
Progress In Electromagnetics Research, PIER 51, 65–82, 2005

METAMATERIALS AND DEPOLARIZATION FACTORS

A. Sihvola

Electromagnetics Laboratory
Helsinki University of Technology
P.O. Box 3000, FIN–02015 HUT, Finland

Abstract—Depolarization factors of scatterers within anisotropic
media are functions of not only the shape of the inclusion but also
of the degree of anisotropy of the environment. In this contribution
the depolarization factors are studied for anisotropic metamaterials. In
such case, qualitatively new phenomena appear because the effective
axial ratio of the scatterers, which determines the depolarization
factors, may become complex. The negative real part of the
depolatization factors is interpreted as “repolarization.” The effect
of the various parameters on the depolarization factors and effective
dielectric parameters are analyzed and discussed for both three- and
two-dimensional mixtures, with emphasis on the dissipative character
of the homogenized metamaterials.
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1. INTRODUCTION

It is perhaps not an exaggeration to note that the electromagnetics of
wave–material interaction is experiencing a renaissance period. It is
true that from the times of Faraday and Maxwell, matter has always
been essential in the way electric and magnetic energy is concentrated
and guided, and also it is fair to observe the surge of bianisotropics
research in electromagnetics of the 1960’s and 70’s. However, the
present time of entering into the new century is a period when we
witness so much new research and development in our field that
some may say that there is a paradigm shift in electromagnetics.
Possibilities that new nanotechnologies offer are perhaps one of the
driving forces in this process. Certainly one can argue and discuss how
profound the changes in the long run really are but nevertheless these
observations can serve as a motivation to study metamaterials from
the homogenization and mixing point of view, as will be done in the
present paper.

1.1. Metamaterials and Homogenization

The special property of metamaterials, their negative parameter values
both for permittivity and permeability, does not cause in principle
any particular troubles for someone interested in and working on
homogenization of mixtures.† Very special effects are certainly to be
expected when waves reflect and refract from layers of such media [6],
but in the modeling of these materials, classical mixing formulas can
be applied to negative parameter values to a surprisingly great extent.
† Here the term “metamaterial” is used to refer to media which are characterized by
the simultaneously negative values for ε and µ and which have the potential to support
backward waves. “Left-handed medium” is a more problematic term because of its
association to handedness of the material structure (chirality) [1]. Rather, “metamaterial”
is here synonymously used with “Veselago medium.” The article by Veselago analyzing
such media [2] appeared in 1967, and thoughts on such possibilities have been put forth
in the Soviet Union already by Mandelstam in 1945 [3]. One could trace the origins of
backward-wave media even one hundred years back (1904) to the writings of Lamb and
Schuster, as has been observed by Holloway et al. [4]. However, concerning names and
terminology, there is considerable confusion around as can be expected when an emerging
field is opening up; see [5] for discussion on attempts to define metamaterials.
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The assumption of isotropy helps considerably when homogeniza-
tion theories are generalized to metamaterials. It is very common in
today’s metamaterial studies to assume isotropy in the medium re-
sponse. Indeed, sometimes the material parameters are even assumed
to be simply opposite to free space, i.e., the relative permittivity and
permeability values are taken to be ε = µ = −1.

However, recently interest is being focused on anisotropic
metamaterials, too. After all, the very fabrication process of man-
made metamaterials is based on layered element lattices, from which
orthorhombic order or anisotropies of even less symmetry can emerge.
And particularly interesting from the point of view of the present
article are so-called indefinite media [7, 8]. These media are not
only both anisotropic and metamaterials but the permittivity (and
permeability) components in the eigenaxis directions are such that one
or two of them are negative but the remaining two or one are positive.

Such anisotropy in metamaterial response has quite profound
repercussions when heterogeneous mixing analysis is performed. The
homogenization of “ordinary” anisotropic materials (with positive
material parameter eigenvalues) requires special care since the
averaging of the dipole moments has to be treated in a particular
manner in non-isotropic environment. The shape of the inclusions
that affects the polarization amplitude is not the only factor which
determines the dipole moment to be averaged. Also the degree of
anisotropy of the environment is essential.

Depolarization factors are very important parameters in the
final homogenization process. Now, for the case of inclusions in
anisotropic host medium, the depolarization factors can be calculated
by combining the effects of both the shape and the external anisotropy
through a single integral.

1.2. Scope and Structure of the Study

In the following, the behavior of these depolarization factors will be
studied for the case of anisotropic metamaterials, and especially for
indefinite media. They become complex for certain material parameter
values. The results will be analyzed. Furthermore, predictions are
calculated for the effective permittivity components using different
parameter values for the mixture parameters. The mixing rule which
is used in the analysis is a generalization of the classical Maxwell
Garnett mixing formula [9], but it is most probable that the obtained
results would be qualitatively similar for other, more sophisticated
mixing rules. Both three-dimensional and two-dimensional mixtures
are studied. For the three-dimensional case, the anisotropy is assumed
uniaxial (meaning that the effective permittivity dyadic has only two
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components). The results are discussed and interpreted from the
physical point of view, with a special care on losses and dissipation.

In mixing and homogenization studies in general, and those
involving metamaterials in particular, one of the difficulties is the large
number of parameters that can be varied in the problem. Even if we
neglect the explicit bookkeeping on the degrees of freedom that are
caused by the randomness that is often present in mixtures (although
not in regular, periodic structures), there are still very many factors
that determine the complexity of the mixture. In order to be able to
extract dependencies of the effective properties on primary parameters,
one needs to make simplifications and only allow variations with the
most essential parameters. This is important especially in the present
case when qualitatively new effects emerge from the interaction of
metamaterial character of inclusions and anisotropic mixing.

The main simplifying assumption in the analysis to follow is—
in addition to the fact that the analysis is based on the basic
Maxwell Garnett mixing principle—that the effect of the magnetic
permeability is bypassed. In other words, the permeability of all
the mixing components and also the composite are assumed that of
free space. It is true that the important property that is driving
metamaterials applications is the negative values for both permittivity
and permeability and hence it might seem strange not to account for
the magnetic mixing. However, here we must remember the power
of duality [10]: the magnetic and electric problems have the same
mathematical form, and therefore the results for dielectric mixing can
be directly exploited in the magnetic regime. Even if the origin of the
magnetic polarizabilities in the physical and engineering point of view
are very different from those of electric inclusions and responses, the
advantage that we receive from the magnetic simplification is sufficient
to motivate the assumption made in the analysis.

In the analysis to follow, the temporal dependence of exp(−iωt) is
assumed for the time-harmonic fields. This means that for passive
(dissipative) materials, the imaginary part of the permittivity is
positive [11]. Furthermore, all the permittivities are understood in
units of free-space permittivity ε0 (ε0 ≈ 8.854 ·10−12 As/Vm). In other
words, the subindex “r” is omitted from the ε-symbol.

2. DEPOLARIZATION FACTORS OF ELLIPSOIDS IN
ANISOTROPIC MATERIAL

The essence of the analysis to follow can be best introduced
using Figure 1 which illustrates two-phase mixtures. Spherical (in
general, ellipsoidal) inclusions are randomly scattered in anisotropic
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Figure 1. The mixtures under analysis: uniaxial three-dimensional
case (with optical axis aligning with z) and anisotropic two-dimensional
case. The permittivity dyadic of the anisotropic background is εe with
the special axis along z (3D) and y (2D). The permittivity dyadic
of inclusions is εi. (The inclusions are taken to be isotropic (εi) in
the calculations to follow.) In the figure, the inclusions are assumed
equisized (although it is not necessary for homogenization). Hence in
the 2D mixture the circles have the same dimension, but the cut of the
3D figure on an arbitrary level displays varying cross sections through
spheres.

background. The figure shows two cases: three-dimensional volume
and two-dimensional surface (where spheres are of course circles). In
the case that the inclusions are considerable smaller in dimension than
the wavelength of the operating electromagnetic field, there is sense
in looking for an effective permittivity tensor for the macroscopic
mixture. The homogenized continuum permittivity is a function of
the component permittivities and their fractional volumes.

Indeed, the effective permittivity dyadic for a mixture where
ellipsoidal inclusions with anisotropic permittivity dyadic εi are (all
aligned) in anisotropic background εe can be calculated. The relative
permittivity, according to the Maxwell Garnett mixing formula, reads

εeff = εe + f (εi − εe) ·
[
εe + (1 − f)L · (εi − εe)

]−1
· εe (1)
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where the modified depolarization dyadic is [12, Section 5.5.2]

L =
detA

2

∞∫
0

ds εe ·

(
A2 + sεe

)−1

√
det

(
A2 + sεe

) (2)

Here, the symmetric and positive-definite dyadic

A =
∑

i=x,y,z

aivivi (3)

with
detA = axayaz (4)

defines the ellipsoid as r · A−2 · r ≤ 1. The semiaxes of the ellipsoid
are ax, ay, az. Note that the permittivities are relative, in other words
dimensionless scalars or dyadics.

Before moving into the homogenization, let us take a look at the
behavior of the depolarization dyadic components in case of uniaxial
environments.

2.1. Three-Dimensional Case

Assume that the inclusion is a sphere and of isotropic material (εi =
εiI). Furthermore, be the uniaxial environment permittivity as

εe = εt

(
It + cuzuz

)
= εtIt + εz uzuz (5)

where the degree of uniaxiality is c:

εz = cεt (6)

and the transversal-to-z unit dyadic is It = I − uzuz.
Then, using (1), we can write for the two components of the

homogenized medium:

εeff,z = εz + f
εz(εi − εz)

εz + (1 − f)Lz(εi − εz)
(7)

εeff,t = εt + f
εt(εi − εt)

εt + (1 − f)Lt(εi − εt)
(8)

Note that the depolarization factors here depend on c, and
therefore the effective permittivity components are coupled.
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Figure 2. The depolarization factors for the three-dimensional case.
Solid line—Lz, dashed line—Lt. The parameter c is the ratio εz/εt.

These are the well-known depolarization factors for spheroids
[14].‡ The axial ratio corresponds to the square root of the uniaxiality
parameter c. For biaxial ellipsoids, the depolarization factors can be
written in terms of elliptic integrals [15, 16].

Evaluation of the integral (1) for the uniaxial case gives us

Lz =
c

c − 1

(
1 − arctan

√
c − 1√

c − 1

)
(9)

Lt =
1

2(1 − c)

(
1 − c

arctan
√

c − 1√
c − 1

)
(10)

Obviously, Lz + 2Lt = 1.
In Figure 2, the depolarization factors (9)–(10) are shown as

functions of c. Note that even if the real geometric form of the
inclusion is a sphere, still the dipole moment induced in it is dependent
on the direction of the incident field, because different amounts of
depolarization are created for orthogonal field excitations, as shown
by the two curves in the figure.

If the anisotropy vanishes (c = 1), the depolarization factor
components become equal, Lz = Lt = 1/3, as expected.
‡ Ellipsoids of revolution: prolate and oblate spheroids depending whether the axis of the
ellipsoid in the revolution direction is longer or shorter than the other two. Here, we have
to deal with depolarization factors of oblate spheroids if c > 1 (positive uniaxiality), and
prolate spheroids if c < 1 (negative uniaxiality) [13].
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2.2. Two-Dimensional Case

In an analogous manner, the depolarization factors for two-dimensional
mixtures can be studied. The situation in Figure 1 (right-hand side)
means that the inclusions are aligned cylinders, axes along z, and the
field is only allowed to be polarized in the plane perpendicular to z. In
this case, the external anisotropy reads:

εe = εx (uxux + cuyuy) = εxuxux + εyuyuy (11)

where
εy = cεx (12)

Then the depolarization factors, for a circular inclusion, can be
evaluated from (2)

Ly =
√

c

1 +
√

c
(13)

Lx =
1

1 +
√

c
(14)

Obviously, Lx + Ly = 1.§ Of course, for degenerated anisotropy,
the two depolarization factors become equal, Lx = Ly = 1/2.

Consequently, the effective permittivity components for a 2D
mixture where circular holes with isotropic permittivity εi occupy
a volume fraction f in the anisotropic background that obeys
permittivity (11), can be written as

εeff,y = εy + f
εy(εi − εy)

εy + (1 − f)Ly(εi − εy)
(15)

εeff,x = εx + f
εx(εi − εx)

εx + (1 − f)Lx(εi − εx)
(16)

where, again, the coupling comes through the depolarization factors,
Lx and Ly, which are functions of c, and therefore on εy/εx-ratio. This
can be observed in the illustrations to follow.

3. DEPOLARIZATION FACTORS FOR INDEFINITE
MEDIA

There was not too much reason for fascination in the curves of Figure 2
(for the 3D case, and for 2D, Figure 3). One might say that they
§ In general, the three depolarization factors sum up to one, meaning that in the two-
dimensional case one can interpret the result Lx + Ly = 1 in a way Lz = 0. This is
certainly the case because there is no variation in the geometry along z-axis, whence all
boundaries are tangential to z, and no depolarization can be born for fields with uz ·E �= 0.
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Figure 3. The depolarization factors for the two-dimensional case.
Solid line—Ly, dashed line—Lx. The parameter c is the ratio εy/εx.

only reproduce the curves of depolarization factors of ellipsoid in
isotropic environment, although the matter–geometry interaction has
changed the horizontal axis of the depolarization diagrams: it is not
the ellipticity of the ellipsoid but rather the anisotropy of the host
which is the factor that determines depolarization.

However, since the focus in this study is the possibility of having
negative parameters for some of the permittivity components, let us
generalize the depolarization factors into the field of indefinite media.
In other words, into cases where the c-parameter is negative, or
even complex. Results of these calculations for the three-dimensional
mixture are shown in Figure 4.

3.1. Observations Regarding the Depolarization Factors

Interesting things certainly start to happen as c becomes negative.

(i) Looking first at the two upper subplots in Figure 4, where c is real,
we can see that the depolarization factors are strongly varying
functions as c crosses zero. Especially the absolute value of Lz

has a strong discontinuity in its derivative.
(ii) For negative values of c, the depolarization factors are complex.

Both Lz and Lt have simultaneously imaginary parts due to the
requirement Lz + 2Lt = 1.

(iii) For c values negative but close to zero, the real part of Lz is small
and the imaginary part grows quickly, being larger than the real
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Figure 4. The depolarization factors for the three-dimensional case.
Upper row: lossless. Lower row: with an imaginary part of 0.1 ∗ i
added to c. (Solid line–real part, Dashed line–imaginary part, thick
line–absolute value.)

part. On the other hand, for Lt the situation is the opposite: large
real part and small imaginary part.

(iv) When c moves on to the left on the negative axis, Lz approaches
fairly quickly the value 1, and also Lt → 0, and their imaginary
parts vanish. In fact, the approach to these limiting values
happens more rapidly than on the positive axis of c. (Of course,
also on the positive side, limLz = 1 and limLt = 0 as c → +∞.)

(v) A very interesting observation is the fact that the real part
of Lz can be negative. This happens for values in the range
−0.439 < c < 0. We could make the interpretation that for such
values there is repolarization instead of ordinary depolarization. It
may happen, though, that the simultaneous large imaginary part
in Lz may mask any potentially useful effects of the repolarization
that one might envisage.

(vi) When we allow a small imaginary part in c (the two lower figures),
we can see that the curves remain qualitatively the same as in the
lossless case but become “softer” functions of the real part of c.
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Figure 5. The depolarization factors for the two-dimensional case.
Upper row: lossless. Lower row: with an imaginary part of 0.1 ∗ i
added to c. (Solid line–real part, Dashed line–imaginary part, thick
line–absolute value.)

(vii) The repolarization effect (negative real part of Lz) vanishes when
the imaginary part of c increases.

(viii) Concerning the imaginary parts of the depolarization factors, it is
important to note that the sign of Im{Lz} is the same as the sign
of Im{c}. Consequently, the imaginary part of Lt has the opposite
sign of the imaginary part of c. In Figure 4, the imaginary part of
c was taken to be positive; if that is inverted, the imaginary parts
of Lz and Lt also change sign.

The behavior of the two-dimensional depolarization factors that
corresponds to the illustration of Figure 4, when generalized into
negative and complex values of c, can be seen in Figure 5.

The observations concerning 2D depolarization factors are very
similar to those of the 3D case. Obviously we have to compare Ly with
Lz in the 3D analysis, and Lx with Lt.

There is a similar downward “bump” in the real part of Ly as
was was Lz when c crosses zero to become negative. However, that
vanishes more rapidly when imaginary part is added to c. Perhaps the
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clearest qualitative difference from the 3D behavior is that there is no
“repolarization effect” in 2D curves: the real part of Ly cannot become
negative.

The imaginary part of Ly has the same sign as the imaginary part
of c, and this is opposite to the imaginary part of Lx.

3.2. Repolarization Factor

Indeed, these are thought-provoking characteristics that can be
observed from the curves in Figures 4 and 5. Perhaps the most
intriguing is the fact that “repolarization factor” would seem a more
suitable name than “depolarization factor” in certain indefinite mixing
cases for these familiar parameters. It is very deeply rooted in
the minds of electromagnetists that within an inclusion the field
is depolarized and the amplitude of the opposing polarization is
determined by the shape of the inclusion. Therefore this repolarization
effect (a negative real part for the depolarization factor) is not only
a new opportunity and challenge in engineering (to design novel
composite structures by enhancing or suppressing some effects in a
clever way by taking advantage of this effect) but also a reminder to
us all to reformulate our electromagnetic mental models. In this vein,
it is also certainly worth noting the fact that this repolarization effect
is present in the three-dimensional case but not in two dimensions.

4. OBSERVATIONS CONCERNING THE EFFECTIVE
PERMITTIVITY COMPONENTS

Finally, let us study homogenization of indifinite media where the
mixed signs in the permittivity components cause the depolarization
factors to behave in the strange manner of Figures 4 and 5.

The fact that the depolarization factors in indefinite media may
have imaginary parts of either sign should make us uneasy. The effect
of the depolarization factors is strong on the effective permittivity
values, and one might suspect that if the primary parameters are
allowed to vary, it may happen that also the imaginary part of one
of the effective permittivity components might also change sign, even
if the two constituents are kept dissipative. And this is forbidden
because a negative value for the imaginary part means that the
medium is active. That cannot be possible since we are playing with
passive components having positive (or zero) imaginary parts of their
permittivities.
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4.1. Lossless Components

Let us therefore make a closer look at the effective permittivity values
as functions of the parameters in the problem.
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Figure 6. Effective permittivity components of a 3D mixture with
εt = 1, εz = −1 (left) and εt = 2, εz = −1 (right). (Solid line–
real part, Dashed line–imaginary part, Thick lines—εeff,z, Thin lines—
εeff,t.) Note that the imaginary part of εeff,t vanishes in the left-hand
figure. The volume fraction of the inclusion phase is f .

4.1.1. 3D Case

Starting with the three-dimensional mixture, in Figure 6 the Maxwell
Garnett prediction for the effective permittivity is shown for a mixture
where isotropic inclusions (permittivity εi = 1) occupy a volume
fraction f in the indefinite, anisotropic background. Two parameter
combinations are analyzed: the environment permittivity has negative
value in the direction of the optical axis (εy = −1) but the transversal
permittivity of the environment is positive, either εt = 1, as in the
left-hand figure, or εt = 2, as on the right side.

The effective permittivities are given as functions of the volume
fraction, and the obvious results can be seen for the limiting cases: for
f = 0 the effective parameters are those of the environment and for
f = 1 they are those of the inclusions. And in between the curves go
smoothly.

But a very important effect to be noted is that losses are present
in the homogenized composite, even if both the guest and host phases
were lossless. In other words, the effective permittivity components
may have imaginary parts. And especially ε′′eff,z is significant, in other
words the permittivity in the direction of the optical axis (which is
the direction with negative host permittivity component) may have a
large imaginary part when the fractional division between the phases
is close, but not exactly, to 50–50.
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Another important fact to note is that if the transversal
permittivity equals that of the inclusions (εt = εi), there is no effect of
the z component on the transversal effective permittivity: εeff,t remains
unity, and real. However, if there is contrast between the transversal
permittivities (right-hand figure), coupling appears, and εeff,t attains
an imaginary part, although a much smaller one than the imaginary
part of the εeff,z component.

4.1.2. 2D Case

Figure 7 shows the Maxwell Garnett prediction for the effective
permittivity in the two-dimensional case.
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Figure 7. Effective permittivity components of a 2D mixture with
εx = 1, εy = −1 (left) and εx = 2, εy = −1 (right). (Solid line–real
part, Dashed line–imaginary part, Thick lines–εeff,y, Thin lines–εeff,x.)
Note that the imaginary part of εeff,x vanishes in the left-hand figure.
The volume fraction of inclusions is f .

As expected, the results resemble to some extent those in Figure 6.
The soft transition from the host parameters to those of the inclusions
takes place in the ordinary Maxwell Garnett manner. Losses appear in
the εeff,y component similarly as in εeff,z in the 3D case. Also a small
loss effect can be observed in εeff,x, given that there is contrast in the
x-component of the inclusion and environment permittivities.

Some differences in the character between the two- and three-
dimensional mixtures are worth noting. The behavior of the 2D
effective parameters is more “symmetric” than in the 3D case. The
maximum of ε′′eff,y and the associated condition ε′eff,y = 0 happens at
exactly f = 0.5, whereas in the 3D case the ε′eff,z = 0 condition was
at higher loadings of the inclusion phase. Also it is visible from the
curves that the losses in the effective medium are higher than with the
same parameters in the 3D case. Figure 5 shows that the maximum
imaginary part in εeff,y is 1.
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Figure 8. Effective permittivity components of a 3D mixture with
real parts εt = 2, εz = −1: both real (upper left), Im{εt} = −1 (upper
right), Im{εz} = −1 (lower left), and Im{εt} = Im{εz} = −1 (lower
right). (Solid line–real part, Dashed line–imaginary part, Thick lines–
εeff,z, Thin lines–εeff,t.) The parameter f is the volume fraction of the
inclusion phase.

The imaginary parts in the effective permittivity that emerge in
the mixing process for lossless host and guest components are always
positive.‖ In other words, the dissipative character of the mixture is
preserved, as one should expect from a passive constellation.

4.2. Effect of Losses in Components

The interesting question remains what happens to the prediction for
the effective permittivity when losses are admitted in the components.
We have now seen that losses are generated by the very mixing process.
But if real material losses enter the picture, what is the result? The
effect of losses can be seen from the calculated curves which are
depicted in Figure 8 (3D case) and in Figure 9 (2D case).
‖ Caveat: in the numerical evaluation of the results, depending on the software, it may
happen that the sign of the imaginary part may become undefined. The results shown
here are checked in the manner that first a very small loss was added to the component
permittivities and then the amplitude of this loss was gradually decreased and the results
recalculated so many times that there no further numerical effect could be observed in the
curves.
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Figure 9. Effective permittivity components of a 2D mixture with
real parts εx = 2, εy = −1: both real (upper left), Im{εx} = −1 (upper
right), Im{εy} = −1 (lower left), and Im{εx} = Im{εy} = −1 (lower
right). (Solid line–real part, Dashed line–imaginary part, Thick lines–
εeff,y, Thin lines–εeff,x.) The parameter f is the volume fraction of the
inclusion phase.

The inclusion permittivity is assumed to be εi = 1, and the real
parts of the environment permittivities are 2 and −1. An imaginary
part of +1 is added separately to the two environment permittivities,
and also in the last case to both of them. As can be seen clearly
from the figures, the effect of losses is to increase the losses in both
components of the homogenized material. There is no risk of violating
the passivity requirement.

5. CONCLUSION

Combination of metamaterials, in particular, indefinite metamaterials,
and homogenization may lead to extremely interesting macroscopic
material behavior. Even in the simplest geometry, spherical inclusions
in homogeneous background, the effective parameters show unexpected
details which call for physical interpretation. One example was the
repolarization effect that was discussed in Section 3. Speculative
predictions call for tests and checks that the results obey limitations
dictated by physics, and it was indeed encouraging to see that the
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calculations were in accordance with the restriction of dissipative
character of passive mixtures.
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