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Abstract—This paper studies the propagation of solitons through
an optical fiber, with strong dispersion-management in presence of
perturbation terms. The adiabatic parameter dynamics of the solitons
in presence of such perturbation terms have been obtained by using the
variational principle. In particular, the Gaussian and super-Gaussian
pulses have been considered.
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1. INTRODUCTION

The propagation of solitons through optical fibers has been a
major area of research given its potential applicability in all optical
communication systems. The field of telecommunications has
undergone a substantial evolution in the last couple of decades due
to the impressive progress in the development of optical fibers, optical
amplifiers as well as transmitters and receivers. In a modern optical
communication system, the transmission link is composed of optical
fibers and amplifiers that replace the electrical regenerators. But the
amplifiers introduce some noise and signal distortion that limit the
system capacity. Presently the optical systems that show the best
characteristics in terms of simplicity, cost and robustness against the
degrading effects of a link are those based on intensity modulation with
direct detection (IM-DD). Conventional IM-DD systems are based on
non-return-to-zero (NRZ) format, but for transmission at higher data
rate the return-to-zero (RZ) format is preferred. When the data rate is
quite high, soliton transmission can be used. It allows the exploitation
of the fiber capacity much more, but the NRZ signals offer very high
potential especially in terms of simplicity.

There are limitations, however, on the performance of optical
system due to several effects that are present in optical fibers and
amplifiers. Signal propagation through optical fibers can be affected by
group velocity dispersion (GVD), polarization mode dispersion (PMD)
and the nonlinear effects. The chromatic dispersion that is essentially
the GVD when waveguide dispersion is negligible, is a linear effect that
introduces pulse broadening generates intersymbol interference. The
PMD arises due the fact that optical fibers for telecommunications have
have two polarization modes, in spite of the fact that they are called
monomode fibers. These modes have two different group velocities
that induce pulse broadening depending on the input signal state of
polarization. The transmission impairment due to PMD looks similar
to that of the GVD. However, PMD is a random process as compared to
the GVD that is a deterministic process. So PMD cannot be controlled
at the receiver. Newly installed optical fibers have quite low values of
PMD that is about 0.1 ps/

√
km.

The main nonlinear effects that arises in monomode fibers are the
Brillouin scattering, Raman scattering and the Kerr effect. Brillouin is
a backward scattering that arises from acoustic waves and can generate
forward noise at the receiver. Raman scattering is a forward scattering
from silica molecules. The Raman gain response is characterized by low
gain and wide bandwidth namely about 5 THz. The Raman threshold
in conventional fibers is of the order of 500 mW for copolarized pump
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and Stokes’ wave (that is about 1 W for random polarization), thus
making Raman effect negligible for a single channel signal. However, it
becomes important for multichannel wavelength-division-multiplexed
(WDM) signal due to an extremely wide band of wide gain curve.

The Kerr effect of nonlinearity is due to the dependence of the fiber
refractive index on the field intensity. This effect mainly manifests as
a new frequency when an optical signal propagates through a fiber. In
a single channel the Kerr effect induces a spectral broadening and the
phase of the signal is modulated according to its power profile. This
effect is called self-phase modulation (SPM). The SPM-induced chirp
combines with the linear chirp generated by the chromatic dispersion.
If the fiber dispersion coefficient is positive namely in the normal
dispersion regime, linear and nonlinear chirps have the same sign
while in the anomalous dispersion regime they are of opposite signs.
In the former case, pulse broadening is enhanced by SPM while in
the later case it is reduced. In the anomalous dispersion case the
Kerr nonlinearity induces a chirp that can compensate the degradation
induced by GVD. Such a compensation is total if soliton signals are
used.

If multichannel WDM signals are considered, the Kerr effect
can be more degrading since it induces nonlinear cross-talk among
the channels that is known as the cross-phase modulation (XPM).
In addition WDM generates new frequencies called the Four-Wave
mixing (FWM). The other issue in the WDM system is the collision-
induced timing jitter that is introduced due to the collision of solitons
in different channels. The XPM causes further nonlinear chirp that
interacts with the fiber GVD as in the case of SPM. The FWM is a
parametric interaction among waves satisfying a particular relationship
called phase-matching that lead to power transfer among different
channels.

To limit the FWM effect in a WDM it is preferable to operate
with a local high GVD that is periodically compensated by devices
having an opposite sign of GVD. One such device is a simple optical
fiber with opportune GVD and the method is commonly known as
the dispersion management. With this approach the accumulated
GVD can be very low and at the same time FWM effect is strongly
limited. Through dispersion-management it is possible to achieve
highest capacity for both RZ as well as NRZ signals. In that case
the overall link dispersion has to be kept very close to zero, while
a small amount of chromatic anomalous dispersion is useful for the
efficient propagation of a soliton signal. It has been demonstrated that
with soliton signals, the dispersion-management is very useful since it
reduces the timing jitter [3] and also the pulse interactions. It thus
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permits the achievement of higher capacities as compared to the link
having constant chromatic dispersion.

In this paper, we are going to study the dynamics of dispersion-
managed (DM) solitons propagating through an optical fiber in
presence of perturbation terms. We shall consider both Gaussian and
super-Gaussian type solitons for completeness.

2. GOVERNING EQUATIONS

The relevant equation for the propagation of solitons through an optical
fiber in presence of damping and amplification is given by the nonlinear
Schrodinger’s equation (NLSE) [2, 13] namely:

iuz +
D(z)

2
utt + |u|2u = −iΓu + i

[
eΓza − 1

] N∑
n=1

δ(z − nza)u (1)

Here Γ is the normalized loss coefficient, za is the normalized
characteristic amplifier spacing while z and t represents the normalized
propagation distance and the normalized time respectively that is
expressed in the usual nondimensional units [2, 12]. Also, D(z) is used
to model dispersion-management. We decompose the fiber dispersion
D(z) into two components namely a path-averaged constant value δa
and a term representing the large rapid variation due to the local values
of dispersion [2, 3, 8]. Thus, we write

D(z) = δa +
1
za

∆(ζ) (2)

where ζ = z/za. The function ∆(ζ) is taken to have an average zero
over an amplification period, namely

〈∆〉 =
1
za

∫ za

0
∆

(
z

za

)
dz = 0 (3)

so that the path-averaged dispersion D will have an average δa namely

〈D〉 =
1
za

∫ za

0
D(z)dz = δa (4)

The proportionality factor in front of ∆(ζ), in (2) is chosen so that
both δa and ∆(ζ) are quantities of order one. In practical situations
dispersion-management is often performed by concatenating two or
more sections of given length with different values of fiber dispersion.
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In the special case of a two-step dispersion map it is convenient to
write the dispersion map as a periodic extension of [2, 3, 8]

∆(ζ) =

{
∆1 : 0 ≤ |ζ| < θ

2

∆2 : θ
2 ≤ |ζ| < 1

2

(5)

where ∆1 and ∆2 are given by

∆1 =
2s
θ

(6)

and
∆2 = − 2s

1− θ
(7)

with the map strength s defined as

s =
θ∆1 − (1− θ)∆2

4
(8)

Conversely we have

s =
∆1∆2

4(∆2 −∆1)
(9)

and
θ =

∆2

∆2 −∆1
(10)

A typical dispersion map is shown in the following figure:

Figure 1. Schematic diagram of a two-step map.

We take into account the loss and amplification cycles by looking
for a solution of (1) of the form u(z, t) = Q(z)q(z, t) for real Q. Taking
Q to satisfy

Qz + ΓQ−
[
eΓza − 1

] N∑
n=1

δ(z − nza)Q = 0 (11)
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one can show that (1) transforms to

iqz +
D(z)

2
qtt + g(z)|q|2q = 0 (12)

where we have
g(z) = Q2(z) = a2

0e
−2Γ(z−nza) (13)

for z ∈ [nza, (n + 1)za] and n > 0 and also

a0 =
[

2Γza
1− e−2Γza

] 1
2

(14)

so that over each amplification period we have

〈g(z)〉 =
1
za

∫ za

0
g(z)dz = 1 (15)

Equation (12) is commonly known as the Dispersion-Managed
Nonlinear Schrodinger’s equation (DMNLSE) and it governs the
propagation of a dispersion-managed soliton through a polarization
preserving fiber with periodic damping and amplification. This
equation is going to be the primary equation of our study in this paper.

In the following figures we have direct numerical simulations of
(12). Figure 2 illustrates the profile of the pulse as the map strength(s)
varies from 0 to 16. However, Figures 3(a) and (b) are profiles of DM
solitons in the linear and logarithmic scales respectively.

Figure 2. Pulse profile.
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Figure 3. DM soliton profile (a) linear scale (b) logarithmic scale.

3. PULSE DYNAMICS

In (12), when we have D(z) = g(z) = 1, we get the NLSE. It is possible
to integrate the NLSE by the method of Inverse Scattering Transform
(IST) since NLSE belongs to the category of S-integrable partial
differential equations. The IST is the nonlinear analog of Fourier
transform that is used to solve linear partial differential equations.
Here, (12) is a nonlinear parabolic type equation. Moreover, the NLSE
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has an infinite number of conserved quantities. However, (12) as it
appears is no longer integrable and it takes us away from the IST
picture. Also, (12) does not contain an infinite numbers of integrals of
motion either unless D(z) and g(z) are constants in which case one gets
infinitely many conserved quantities. In fact, equation (12) has as few
as two integrals of motion [6, 7]. They are the energy (E), also known
as the L2 norm and the linear momentum (M) that are respectively
given by

E =
∫ ∞
−∞
|q|2dt (16)

and
M =

i

2
D(z)

∫ ∞
−∞

(qq∗t − q∗qt)dt (17)

The Hamiltonian (H) that is given by

H =
1
2

∫ ∞
−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt (18)

is, however, not a constant of motion, in general. The case D(z) and
g(z) a constant makes the Hamiltonaian a conserved quantity.

We shall now study (12) based on the observation that it supports
well-defined chirped soliton solution whose shape is close to that of
a Gaussian [15–17]. These pulses deviate from a classical soliton.
However, Gaussian pulses have relatively broad leading and trailing
edges. As one may expect that dispersion-induced broadening is
sensitive to steepness of soliton edges. In general, a soliton with
leading and trailing edges broadens more rapidly as it propagates
since such a pulse has a wider spectrum to start with. Pulses emitted
by directly modulated semiconductor lasers fall in this category and
cannot generally be approximated by a Gaussian soliton. A hyper-
Gaussian, also known as a super-Gaussian (SG) soliton can be used
to model the effects of steep leading and trailing edges on dispersion-
induced pulse broadening [4]. It is to be noted here that these pulses are
solitary waves and are not strictly solitons as it is not yet established
whether they regain their form after interaction. Henceforth, we shall
call these solitary waves as simply pulses.

Now, we assume that the solution of (12) is given by a chirped
pulse of the form [3, 6, 7, 15–17, 19]

q(z, t) = A(z)f [B(z){t− t̄(z)}]
exp

[
iC(z){t− t̄(z)}2 − iκ(z){t− t̄(z)}+ iθ(z)

]
(19)

where f represents the shape of the pulse. It could be a
Gaussian type or a SG type pulse. Also, here the parameters
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A(z), B(z), C(z), κ(z), t̄(z) and θ(z) respectively represent the soliton
amplitude, the inverse width of the pulse, chirp, frequency, the center
of the pulse and the phase of the pulse. We shall now derive a set
of evolution equations for the pulse parameters. We note that, our
approach in this paper is only approximate and does not account
for characteristics such as energy loss due to continuum radiation,
damping of the amplitude oscillations and changing of the pulse shape.
For convenience, we shall now define the following integrals

Ia,b,c,l,m =
∫ ∞
−∞

τaf b(τ)
(
df

dτ

)c (
d2f

dτ2

)l (
d3f

dτ3

)m

dτ (20)

Ja,b,c =
∫ ∞
−∞

τaf b(τ)
(
df

dτ

)c (∫ τ

−∞
f2(s)ds

)
dτ (21)

where a, b, c, l and m are nonnegative integers. For such a pulse form
given by (19), we have the integrals of motion as

E =
∫ ∞
−∞
|q|2dt =

A2

B
I0,2,0,0,0 (22)

M =
i

2
D(z)

∫ ∞
−∞

(q∗qt − qq∗t )dt = −κD(z)
A2

B
I0,2,0,0,0 (23)

while the Hamiltonian is given by

H =
1
2

∫ ∞
−∞

[
D(z)|qt|2 − g(z)|q|4

]
dt

=
D(z)

2

(
A2BI0,0,2,0,0 + 4

A2C2

B3
I2,2,0,0,0 +

κ2A2

B
I0,2,0,0,0

)

−g(z)
2

A4

B
I0,4,0,0,0 (24)

4. VARIATIONAL PRINCIPLE

For a finite dimensional problem of a single particle, the temporal
development of its position is given by the Hamilton’s principle of least
action [12]. It states that the action given by the time integral of the
Lagrangian is an extremum, namely

δ

∫ t2

t1
L(x, ẋ)dt = 0 (25)

where x is the position of the particle and ẋ = dx/dt. The variational
problem (25) then leads to the familiar Euler-Lagrange’s (EL) equation
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[12]
∂L

∂p
− d

dt

(
∂L

∂pz

)
= 0 (26)

where p is one of the six soliton parameters. Here, for (12), the
Lagrangian is given by

L =
1
2

∫ ∞
−∞

[
i(q∗qz − qq∗z)−D(z)|qt|2 + g(z)|q|4

]
dt (27)

Now, using (19), the Lagrangian given by (27), reduces to

L=−D(z)A2

(
B

2
I0,0,2,0,0 + 2

C2

B3
I2,2,0,0,0 +

κ2

2B
I0,2,0,0,0

)

+
g(z)
2

A4

B
I0,4,0,0,0−

A2

B3
I2,2,0,0,0

dC

dz
+

A2

B
I0,2,0,0,0

(
t̄
dκ

dz
− dθ

dz

)
(28)

Substituting A, B, C, κ, t̄ and θ for p in (26) we arrive at the following
set of equations

dA

dz
= −ACD(z) (29)

dB

dz
= −2BCD(z) (30)

dC

dz
=

(
B4

2
I0,0,2,0,0

I2,2,0,0,0
− 2C2

)
D(z)− g(z)

4
A2B2 I0,4,0,0,0

I2,2,0,0,0
(31)

dκ

dz
= 0 (32)

dt̄

dz
= −κD(z) (33)

dθ

dz
=

(
κ2

2
− I0,0,2,0,0

I0,2,0,0,0
B2

)
D(z) + g(z)

5A2

4
I0,4,0,0,0

I0,2,0,0,0
(34)

Now, from (29) and (30) we conclude that A = K
√
B where the

constant K is proportional to the square root of the energy as seen
from (22). So, the number of parameters reduces by one. Thus, (29)
through (34), respectively, modify to

dB

dz
= −2BCD(z) (35)

dC

dz
=

(
B4

2
I0,0,2,0,0

I2,2,0,0,0
− 2C2

)
D(z)− K2gB3

4
I0,4,0,0,0

I2,2,0,0,0
(36)
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dκ

dz
= 0 (37)

dt̄

dz
= −κD(z) (38)

dθ

dz
=

(
κ2

2
− I0,0,2,0,0

I0,2,0,0,0
B2

)
D(z) + g(z)

5KB

4
I0,4,0,0,0

I0,2,0,0,0
(39)

4.1. Gaussian Pulses

For a pulse of Gaussian type, we substitute f(τ) = e−
τ2

2 . So, the
conserved quantities respectively reduce to

E =
∫ ∞
−∞
|q|2dt =

A2

B

√
π

2
= K2

√
π

2
(40)

M =
i

2
D(z)

∫ ∞
−∞

(q∗qt − qq∗t )dt

= −κD(z)
A2

B

√
π

2
= −κD(z)K2

√
π

2
(41)

while the Hamiltonian is

H =
1
2

∫ ∞
−∞

[
D(z)|qt|2 − g(z)|q|4

]
dt

=
√

π

2
D(z)

2

(
A2B +

A2C2

B3
+

κ2A2

B

)
−
√
π

4
g(z)

A4

B

=
√

π

2
D(z)

2
K2

(
B2 +

C2

B2
+ κ2

)
−
√
π

4
g(z)

K4

B3
(42)

Also, the parameter dynamics given by (35) through (39) respectively
are

dB

dz
= −2BCD(z) (43)

dC

dz
=

D(z)
4

(B4 − 8C2)− g(z)
4
√

2
g(z)A2B2 (44)

dκ

dz
= 0 (45)

dt̄

dz
= −κD(z) (46)

dθ

dz
=

D(z)
2

(κ2 −B2) +
5
√

2
8

g(z)A2 (47)
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Equations (43) to (47) represent the evolution equations of the
parameters of a Gaussian soliton propagating through an optical fiber.
These evolution equations can be used to study various issues including
the pulse interaction.

4.2. Super-Gaussian Pulses

For SG pulses we choose f(τ) = e−
τ2m

2 with m ≥ 1 where the
parameter m controls the degree of edge sharpness. With m = 1,
we recover the case of a chirped Gaussian pulse while for larger values
of m the pulse gradually becomes square shaped with sharper laeding
and trailing edges [4]. In Figure 4 below, one can see the shapes of the
pulses as the parameter m varies.

Figure 4. SG pulse with the variation of the parameter m.

For a SG pulse the integrals of motion respectively are

E =
∫ ∞
−∞
|q|2dt =

A2

B

1

m2
1

2m

Γ
(

1
2m

)
=

K2

m2 1
2m

Γ
(

1
2m

)
(48)

M =
i

2
D(z)

∫ ∞
−∞

(q∗qt − qq∗t )dt

= −κD(z)
A2

B

1

m2
1

2m

Γ
(

1
2m

)
= −κD(z)K2

m2
1

2m

Γ
(

1
2m

)
(49)
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while the Hamiltonian is

H =
1
2

∫ ∞
−∞

[
D(z)|qt|2 − g(z)|q|4

]
dt

= D(z)

[
m

2
2m−1
2m

A2BΓ
(

4m− 1
2m

)
+

2
2m−3
2m

m

A2C2

B3
Γ

(
3

2m

)

+
1

2
2m+1
2m

κ2A2

B
Γ

(
1

2m

)]
− g(z)

1

2
m+1
m

A4

B
Γ

(
1

2m

)

= D(z)K2

[
m

2
1−2m
2m

B2Γ
(

4m− 1
2m

)
+

2
2m−3
2m

m

C2

B3
Γ

(
3

2m

)

+
1

2
2m+1
2m

κ2Γ
(

1
2m

)]
− g(z)

1

2
m+1
m

K4

B3
Γ

(
1

2m

)
(50)

Here, Γ(x) is the usual gamma function. Also, we have our evolution
equations for the pulse parameters (35)–(39) respectively reduce to

dB

dz
= −2BCD(z) (51)

dC

dz
=

D(z)
8


m(2m− 1)B4

Γ
(

2m−1
2m

)
Γ

(
3

2m

) − 16C2




− g(z)

2
4m+1
2m

A2B2
Γ

(
1

2m

)
Γ

(
3

2m

) (52)

dκ

dz
= 0 (53)

dt̄

dz
= −κD(z) (54)

dθ

dz
=

D(z)
2


κ2 −m(2m− 1)B2

Γ
(

2m−1
2m

)
Γ

(
1

2m

)



+
5

2
4m+1
2m

g(z)A2
Γ

(
1

2m

)
Γ

(
3

2m

) (55)

We note, here, that for m = 1, (51)–(55) reduce to (43)–(47)
respectively for Gaussian pulses.
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5. PERTURBATION TERMS

We shall now consider the DM-NLSE along with its perturbation terms
that is given by

iqz +
D(z)

2
qtt + g(z)|q|2q = iεR[q, q∗] (56)

Here R is a spatio-differential operator and ε is a perturbation
parameter with 0 < ε � 1 and is called the relative width of the
spectrum that arises due to quasi-monochromaticity [12]. In presence
of the perturbation terms we have the EL equation modify to [6, 17]

∂L

∂p
− d

dz

(
∂L

∂pz

)
= iε

∫ ∞
−∞

(
R
∂q∗

∂p
−R∗

∂q

∂p

)
dt (57)

where p represents the six soliton parameters. Once again, substituting
A, B, C, κ, t̄ and θ for p in (57) we arrive at the following adiabatic
evolution equations. This leads to the following adiabatic evolution of
the soliton parameters in presence of the perturbation terms.

dA

dz
= −ACD(z) +

εB

4
1

I0,2,0,0,0I2,2,0,0,0∫ ∞
−∞

(
τ2I0,2,0,0,0 − 3I2,2,0,0,0

)
(q∗R + qR∗)dt (58)

dB

dz
= −2BCD(z) +

εB2

2A
1

I0,2,0,0,0I2,2,0,0,0∫ ∞
−∞

(
τ2I0,2,0,0,0 − I2,2,0,0,0

)
(q∗R + qR∗)dt (59)

dC

dz
=

(
B4

2
I0,0,2,0,0

I2,2,0,0,0
− 2C2

)
D(z)− g(z)

A2B2

4
I0,4,0,0,0

I2,2,0,0,0

− iε

4
1
A

1
I2,2,0,0,0

∫ ∞
−∞

[B(qR∗ − q∗R) + 2τ(qtR∗ − q∗tR)] dt (60)

dκ

dz
=

ε

A

1
I0,2,0,0,0

∫ ∞
−∞

[iB(qtR∗ − q∗tR)− 2τC(q∗R + qR∗)]dt (61)

dt̄

dz
= −κD(z) +

ε

A

1
I0,2,0,0,0

∫ ∞
−∞

τ(q∗R + qR∗)dt (62)

dθ

dz
=

(
κ2

2
− I0,0,2,0,0

I0,2,0,0,0
B2

)
D(z) +

5g
4
A2 I0,4,0,0,0

I0,2,0,0,0

+
ε

2
1
A

1
I0,2,0,0,0

∫ ∞
−∞

[3iB(qR∗ − q∗R) + 2iτ(qtR∗ − q∗tR)
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+4κτ(q∗R + qR∗)]dt (63)

We, now, note that equations (58)–(63) can also be rewritten in the
following alternative format

dA

dz
= −ACD(z)− ε

AI0,2,0,0,0I2,2,0,0,0∫ ∞
−∞
�[Re−iφ]

(
I0,2,0,0,0τ

2 − 3I2,2,0,0,0

)
f(τ)dτ (64)

dB

dz
= −2BCD(z)− εB

AI0,2,0,0,0I2,2,0,0,0∫ ∞
−∞
�[Re−iφ]

(
I0,2,0,0,0τ

2 − I2,2,0,0,0

)
f(τ)dτ (65)

dC

dz
=

(
B4

2
I0,0,2,0,0

I2,2,0,0,0
− 2C2

)
D(z)− gA2B2

4
I0,4,0,0,0

I2,2,0,0,0

− εB2

2AI2,2,0,0,0

∫ ∞
−∞

[Re−iφ]

(
f(τ) + 2τ

df

dτ

)
dτ (66)

dκ

dz
=

2ε
ABI0,2,0,0,0

∫ ∞
−∞

{
B2
[Re−iφ]

df

dτ
−2C�[Re−iφ]τf(τ)

}
dτ (67)

dt̄

dz
= −κD(z) +

2ε
ABI0,2,0,0,0

∫ ∞
−∞
�[Re−iφ]τf(τ)dτ (68)

dθ

dz
=

(
κ2

2
− I0,0,2,0,0

I0,2,0,0,0
B2

)
D(z) +

5gA2

4
I0,4,0,0,0

I0,2,0,0,0
+

ε

2ABI0,2,0,0,0∫ ∞
−∞

{
B
[Re−iφ]

(
3f(τ)+2τ

df

dτ

)
+4κ�[Re−iφ]τf(τ)

}
dτ (69)

where we have used the notations

τ = B(z)(t− t̄(z))

and
φ = C(z) {t− t̄(z)}2 − κ(z) {t− t̄(z)}+ θ(z)

Also � and 
 represent the real and imaginary parts respectively. In
the following two subsections, we shall obtain the adiabatic dynamics of
the soliton parameters due to the Gaussian and SG pulses in presence
of the perturbations.
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5.1. Gaussian Pulses

For Gaussian pulses, we have (63)–(68) respectively simplicify to

dA

dz
= −ACD(z)− 4ε√

π

∫ ∞
−∞

e−
3
2
τ2�[Re−iφ]dτ (70)

dB

dz
= −2BCD(z) +

8ε√
π

B

A

∫ ∞
−∞

e−
3
2
τ2�[Re−iφ]dτ

+
2ε
√

2√
π

B

A

∫ ∞
−∞

e−
1
2
τ2�[Re−iφ]dτ (71)

dC

dz
=

D(z)
4

(
B4 − 8C2

)
− g(z)

4
√

2
g(z)A2B2 +

4ε
√

2√
π

1
AB∫ ∞

−∞
te−

1
2
τ2

{
τ
[Re−iφ] + B(τBC − κ)�[Re−iφ]

}
dτ

−2ε
√

2√
π

1
A

∫ ∞
−∞

e−
1
2
τ2
[Re−iφ]dτ (72)

dκ

dz
= −2ε

√
2√

π

B

A

∫ ∞
−∞

e−
1
2
τ2�[Re−iφ]dτ +

2ε
√

2√
π

1
AB∫ ∞

−∞
e−

1
2
τ2

{
τ
[Re−iφ] + B(τBC − κ)�[Re−iφ]

}
dτ (73)

dt̄

dz
= −κD(z) +

2ε
√

2√
π

B

A

∫ ∞
−∞

te−
1
2
τ2�[Re−iφ]dτ (74)

dθ

dz
=

D(z)
2

(
κ2 −B2

)
+

5
√

2
8

g(z)A2 +
ε
√

2√
π

1
A

∫ ∞
−∞

e−
1
2
τ2
[Re−iφ]dτ

(75)

These equations now represent the evolution equations for the
parameters of a Gaussian pulse ropagating through an optical fiber
in presence of the perturbation terms.

5.2. Super-Gaussian Pulses

For SG pulses (64)–(69) respectively modify to

dA

dz
= −ACD(z) + ε

m2
m+1
m

Γ
(

1
2m

) ∫ ∞
−∞

e−
3
2
τ2m�[Re−iφ]dτ (76)

dB

dz
= −2BCD(z) + ε

m2
2m+1
m

Γ
(

1
2m

) B

A

∫ ∞
−∞

e−
3
2
τ2m�[Re−iφ]dτ
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+ε
m2

2m+1
2m

Γ
(

1
2m

) B

A

∫ ∞
−∞

e−
1
2
τ2m�[Re−iφ]dτ (77)

dC

dz
=

D(z)
8


m(2m− 1)B4

Γ
(

2m−1
2m

)
Γ

(
3

2m

) − 16C2




− g(z)

2
4m+1
2m

A2B2
Γ

(
1

2m

)
Γ

(
3

2m

) + ε
m2

3
2m

Γ
(

3
2m

) 1
AB∫ ∞

−∞
te−

1
2
τ2m

{
mτ2m−1
[Re−iφ] + B(τBC − κ)�[Re−iφ]

}
dτ

−εm2
3−2m
2m

Γ
(

3
2m

) 1
A

∫ ∞
−∞

e−
1
2
τ2m
[Re−iφ]dτ (78)

dκ

dz
= −εm2

2m+1
2m

Γ
(

1
2m

) B

A

∫ ∞
−∞

e−
1
2
τ2m�[Re−iφ]dτ + ε

m2
2m+1
2m

Γ
(

1
2m

) 1
AB∫ ∞

−∞
e−

1
2
τ2m

{
mτ2m−1
[Re−iφ]+B(τBC−κ)�[Re−iφ]

}
dτ (79)

dt̄

dz
= −κD(z) + ε

m2
2m+1
2m

Γ
(

1
2m

) 1
A

∫ ∞
−∞

te−
1
2
τ2m�[Re−iφ]dτ (80)

dθ

dz
=

D(z)
2


κ2−m(2m− 1)B2

Γ
(

2m−1
2m

)
Γ

(
1

2m

)

+

5

2
4m+1
2m

g(z)A2
Γ

(
1

2m

)
Γ

(
3

2m

)

+ε
m2

1
2m

Γ
(

1
2m

) 1
A

∫ ∞
−∞

e−
1
2
τ2m�[Re−iφ]dτ (81)

So, now, these are the adiabatic evolution of the soliton parameters for
a SG pulse in presence of the perturbation terms.

6. OBSERVATIONS

In this section, we shall take a look into some particular type of
perturbations of the GNLSE, namely

R = −i(δ1 + iδ2)|q|2Nq − i(α1 + iα2)qt

+βqtt − i(γ1 + iγ2)qttt − i(λ1 + iλ2)
(
|q|2q

)
t
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−i(ν1 + iν2)
(
|q|2

)
t
q − iσ

(
q2q∗t

)
t
− iχq2

t q
∗ − iωq∗

(
q2

)
tt

−i(P1 + iP2)q
∫ t

−∞
|q|2ds− i(Q1 + iQ2)qt

∫ t

−∞
|q|2ds (82)

Here, in (82), we have δj , for j = 1, 2, as the coefficient of nonlinear
damping or amplification depending on whether δj < 0 or > 0.
Also, N represents the degree of nonlinear damping (amplification)
[7, 18]. For N = 0, we have δ is the linear gain or attenuation.
For N = 1, δ represents a two-photon absorption, or nonlinear gain,
while for N = 2, δ represents the higher order correction (saturation
or loss) to the nonlinear amplification-absorption. The perturbation
coefficients of Pj and Qj for j = 1, 2 are of nonlocal type and represents
the gain (loss) saturation [7, 9–11].

In addition to these, the coefficients of σ, χ and ω arise in the
context of quasi-solitons [20]. Moreover, ν1 represents the Raman
scattering term while ν2 is the coefficient of nonlinear dispersion. The
necessity of higher order dispersion term arises when the group velocity
dispersion [12, 14] is small and also we need this term for performance
enhancement for trans-oceanic distances. Thus, the coefficients of γ1

and γ2 terms are necessary. The terms with λ1 and λ2 are for self-
steepening and the nonlinear dispersion. Also, α1 and α2 are for the
dispersion terms too [12].

For these type of perturbations in (82), we have, on using (64)–
(69), The adiabatic parameter dynamics of the soliton as

dA

dz
=−ACD(z)

+
ε

4
A2

B2

1
I2,2,0,0,0

[
2δ2A

2NB2I2,2N+2,0,0,0 − 2α1κB
2I2,2,0,0,0

−γ1

{(
4κB2 − 4κB4

)
I2,0,2,0,0 +

(
4κB2 − 2κB4

)
I2,1,0,2,0

}
+γ2

{(
8κC + 4κB2C

)
I2,2,0,0,0 +

(
16C + 8κB2C

)
I3,1,1,0,0

+ 2κ3B2I2,2,0,0,0 + 24κC2I4,2,0,0,0

}
− 2λ1κA

2B2I2,4,0,0,0

+β
(
2B4I2,1,0,1,0 − 8C2I4,2,0,0,0 − 2κ2B2I2,2,0,0,0

)
+8A2B2C(χ− σ + 3ω)I3,3,1,0,0 + 4A2B2C(σ + 2ω)I2,4,0,0,0

+2P2A
2BJ2,2,0 + 4Q1A

2CJ3,2,0 − 2Q1κA
2BJ2,2,0

+ 2Q2A
2B2J2,1,1

]
− 3ε

4
A2

B2

1
I0,2,0,0,0

·
[
2δ2A

2NB2I0,2N+2,0,0,0 − 2α1κB
2I0,2,0,0,0
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−γ1

{(
4κB2 − 4κB4

)
I0,0,2,0,0 +

(
4κB2 − 2κB4

)
I0,1,0,2,0

}
+γ2

{(
8κC + 4κB2C

)
I0,2,0,0,0 +

(
16C + 8κB2C

)
I1,1,1,0,0

+ 2κ3B2I0,2,0,0,0 + 24κC2I2,2,0,0,0

}
− 2λ1κA

2B2I0,4,0,0,0

+β
(
2B4I0,1,0,1,0 − 8C2I2,2,0,0,0 − 2κ2B2I0,2,0,0,0

)
+8A2B2C(χ− σ + 3ω)I1,3,1,0,0 + 4A2B2C(σ + 2ω)I0,4,0,0,0

+2P2A
2BJ0,2,0+4Q1A

2CJ1,2,0−2Q1κA
2BJ0,2,0+2Q2A

2B2J0,1,1

]
(83)

dB

dz
=−2BCD(z)

+
ε

2
A

B

1
I2,2,0,0,0

[
2δ2A

2NB2I2,2N+2,0,0,0 − 2α1κB
2I2,2,0,0,0

−γ1

{(
4κB2 − 4κB4

)
I2,0,2,0,0 +

(
4κB2 − 2κB4

)
I2,1,0,2,0

}
+γ2

{(
8κC + 4κB2C

)
I2,2,0,0,0 +

(
16C + 8κB2C

)
I3,1,1,0,0

+ 2κ3B2I2,2,0,0,0 + 24κC2I4,2,0,0,0

}
− 2λ1κA

2B2I2,4,0,0,0

+β
(
2B4I2,1,0,1,0 − 8C2I4,2,0,0,0 − 2κ2B2I2,2,0,0,0

)
+8A2B2C(χ− σ + 3ω)I3,3,1,0,0 + 4A2B2C(σ + 2ω)I2,4,0,0,0

+2P2A
2BJ2,2,0+4Q1A

2CI3,2,0−2Q1κA
2BJ2,2,0+2Q2A

2B2J2,1,1

]

− ε

2
A2

B2

1
I0,2,0,0,0

[
2δ2A

2NB2I0,2N+2,0,0,0 − 2α1κB
2I0,2,0,0,0

−γ1

{(
4κB2 − 4κB4

)
I0,0,2,0,0 +

(
4κB2 − 2κB4

)
I0,1,0,2,0

}
+γ2

{(
8κC + 4κB2C

)
I0,2,0,0,0 +

(
16C + 8κB2C

)
I1,1,1,0,0

+2κ3B2I0,2,0,0,0 + 24κC2I2,2,0,0,0

}
− 2λ1κA

2B2I0,4,0,0,0

+β
(
2B4I0,1,0,1,0 − 8C2I2,2,0,0,0 − 2κ2B2I0,2,0,0,0

)
+8A2B2C(χ− σ + 3ω)I1,3,1,0,0 + 4A2B2C(σ + 2ω)I0,4,0,0,0

+2P2A
2BJ0,2,0+ 4Q1A

2CJ1,2,0−2Q1κA
2BJ0,2,0+2Q2A

2B2J0,1,1

]
(84)

dC

dz
=

(
B4

2
I0,0,2,0,0

I2,2,0,0,0
− 2C2

)
D(z)− g(z)

4
A2B2 I0,4,0,0,0

I2,2,0,0,0
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+
ε

4
A

B2

1
I2,2,0,0,0

[
2δ1A

2NB2I0,2N+2,0,0,0 − 2α2κA
2B2I0,4,0,0,0

+γ1

{(
8κC + 4κB2C

)
I0,2,0,0,0 +

(
16κC + 8κB2C

)
I1,1,1,0,0

+ 2κ3B2I0,2,0,0,0 + 24κC2I2,2,0,0,0

}
+γ2

{(
4κB2 + 2κB4

)
I0,1,0,1,0 +

(
4κB2 + 4κB4

)
I0,0,2,0,0

}
+2λ2κA

2B2I0,4,0,0,0 − 4β
(
2B2CI1,1,1,0 + B2CI0,2,0,0,0

)
+σ

(
2A2B4I0,3,0,1,0 + 8A2C2I2,4,0,0,0 + 2κ2A2B2I0,4,0,0,0

)
+χ

{(
1−2κ2

)
A2B2I0,4,0,0,0−8A2C2I2,4,0,0,0−2A2B4I0,0,2,0,0

}
−2ω

(
24C2I2,4,0,0,0+6κ2A2B2I0,4,0,0,0+A2B2I0,4,0,0,0

− 2A2B4I0,2,2,0,0

)
+ 2

(
P1A

2BJ2,2,0 + Q1A
2B2J0,1,1

−2Q2A
2CJ1,2,0 + 2Q2κA

2BJ0,2,0

)]
− ε

2
A

B4

1
I3,2,0,0,0

[
4δ2A

2NB2CI2,2N+2,0,0,0 − 8α1κB
2CI2,2,0,0,0

−γ1

(
8κB4CI2,0,2,0,0 + 24κB4CI2,1,0,1,0

+ 8κB4CI1,1,1,0,0 − 16κC3I4,2,0,0,0 − 16κ3B2CI2,2,0,0,0

)
+2γ2κB

6I1,1,0,0,1−8λ1κA
2B2CI2,4,0,0,0+8A4C(ν2+λ2)I2,3,1,0,0

−2β
(
2B4CI2,1,0,1 + 4B4CI2,0,2,0,0 − 2B4CI1,1,1,0,0

)
+σ

(
2A2B6I1,2,1,1,0 − 8A2B2C2I2,4,0,0,0 + 4A2B6I1,1,3,0,0

− 16κA2B3CI2,3,1,0,0

)
2χ

(
A2B6I1,1,3,0,0 + 4κA2B3CI2,3,1,0,0

)
− 8ωκA2B2CI2,4,0,0,0

+2
(
P1A

3B3J1,1,1 + 2P2A
2BCJ2,2,0 − P2κA

2B2J1,2,0

+Q1A
2B4J1,0,2 + 4Q1A

2C2J3,2,0 + Q1κ
2A2B2J1,2,0

− 4Q2κA
2BCJ2,2,0

))
(85)

dκ

dz
=−ε 1

AB4

1
I0,2,0,0,0

{
2δ1A

2N+2B5I0,2N+1,1,0,0

−2δ2κA
2N+2B4I0,2N+2,0,0,0 + γ1

{
2A2B8I0,0,1,0,0
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+8A2B4C2I2,0,2,0,0 + 2κ2A2B6I0,0,2,0,0 + 24A2B4C2I2,1,0,1,0

+2κ2A2B6I0,1,0,1,0+16A2B4C2I1,1,1,0,0+
(
8A2C2−κ4

)
B4I0,2,0,0,0

− 32A2C2I4,2,0,0,0−24κ2A2B2C2I2,2,0,0,0

}
−γ2

(
8A2B6CI0,1,0,1,0

+ 20A2B6CI1,0,1,1,0 + 4A2B6CI1,1,0,0,1 + 12A2B6CI0,2,0,0,0

)
+2λ1

(
4A2B2C2I2,4,0,0,0 + κ2A4B4I0,4,0,0,0 + 3A4B6I0,2,2,0,0

)
−4λ2A

4B4CI1,3,1,0,0 + 4ν1A
4B6I0,2,2,0,0 + 8ν2A

4B4CI1,3,1,0,0

+8χκA4B4CI1,3,1,0,0 + 2β
(
κA2B6I0,1,0,2,0 + 2κA2B6I0,0,2,0,0

)
+σ

(
4κA4B4CI0,4,0,0,0 − 16κA4B4CI1,3,1,0,0

)
+2ω

(
A4B6I0,2,2,0,0 + 4A4B2C2I2,4,0,0,0 + κ2A4B4I0,4,0,0,0

)
+2

(
P1A

4B4J0,1,1 + 2P2A
4B2CJ1,2,0

−P2κA
4B3J0,2,0 + Q1A

4B5J0,0,2 + 4Q1A
4BC2J2,2,0

+ Q1κ
2A4B3J0,2,0 − 4Q1κA

4B2CJ1,2,0

)]
−2ε

AC

B4

1
I0,2,0,0,0

[
4α1B

2CI2,2,0,0,0 + 4α2B
4I1,1,1,0,0

+γ1

{(
16B2C − 4B4C

)
I1,1,1,0,0 +

(
8B2C − 8B4C

)
I2,0,2,0

+
(
8B2C − 4B4C

)
I2,1,0,1,0

}
+ γ2

{
2B4I1,1,0,0,0

+
(
2B4 − 2B6

)
I1,0,1,1,0 −

(
4κ2B2 + 2κ2B4

)
I1,1,1,0,0

−
(
16C2 + 8B2C2

)
I2,2,0,0,0−

(
16C2 + 8B2C2

)
I3,1,1,0,0

− 12κ2B2CI2,2,0,0,0−16C2I4,2,0,0,0

}
+ 4λ1A

2B2CI2,4,0,0,0

+8βκB2CI2,2,0,0,0 + (4λ2 + 4ν2 + 4σκ− 4χκ− 16ωκ)

·A2B4I1,3,1,0,0 +
(
2P2A

2B2J1,2,0 + 4Q1A
2B2CJ2,2,0

− 2Q1κA
2B2J1,2,0 + 2Q2A

2B3J1,1,1

)]
(86)

dt̄

dz
=−κD(z)

+ε
A

B4

1
I0,2,0,0,0

[
4α1B

2CI2,2,0,0,0 + 4α2B
4I1,1,1,0,0

γ1

{(
16B2C − 8B4C

)
I1,1,1,0,0 +

(
8B2C − 8B4C

)
I2,0,2,0,0
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+
(
8B2C − 4B4C

)
I2,1,0,1,0

}
γ2

{
2B4I1,1,0,0,0

+
(
2B4 − 2B6

)
I1,0,1,1,0 −

(
4κ2B2 + 2κ2B4

)
I1,1,1,0,0

−
(
16C2 + 8B2C2

)
(I2,2,0,0,0 + I3,1,1,0,0)− 12κ2B2CI2,2,0,0,0

− 16C2I4,2,0,0,0

}
+ 4λ1A

2B2CI2,4,0,0,0 + 8βκB2CI2,2,0,0,0

+ (4λ2 + 4ν2 + 4σκ− 4χκ− 16ωκ)A2B4I1,3,1,0,0

+
(
2P2A

2B4J1,2,0 + 4Q1CJ2,2,0 − 2Q1κA
2B2J1,2,0

+ 2Q2A
2B3J1,2,1

)]
(87)

dθ

dz
=

(
κ2

2
− I0,0,2,0,0

I0,2,0,0,0
B2

)
D(z) +

5
4
g(z)A2 I0,4,0,0,0

I0,2,0,0,0

−ε 3
2AB

1
I0,2,0,0,0

[
2δ1A

2N+2B2I0,2N+2,0,0,0 + 2α2κA
4B2I0,4,0,0,0

+γ1

{
2κ3A2B2I0,2,0,0,0 + 24κA2C2I2,2,0,0,0

+
(
8κA2C + 4κA2B2C

)
I0,2,0,0,0

+
(
16κA2C + 8κA2B2C

)
I1,1,1,0,0

}
+γ2

{(
4κA2B2 + 2κA2B4

)
I0,1,0,1,0

+
(
4κA2B2 + 4κA2B4

)
I0,0,2,0,0

}
+2λ2κA

4B2I0,4,0,0,0 − 4β
(
2A2B2CI1,1,1,0,0 + A2B2CI0,2,0,0,0

)
−σ

(
2A4B4I0,3,0,2,0 + 8A4C2I2,4,0,0,0 + 2κ2A4B2I0,4,0,0,0

)
+χ

(
A4B2I0,4,0,0,0 − 2A4B4I0,2,2,0,0 − 8A4C2I2,4,0,0,0

− 2κ2A4B2I0,4,0,0,0

)
+ 2ω

(
A4B4I0,3,0,2,0 − 24A4C2I2,4,0,0,0

− 6κ2A4B2I0,4,0,0,0 + A4B2I0,4,0,0,0 − 2A4B4I0,2,2,0,0

)
+2

(
2P1A

4BJ0,2,0 + Q1A
4B2J0,1,1 − 2Q2A

4CJ1,2,0

+Q2κA
4BJ0,2,0

)]
− ε

1
AB3

1
I0,2,0,0,0

[
4δ2A

2N+2B2CI2,2N+2,0,0,0

−8α1κA
2B2I2,2,0,0,0−γ1

(
8κA2B4CI2,2,0,0,0+24κA2B4CI2,1,1,2,0

+ 8κA2B4CI1,1,1,0,0 − 16A2C3I4,2,0,0,0 − 16κ3A2B2CI2,2,0,0,0

)
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+2γ2A
2B6(κI1,1,0,0,1 + 5κI1,0,1,1)− 8λ1κA

4B2CI2,4,0,0,0

−4λ2κA
4B4I1,3,1,0,0 − 4ν2κA

4B4I1,3,1,0,0

−4βA2B4(CI2,1,0,2,0 + 2κCI2,2,0,0,0 + κCI1,1,1,0,0)

+2σA2B2
(
A2B4I1,2,1,1,0 − 2κ2B2C2I1,3,1,0,0

− 4A2C2I2,4,0,0,0 + 2A2B4I1,1,3,0,0 + 8A2C2I3,3,1,0,0

)
+2χ

(
A4B6I1,1,3,0,0 − 4A4B2C2I3,3,1,0,0 − κ2A4B4I1,3,1,0,0

)
−2ω

(
4κA2CI1,4,0,0,0 − 2A4B4I1,3,1,0,0

)
+2

(
P1A

4B3J1,1,1 + 2P2A
4BCJ1,2,0 − P2κA

4B2J1,2,0

+Q1A
4B4J1,0,2 + 4Q1A

4C2J2,2,0 + Q1κ
2A4B2J1,3,0

−4Q1κA
4BCJ2,2,0

)]
+ ε

2κ
AB2

1
I0,2,0,0,0

[
4α1A

2BCI2,2,0,0,0

+4α2A
2B4I1,1,1,0,0 + γ1

{(
16A2B2C − 4A2B4C

)
I2,2,0,0,0

+
(
8A2B2C − 8A2B4C

)
I2,0,2,0,0

+
(
8A2B2C − 4A2B4C

)
I2,1,0,2,0

}
+ γ2

{
2A2B4I1,1,0,0,1

−12κ2A2B2CI2,2,0,0,0 − 16A2C2I4,2,0,0,0

+
(
2A2B4C−2A3B6

)
I1,0,1,1,0−

(
4κ2A2B2+2κ2A2B4

)
I1,1,1,0,0

−
(
16A2C2 + 8A2B2C2

)
(I2,2,0,0,0 + I3,1,1,0,0)

}
+4λ1A

4B2CI2,4,0,0,0 + 8βκA2B2CI2,2,0,0,0

+ (4λ2 + 4σκ + 4ν2 − 4χκ− 16ωκ)A4B4I1,3,1,0,0

+2P2A
4B2J1,2,0 + 4Q1A

4BCJ2,2,0

− 2Q1κA
4B2J1,2,0 + 2Q2A

4B3J1,1,1

]
(88)

6.1. Gaussian Pulses

For Gaussian pulses, we have the adiabatic parameter dynamics of the
soliton parameters, given by (83)–(88), as follows

dA

dz
=−ACD(z)

+
ε

2
A2

B2

[
δ2

A2NB2

(N + 1)
3
2

− α1κB
2
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−γ1

54

{
(81 + 4

√
6)κB2 − (81 + 8

√
6)κB4

}
+γ2

(
4κC − κB2C + κ3B2 + 9κC2 − 6C

)

−
√

2
4

λ1κA
2B2 − β

4

(
B4 + 12C2 + 4κ2B2

)

−
√

2
4

A2B2C(3χ− 5σ + 5ω)

+
√

2
(
P2A

2B −Q1κA
2B

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

2C −Q2κA
2B2

) ∫ ∞
−∞

τ3e−τ
2{1 + erf(τ)}dτ

]

−3ε
4

A2

B2

[
2δ2

A2NB2

√
N + 1

− 2α1κB
2

−γ1

9

{
(18 + 8

√
6)κB2 − (18 + 4

√
6)κB4

}
+2γ2

(
4κC + κ3B2C + 6κC2 − 4C

)
−β

(
B4 + 4C2 + 2κ2B2

)
−
√

2A2B2C(χ− 3σ − ω)

+
√

2
(
P2A

2B −Q1κA
2B

) ∫ ∞
−∞

e−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

2C −Q2A
2B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

]
(89)

dB

dz
=−2BCD(z)

+ε
A

B

[
δ2

A2NB2

(N + 1)
3
2

− α1κB
2

−γ1

54

{
(81 + 24

√
6)κB2 − (81 + 12

√
6)κB4

}
+γ2

(
4κC − 2κB2C + κ3B2 + 9κC2 − 6C

)

−β

4

(
B4 + 12C2 + 4κ2B2

)
−
√

2
4

A2B2C(3χ− 5σ − ω)

+
√

2
(
P2A

2B −Q1κA
2B

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

2C −Q2A
2B2

) ∫ ∞
−∞

τ3e−τ
2{1 + erf(τ)}dτ

]
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− ε

2
A2

B2

[
2δ2

A2NB2

√
N + 1

− 2α1κB
2

−γ1

9

{
(18 + 8

√
6)κB2 − (18 + 4

√
6)κB4

}
+2γ2

(
4κC + κ3B2 + 6κC2 − 4C

)
−
√

2λ1κA
2B2

−β
(
B4 + 4C2 + 2κ2B2

)
−
√

2A2B2C(χ− 3σ − ω)

+
√

2
(
P2A

2B −Q1κA
2B

) ∫ ∞
−∞

e−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

2C −Q2A
2B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

]
(90)

dC

dz
=

D(z)
4

(
B4 − 8C2

)
− g(z)

4
√

2
g(z)A2B2

+
ε

2
A

B2

[
2δ1

A2NB2

√
N + 1

−
√

2α2κA
2B2

+γ1

(
4κC + 2κ3B2 + 12κC2

)
+ γ2κB

4 +
√

2λ2κA
2B2

−σ
√

2
4

(
3A2B4 − 4A2C2 − 4κ2A2B2

)

+
χ
√

2
2

{(
1− 2κ2

)
A2B2 − 2A2C2 −A2B4

}

−ω
√

2
2

(
12C2 + 12κ2A2B2 + 2A2B2 −A2B4

)
+

1
2

(
2
√

2P1A
2B +

√
2Q2κA

2B
) ∫ ∞
−∞

e−τ
2{1 + erf(τ)}dτ

−
√

2
(
Q1A

2B2 + Q2A
2C

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

]

−ε A

B4

[
2δ2

A2NB2C

(N + 1)
3
2

− 4α1κB
2C

+2γ1

(
2κB4C + 3κC3 + 4κ3B2C

)
+

3
2
γ2κB

6

−
√

2λ1κA
2B2C − 9

2
βB4C − 3

√
2

16
χA2B6 −

√
2ωκA2B2C

+2
√

2
(
P1A

2BC + P2A
2BC − 2Q2κA

2BC
)

∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ
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−
√

2
(
P2κA

2B2 −Q1A
2B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

+ 4
√

2Q1A
2C2

∫ ∞
−∞

τ3e−τ
2{1 + erf(τ)}dτ

]
(91)

dκ

dz
=

ε

AB4

[
2δ2

A2N+2B4

√
N + 1

−α1

(
A2B6 + 2κ2A2B4 + 4A2B2C2

)
+

γ1

2

(
3A2B8 − 2κ2B4 − 24A2C2 − 24κ2A2B2C2

)
−γ2

2

{
8A2B6 − 24κ2A2B2C2 − 3

(√
2 + 2

)
A2B6C

}

−λ1

√
2

8

(
4A4B2C2 + 4κ2A4B4 + 3A4B6

)

−
√

2
2

λ2A
4B4C −

√
2

2
ν1A

4B6 +
√

2ν2A
4B4C

+
√

2χκA4B4 − 2β
9

(2
√

6 + 9)κA2B6

−ω
√

2
4

(
A4B6 + 4A4B2C2 + 8κ2A4B4

)
−
√

2
(
P1A

4B4 + 2P2A
4B2C − 4Q1κA

4B2C
)

∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

+
√

2
(
P2κA

4B3 −Q1κ
2A4B3

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

−
√

2
(
Q1A

4B5 + 4Q1A
2BC2

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

]

−2ε
AC

B4

[
2α1B

2C − 2α2B
4 − γ1

2

(
12B2C + B4C

)
+

γ2

8

(
5B4−2B6+16κ2B2+8κ2B4−64C2−8B2C2−48κ2B2C

)

+
√

2
2

λ1A
2B2C+4βκB2C−

√
2

2
(λ2+ν2+σκ−χκ−4ωκ)A2B4

+
√

2
(
P2A

2B2C −Q1κA
2B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

2B2C −Q2A
2B3

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

]
(92)
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dt̄

dz
=−κD(z)

+ε
A

B4

[
2α1B

2C − 2α2B
4 − 3γ1

2

(
4B2C −B4C

)
+

γ2

4

(
B4−B6+ 8κ2B2+4κ2B4−32C2 − 4B2C2−24κ2B2C2

)

+
√

2
2

λ1A
2B2C+4βκ2C−

√
2

2
(λ2+ν2+σκ−χκ−4ωκ)A2B4

+
√

2
(
P2A

4B4 −Q1κA
2B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

+2
√

2Q1C

∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

− 2Q2A
2B3

∫ ∞
−∞

τ2e−
3
2
τ2{1 + erf(τ)}dτ

]
(93)

dθ

dz
=

D(z)
2

(
κ2 −B2

)
+

5
√

2
8

g(z)A2

−3ε
2

1
AB

[
2δ2

A2N+2B4

√
N + 1

−
√

2α2A
4B2

+γ1

(
2κ3A2B2 + 12κA2C2

)
+ γ2κA

2B4

−σ
√

2
125

(
36
√

5A2B4 + 125A4 + 125κ2A4B2
)

+
χ
√

2
4

(
2A4B2 −A4B4 − 4A4C2

)

+
ω
√

2
250

{(
144
√

5−125
)
A4B4−12A4C2−12κ2A4B2+2A4B2

}
+
√

2
(
P1A

4B + Q2κA
4B

) ∫ ∞
−∞

e−τ
2{1 + erf(τ)}dτ

− 2
√

2
(
Q1A

4B2 − 2Q2A
4B2C

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

]

− ε

AB3

[
2δ2

A2N+2B2C

(N + 1)
3
2

− 4α1κA
2B2C

+γ1

(
κA2B4C + 6κA2C3 + 8κ3A2B2C

)
+

11γ2

4
κA2B6

√
2λ1κA

4B2C+
√

2
2

κA4B4+
√

2
2

νκA4B4− 2β
27

(4
√

6+27)A2B4C
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−σ
√

2
16

(
4κ2A4B4 − 40A4B2C2 − 7A4B6

)

+
χ
√

2
16

(
12A4B2C2 − 3A4B6 + 4κ2A4B4

)

+
ω
√

2
250

{(
144
√

5−125
)
A4B4−12A4C2−12κ2A4B2+2A4B2

}
+
√

2
(
P2A

4BC − P2κA
4B2 + Q1κ

2A4B2
)

∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

+
√

2
(
2P2A

4BC − P2κA
4B2 + Q1κ

2A4B2
)

∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

]

+2ε
κ

AB3

[
2α1A

2B2C − 2α2A
2B4

+
γ1

27

{
(16
√

6− 135)A2B2C − (8
√

6 + 27)A2B4C
}

+
γ2

4

(
7A2B4 − 56A2C2 −A3B6

+ 8κ2A2B2 + 4κ2A2B4 − 24κ2A2B2C − 16A2B2C2
)

+
√

2
2

λ1A
2B4C + 4βκA2B2C

−
√

2
2

(λ2 + σκ + ν2 − χκ− 4ωκ)A4B4

+
√

2
(
P2A

4B2 −Q1κ
2A4B2

) ∫ ∞
−∞

τe−τ
2{1 + erf(τ)}dτ

+
√

2
(
2Q1A

4BC −Q2A
4B3

) ∫ ∞
−∞

τ2e−τ
2{1 + erf(τ)}dτ

]
(94)

where erf(x) stands for the error function of x.

6.2. Super-Gaussian Pulses

For SG pulses we have the adiabatic parameter dynamics of the
parameters as

dA

dz
=−ACD(z)
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+
ε

4
A2

B2

1

Γ
(

3
2m

)
[

2δ2A
2NB2

(N + 1)
3

2m

Γ
(

3
2m

)
− 2α1κB

2Γ
(

3
2m

)

−γ1

{
(2m + 1)

(
κB2 − κB4

)
Γ

(
1

2m

)

+
(

2
3

)8m−1
2m

m(2m−1)(6m2−5m+2)
(
2κB2−κB4

)
Γ

(
2m−1

2m

)}

+γ2

{(
8κC−8κB2C−24C+2κ3B2

)
Γ

(
3

2m

)
+24κC2Γ

(
5

2m

)}

−2
2m−3
2m λ1κA

2B2Γ
(

3
2m

)

−β

2

{
(2m−3)B4Γ

(
1

2m

)
+16C2Γ

(
5

2m

)
+4κ2B2Γ

(
3

2m

)}

− 3

2
1−6m
2m

A2B2C(χ− σ + 3ω)Γ
(

3
2m

)

+
1

2
3−4m
2m

A2B2C(σ + 2ω)Γ
(

3
2m

)

+2
(
P2A

2B − 2Q1κA
2B

) ∫ ∞
−∞

τ2e−2τ2m
(∫ τ

−∞
e−s

2m
ds

)
dτ

+4mQ1A
2C

∫ ∞
−∞

τ3e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

− 2m2Q2A
2B2

∫ ∞
−∞

τ2m+1e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

]

+
ε

4
A2

B2

1

Γ
(

3
2m

)
[

2δ2A
2NB2

(N + 1)
3

2m

Γ
(

3
2m

)
− 2α1κB

2Γ
(

3
2m

)

−γ1

{
(2m + 1)

(
κB2 − κB4

)
Γ

(
1

2m

)

+
(

2
3

)8m−1
2m

m(2m−1)(6m2−5m+2)(2κB2− κB4)Γ
(

2m−1
2m

)}

+γ2

{(
8κC−8κB2C−24C+2κ3B2

)
Γ

(
3

2m

)
+24κC2Γ

(
5

2m

)}

−2
2m−3
2m λ1κA

2B2Γ
(

3
2m

)

−β

2

{
(2m− 3)B4Γ

(
1

2m

)
+ 16C2Γ

(
5

2m

)
+ 4κ2B2Γ

(
3

2m

)}
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− 3

2
1−6m
2m

A2B2C(χ− σ + 3ω)Γ
(

3
2m

)

+
1

2
3−4m
2m

A2B2C(σ + 2ω)Γ
(

3
2m

)

+2m
(
P2A

2B − 2Q1κA
2B

) ∫ ∞
−∞

τ2e−2τ2m
(∫ τ

−∞
e−s

2m
ds

)
dτ

+4mQ1A
2C

∫ ∞
−∞

τ3e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

− 2m2Q2A
2B2

∫ ∞
−∞

τ2m+1e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

]
(95)

dB

dz
=−2BCD(z)

ε

2
A

B

1

Γ
(

3
2m

)
[

2δ2A
2NB2

(N + 1)
3

2m

Γ
(

3
2m

)
− 2α1κB

2Γ
(

3
2m

)

−γ1

{
(2m + 1)

(
κB2 − κB4

)
Γ

(
1

2m

)

+
(

2
3

)8m−1
2m

m(2m−1)(6m2−5m+2)
(
2κB2−κB4

)
Γ

(
2m−1

2m

)}

+γ2

{(
8κC−8κB2C−24C+2κ3B2

)
Γ

(
3

2m

)
+24κC2Γ

(
5

2m

)}

−2
2m−3
2m λ1κA

2B2Γ
(

3
2m

)
− β

2

{
(2m− 3)B4Γ

(
1

2m

)

+ 16C2Γ
(

5
2m

)
+ 2κ2B2Γ

(
3

2m

)}

− 3

2
1−6m

2m

A2B2C(χ−σ+3ω)Γ
(

3
2m

)
+

1

2
3−4m

2m

A2B2C(σ+2ω)Γ
(

3
2m

)

+2m
(
P2A

2B − 2Q1κA
2B

) ∫ ∞
−∞

τ2e−2τ2m
(∫ τ

−∞
e−s

2m
ds

)
dτ

+4mQ1A
2C

∫ ∞
−∞

τ3e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

− 2m2Q2A
2B2

∫ ∞
−∞

τ2m+1e−τ
2m

(∫ τ

−∞
e−s

2m
ds

)
dτ

]

−εA
B

1

Γ
(

3
2m

)
[

2δ2A
2NB2

(N + 1)
1

2m

Γ
(

1
2m

)
− 2α1κB

2Γ
(

1
2m

)
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−γ1

18

{
18(2m + 1)

(
4κB2 − 4κB4

)
Γ

(
2m−1

2m

)
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7. CONCLUSIONS

In this paper, we have studied the perturbations of solitons propagating
through an optical fiber with strong dispersion-management. The
adiabatic dynamics of the soliton parameters in presence of these
perturbations are obtained. In particular, we have considered both the
Gaussian as well as the SG type pulses. One can use these adiabatic
parameter dynamics to study number of aspects of dynamics of optical
solitons propagating through an optical fiber namely the four-wave
mixing, the collision induced frequency and timing jitter just to name
a few.

In reality, besides the solitons, one obtains the small amplitude
dispersive waves commonly known as radiations. The mathematical
expressions for radiations due to the type of perturbations, considered
in this paper, have not been obtained. However, such studies are under
way and the results will be reported in a future publication.
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