameter space and 
determine best answer  

parameter

use of many separate chains allows the technique to simultaneously
explore a greater area of the parameter space leading to faster
convergence. Initially, each chain will be randomly assigned a position
to start from.

The second step is the main loop from which the process will
iterate across. In this particular implementation, a simulated annealing
process is introduced. This process, detailed in Section 4, allows the
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underlying probability distribution for the parameter space to be slowly
introduced. This allows for a more complete sampling of the entire
space without having to increase the number of samples.

The movement about the parameter space for each chain will be
determined by the use of slice sampling [2]. In order to adequately
characterize the entire parameter space, many independent samples
are required. Slice sampling was developed by Neal as a highly
efficient method to generate independent samples from a parameter
space. It allows for independent samples to be generated with
an order of magnitude fewer iterations than random-walk methods
such as Metropolis or Gibbs. This efficiency actually increases as
compared to Metropolis or Gibbs as the dimensionality is increased. If
applied correctly in the ideal situation, every sample from the slice
method would be independent. Once an independent sample has
been generated from the parameter space, its characteristics will be
compared with the ideal solution.

Slice sampling works by allowing the sampling routine to
adaptively move around the area underneath the distribution (the area
of interest), this is achieved by alternately slicing along the probability
and the parameters. In other words, the sampler first chooses a target
probability from the uniform space between 0 and the probability at
the current parameter set as is represented by the vertical dotted
line in Figure 1. The sampler then attempts to find a new point
in the parameter space above that target probability. This is done
by expanding outward from the original parameter set until a slice is
created that all points within are of at least the new target probability
shown by the horizontal dashed line in Figure 1. The sampler then
chooses a point randomly from this slice, which then becomes the new
parameter set.

After slice sampling has been completed, new sample points have
been generated. These new points must be evaluated for their related
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Figure 1. Graphical representation of slice sampling in one dimension.
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probabilities. This is accomplished in this implementation via an
energy function. This energy is related to the probability that its
current position in the parameter space correctly allows the model to
fit the data or specifications exactly. The range for this energy function
is from −∞ → +∞ where parameter set that perfectly matches the
data or desired results will return a −∞. This energy is defined as,

E = log
[∑

D2 +
∑

M2 − 2DM
]

(1)

where D is the set of data points (ideal pattern, etc.) and M is the set
of points that the model yields for the Markov chains current position
in the parameter space. It should be noted that there is no requirement
for the data points or the model points to be a real number, in many
cases they can be complex. The final energy, however, will be a real
number so it becomes important to understand what is happening with
complex data.

The next step is to resample the parameter set in order to reduce
the randomness and increase the effectiveness of the samples. In this
case there is a collection of parameter sets each with an associated
probability. Importance of sampling allows some of the chains with
sets at a low probability to have their location replaced with those
sets of higher probability. The replacement points are picked from the
original collection of parameter sets in such a way that a point with
a high probability of being the correct solution has a high probability
of being picked as a replacement point. This process of importance
sampling reduces the randomness of the sampled points and speeds
convergence to the most probable solution.

Once the chains have been resampled, the “temperature” for the
annealing process is increased slightly. This is an adaptive procedure
that increases the annealing temperature based upon the current set of
samples. This adaptive system allows more iterations while the chains
are wandering around the parameter space and speeds up when they
begin to converge. At this point the whole process starts over until full
temperature has been reached.

When the process has completed the technique should return
all of the sample points collected during the annealing process.
If implemented correctly these samples should be sufficient in
characterizing the entire probability space for the parameter space.
If this is possible to be done, then simple statistical methods can be
used such as taking mean or median in each parameter to find the set
with the highest probability.
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4. SIMULATED ANNEALING

In order to enhance the techniques ability to fully explore the
parameter space the process of simulated annealing is utilized. This
also has the added benefit of speeding up convergence for the technique
as it allows for more effective sampling. This process is analogous to
annealing metal, which is the slow cooling of a forged metal piece in
order to make it stronger. The goal is to allow the Markov chains to
freely explore the parameter space, without regard to local extremes,
during the beginning of the simulation, yet have the majority of the
chains located at the most probable solution(s) position(s) by the
end of the simulation. In order to ensure full exploration, simulated
annealing modifies the probability distribution, P , by scaling the
returned energy function, E

P = Eλ (2)

The power factor, λ, is a real number with a range [0,1] that is given
by:

λ = λold +

(
Rc
σp

)
(3)

where Rc is a user-defined constant with a magnitude of much less than
one, and σp is the standard deviation of the energies of all the Markov
chains.

At the beginning of the processes (akin to a hot metal), λ is
equal to zero and the probability distribution is unity throughout. As
the simulation progresses, σp becomes smaller and λ becomes larger
at a rate defined by Rc, slowly allowing the underlying probability
distribution to emerge. Once λ has reached or exceeded unity, the
simulation ends. This helps prevent chains from getting stuck in
local extremes. A graphical representation of this process is shown
in Figure 2.
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Figure 2. Three-dimensional plot of the annealing process.
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5. SPACE-FILLING CURVE

A major problem encountered in implementing slice sampling in
situations with high-dimensionality parameter sets, is that the slice-
sampling routine will break down as it attempts to slice along all the
dimensions. When slicing is performed on high dimensional problems,
certain assumptions and the need for detailed balance, which are
required for the slice sampling to be effective, will begin to fail. To
solve this problem, a Hilbert curve (Fig. 3) will be used to map
the coordinates from each dimension into a single dimension. This
process of mapping from multiple dimensions to a single dimension
is non-trivial, as there is no algebraic form relating the two. Butz
[3], however, introduced an algorithm in which the coordinates are
converted into binary numbers, and a series of binary operations are
performed to convert from a single, one-dimensional coordinate into
multiple coordinates. Lawder [4] expanded on this algorithm by noting
that a conversion from binary to grey-code is used in one step. Lawder
also presented the algorithm to convert back from multiple dimensions
into one dimension. The implementation presented in [3, 4] are used in
her to perform the conversion between the 1-D and N -D spaces.
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Figure 3. The space filling curve in (a) a two-dimensional parameter
space and (b) a three-dimensional parameter space.

By performing the slice sampling in one dimension along the
space-filling curve, the need for detailed balance and other essential
assumptions required, will remain intact. This allows for the use of
slice sampling and will permit the program to become more effective.
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6. OBJECT-ORIENTED IMPLEMENTATION

A severe limitation to using a binary implementation of the Hilbert
curve is the number of bits that can be stored in a variable. On
most personal computers, the maximum number of bits that can be
stored in a single variable is 32. However, given a system with 10
parameters and a 10th order Hilbert curve, 100 bits would need to be
stored to represent each position on the one-dimensional curve. One
could use an array of data to store this information, but indexing each
bit position would be unwieldy and would require a complicated bit-
masking algorithm.

Use of an object-oriented programming language, such as C++,
easily solves this problem by defining a data type that is an array of
single bits. This “BitArray” class can insert or retrieve a single bit at
any index in the array. It has built-in functions that can expand or
contract its size as needed, add another “BitArray” object to itself, or
perform a two’s-complement conversion on itself. One can also instance
an array of BitArray objects, so that all the information from every
dimension in the parameter space can be stored in a single variable
array.

Another advantage to using an object-oriented method is that
each Markov chain can be instanced separately, without dependence
on other Markov chains. Each Markov chain object contains its current
position in both the one-dimensional, as well as the multi-dimensional
parameter space. Each Markov chain object also carries with it a copy
of the target data so that each can independently determine its own
probability. Each chain also has the ability to slice-sample itself, in
that it needs no separate code to direct it to the next point. Using
this object-oriented method minimizes the looping and computations
needed by the overall search engine.

7. PARALLEL IMPLEMENTATION

Since each Markov chain is independent from every other chain,
parallelization becomes simply a matter of assigning a number of chains
to each processor. Using the popular message passing interface, or
MPI, method of parallel processing [5], all of the processors will send
their value of the standard deviation of the energy for their chains, and
processor 0 will receive them, determine the largest standard deviation,
and compute the next value of λ. Processor 0 will then broadcast the
value of λ to be used in the slice-sampling routine, to all of the other
processors. Once λ has achieved a value of unity, all processors will
send their chain’s position to processor 0 for output to file.
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8. RESULTS

In order to investigate the effectiveness of the technique in common
situations, a test was proposed by Haupt and Haupt in [6] to run
the simulation for a highly undulating function. Since most real life
applications of Bayesian and GA techniques require evaluation of often
very complex “cost” functions, this test was meant as a basis for the
evaluation. The function was defined as:

f(x, y) = x sin(4x) + 1.1y sin(y) for 0 ≤ x, y ≤ 10 (4)
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Figure 4. Plot of the function in (4).

Due to the complex nature of this function, as can be seen in
Fig. 4, determining a global minimum for the function can be difficult
due to the high number of local minima, a characteristic common in
many real world situations. In [6], the authors choose to let their GA
simulation run using various population sizes (analogous to the number
of chains here) and stop when a point was found to have a value of
less that −17, where the global minimum for the specified range is
−18.5547 at x = 9.0390, y = 8.6682.

When the Bayesian technique is run for this case over a variety of
chain sizes, the data in Fig. 5 shows how the convergence rate is tied
to the number of chains. As could be expected after a certain point,
increasing number of chains does little to improve the convergence rate.
For this case a chain size of 80 has an optimal balance of convergence
rate to simulation time. As could be inferred, the smaller number of
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Figure 5. Number of iterations needed vs number of chains.

iterations required for a simulation the fewer calls to the cost/energy
function, while the larger the chain size the more calls would have to be
made. So by determining the “Sweet spot” of simulation parameters,
the total time to simulate can be reduced. Examinations between
the number of cost/energy function calls between Bayesian and GA
techniques for optimal simulation settings shows a comparable number
of cost/energy function calls in the order of 200 to 400 for both
techniques.

As a second test to check the operation of the technique, the
simulation was run with a large number of chains over a larger number
of iterations. The sampling data was then gathered to make sure the
system was indeed fully exploring the parameter space. Figure 6 shows
histograms for samples along the X and Y axes for the undulating
function. The histograms show that the simulation was able to
effectively locate and sample from each of the minima areas and
successfully locate the deeper ones by taking more samples.

Preliminary results show that this method is quite effective for
determining the required element amplitudes needed to reproduce a
variety of radiation patterns in linear arrays. One must take care,
however, in the definition of the model as multi-modal results can
occur. For the following antenna array examples, the following model
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Figure 6. Histrogram of sample locations.
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Figure 7. Target pattern and parameter estimated pattern.

is used.

F (θ) =
N∑
n=1

ane
j(n−1)ψ (5)

with
ψ = kd cos(θ) (6)

where an is the complex element excitation, k is the wavenumber, and
d is the inter-element spacing.

Figure 7 shows the radiation pattern computed for the computed
element excitations when given the radiation pattern for a 5-element
array with uniform excitation of an = 0.5. Very good agreement is
observed between the estimated pattern and the target pattern. 50
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Figure 8. Target pattern and parameter estimated pattern for a 7-
element binomial and Fourier synthesized array.

chains were used and the simulation was allowed to automatically
anneal.

Figure 8 shows the radiation pattern for the computed element
excitations when given the radiation pattern for a 7-element binomial
array. Again, it is observed that the estimated values closely match the
target data. While Figure 8 also shows the radiation pattern for the
computed element excitations when the target data was a 7 element
Fourier synthesized array with a beam-width of 20 degrees. Once again
a very close match is observed across the main lobe. However, some
degradation can be seen in the major sidelobe regions. Again 50 chains
were used and the simulation was allowed to automatically anneal.

9. CONCLUSIONS

Through the use of Bayesian techniques, the entire parameter space
of even dimensional problems can be characterized and analyzed.
Histograms of the samples taken in the simulation show that all the
peaks of the energy function can be located and utilized. The Bayesian
technique allows for the elegant and efficient estimation optimization
of many design problems. Improvements were detailed that allowed
the technique to become more efficient and avoid possible problems.
Results were also offered that illustrated the ease and versatility of the
technique and how it compares to genetic algorithms.
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