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Abstract—We study the scattering problem for a thin cylindrical
target that is placed with arbitrary orientation in a rectangular TE10

waveguide and subjected to an imposed electromagnetic field. The
scattered far-field is expressed in terms of the scattered field inside the
target and the far-field expansion of the dyadic Green’s function for
the waveguide. In order to capture features of interest in microwave
heating applications, we allow the target material’s electrical properties
to be arbitrary functions of position along the thin cylindrical target’s
axis. Reflection and transmission coefficients for such a target, and an
expression for the rate of deposition of electromagnetic energy within
it are derived.
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1. INTRODUCTION

We consider the scattered field due to a thin cylindrical target of
circular cross-section that is subject to an imposed electromagnetic
field in a TE10 waveguide. The cylinder has small aspect ratio, i.e., its
average radius is much less than the waveguide width, its permittivity
and electrical conductivity are allowed to be arbitrary functions of
distance along its axis, and the axis can have arbitrary orientation
relative to the direction of the imposed field within the waveguide.
The cylinder radius may also vary on the length scale of the waveguide
width.

Two motives for determining the scattered field are: (i)
Expressions for the reflection and transmission coefficients that result
from the analysis allow the electrical properties of a material to be
determined by irradiating a sample of it with a known field and
measuring the reflected and transmitted fields. (ii) In microwave
heating and similar applications, it is desirable to predict features
such as the rate of heating and temperature distribution for a target
sample of known properties. This requires determination of the total
electromagnetic field experienced by the target at each point, and
thereby depends on solving the problem for the scattered field.

Approximate and variational formulas for scattering from a thin
cylinder in a waveguide have been derived before. A survey of classical
techniques and results is given in [1] and more recent studies based
on mode-matching methods have appeared in, for example, references
[2] to [6]. Some of these results are for a cylinder that is perfectly
conducting and others are for a more general lossy dielectric target,
but in all cases the electrical properties are taken to be constant
in the direction along the cylinder’s axis and the axis has a specific
orientation that is either parallel or perpendicular to the irradiating
field. The method we use to construct the scattered field is similar
to that of [7], in which charge and current distributions on the target
surface are introduced and satisfy an integral equation which is then
solved by an iterative procedure based on the target’s small aspect
ratio. Here we replace solution of the integral equation with solution
of the boundary value problem for the scattered near-field based on
the method of multiple scales [8].

Both of the motives we have in mind are relevant to the behavior
of materials such as ceramics when subject to an electromagnetic field
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of microwave frequency. In almost all cases, the electrical conductivity
of ceramics increases with frequency and increases more substantially
with temperature. Their permittivity also varies, increasing with
temperature and, in general, decreasing with frequency. The study
of Westphal [9] remains one of the most comprehensive sources of
data on the subject. It notes that, for example, the electrical
conductivity of alumina (Al2O3, of purity 99%) at 4 GHz increases
from 5 × 10−6(Ωcm)−1 at 30◦C to 6 × 10−4(Ωcm)−1 at 1400◦C and
the electrical conductivity of silica (SiO2, of purity 99.97%) at 6 GHz
increases from 1.5 × 10−6(Ωcm)−1 at 30◦C to 1 × 10−4(Ωcm)−1 at
1200◦C. Most high-temperature data of the study were found using a
microwave cavity, and it is noted that impurities tend to substantially
increase a ceramic’s electrical conductivity.

Our motive for generalizing to a target that has spatially
inhomogeneous electrical properties arises primarily from applications
such as microwave heating where the intensity of the irradiating field
is not small. If the material that the target consists of is spatially
homogeneous, i.e., has uniform chemical structure throughout the
target volume, then the target’s electrical properties, its permittivity
and conductivity, are spatially uniform throughout its volume unless,
as may occur in practice, the target sustains a temperature gradient
and the material’s electrical properties are temperature-dependent.

When the amplitude of the imposed field is small, the dipolar
and Ohmic heating that the imposed field induces in the material is
also small and the target is close to a uniform, ambient temperature.
That is, the coupling from the electromagnetic to the thermodynamic
field is weak, and any coupling from the thermodynamic field to the
electromagnetic field is so small that it can be neglected in a first
approximation. However, this may change as the amplitude of the
imposed field increases.

In general, since both the imposed electromagnetic field in the
waveguide and the total field in the presence of the target have
non-zero spatial gradients, there is a spatial gradient in the power
deposition or rate of generation of heat within the target. For an
imposed field of sufficiently large amplitude and a target material of
finite or small thermal conductivity, this causes a spatial gradient in
the target’s temperature. If the target material’s electrical properties
are temperature-dependent there is then a mutual coupling of the
electromagnetic and thermodynamic fields. The target’s temperature
gradient influences both the scattered part of the electromagnetic
field and the rate of heat generation within it via gradients or
inhomogeneities in its electrical properties.

When the target has small aspect ratio, the variation in
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temperature across its narrow cross-section is small, while the variation
across its greater cross-section is not small. For a thin cylindrical
target, we therefore allow its electrical properties to be arbitrary
functions of distance in the axial direction while being constant in
the radial direction. Quantitative justification for this model of the
electrical properties’ distribution has been given in the context of the
microwave heating of a thin cylinder in the small Biot number limit in
[10] and [11].

The amplitude of the scattered electric field depends on the
target material’s electrical properties through the single dimensionless
quantity N2 = ε/ε0 + iσ/ωε0 where ε is the material’s permittivity and
ε0 is the permittivity of free space, σ is the material’s effective electrical
conductivity, and ω is the angular frequency of the imposed field,
which has frequency 2.45 GHz in standard microwave applications.
The analysis we present is for the case where Im(N2) is of order
one or small. For values of Im(N2) that are large, which occur for
materials with large electrical conductivity, the analysis begins to fail,
since the material expels the imposed field across a narrow boundary
layer or skin with depth of the order δ = c0

√
2ε0/ωσ, [12] which is

not included in our analysis. However, microwaves do not provide an
effective means of heating a material with large electrical conductivity,
and other methods can provide a more suitable means of determining
its electrical properties.

The structure of the paper is as follows. In Section 2, we formulate
the imposed field for a TE10 waveguide, with or without a conducting
short. In Section 3, we construct a representation for the scattered
electric field far from the target (i.e., the scattered far-field) in terms
of an integral taken over the target volume of the total electric field
and the far-field expansion of the dyadic Green’s function for the
waveguide. At the end of Section 3 we give the far-field representation
of the dyadic Green’s function in terms of left and right-going TE10

waves within the guide, while construction of the Green’s function
is given in the Appendix. To find the total field within the target,
we construct the scattered field both in and near the target (i.e., the
scattered near-field) in Section 4 by appealing to the target’s small
aspect ratio and introducing a multiple scale perturbation method [8].
At the end of Section 4 we compute an expression for the rate at
which the electromagnetic field deposits energy within the target. The
target’s reflection and transmission coefficients are given in Section 5,
where an identity based on conservation of energy is used as a partial
check on the expressions that are found, and examples for specific
target orientation and electrical properties are given.
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2. FORMULATION

We consider a thin cylindrical target placed in a TE10 waveguide. The
waveguide’s axis is in the z-direction and its cross-section is rectangular
with x ∈ [0, W ] and y ∈ [0, H]. The electric and magnetic fields E and
H are time-harmonic with time-dependence e−iωt, so that in complex
form a right-going TE10 wave with amplitude E0 incident from z = −∞
has electric field

E = E0 sin
πx

W
eik10ze(2) (1)

where k10 =
√
k2 − π2

W 2 , k = ω/c0 is the free space wave number, and
e(i) is a unit vector in the direction of the ith Cartesian coordinate
axis.

In the absence of a short (1) is the electric field imposed on the
target. If the waveguide is equipped with a perfectly conducting short
at z = L then the imposed field consists of the sum of the same
right-going TE10 wave and a superimposed left-going TE10 wave which
together satisfy the boundary condition of zero tangential electric field
on the short. The imposed field is written as

Ei = Eie
(2), (2)

where, on factoring its amplitude E0,

Ei = E0ei and ei = sin
πx

W

{
eik10z no short
eik10z − e−ik10(z−2L) with short.

(3)

The waveguide geometry and a typical orientation for the target
are shown in Figure 1.

In the near-field of the cylindrical target, i.e., inside and near it,
the scattered part of the electromagnetic field varies in the transverse
plane perpendicular to the cylinder axis on the length scale of the
cylinder’s radius, or on its average value ρ0. However, in the axial
direction of the cylinder it varies on the length scale of the imposed field
and waveguide width W . Since the cylinder’s aspect ratio α = ρ0/W is
small, these two spatial scales are greatly separated; the construction
of the near-field in Section 4 makes explicit use of this separation of
spatial scales.

The small-scale structure of the near-field decays with increasing
distance away from the cylinder axis, and it then varies on the single
scale W . Here the electromagnetic field has an expansion in terms
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Figure 1. Coordinate system for a TE10 waveguide with short and a
typical orientation for the cylindrical target. The cylinder’s radius is
small compared to the waveguide width.

of the eigenfunctions of the waveguide, but with further increase in
distance away from the target, since all eigenfunctions in a TE10 guide
are evanescent except for that of the propagating TE10 wave, the
scattered far-field signal can be expressed in terms of TE10 waves alone,
with amplitude to be found.

3. REPRESENTATION OF THE SCATTERED FIELD IN
TERMS OF THE DYADIC GREEN’S FUNCTION

Both inside and outside the target, the curl equations are

∇∧ E = iωµ0H

∇∧ H = −iωε0N
2E. (4)

The second equation pertains to a medium with permittivity ε and
current density j given by Ohm’s law j = σE where σ is an effective
electric conductivity, for which ∇∧ H = (σ − iωε)E. Thus

N2 =
ε

ε0
+ i

σ

wε0
. (5)

N2 is the one grouping of the material’s electrical properties ε and
σ that will appear. It is dimensionless and of order one, and is
discontinuous across the target surface. Everywhere outside the target
N2 = 1; inside the target, for the purposes of this section it can be an
arbitrary function of position, while for our model of a thin cylindrical
target it is a function of the axial coordinate alone.
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The electric and magnetic fields are decomposed as the sum of
imposed fields (Ei,H i) which persist throughout the waveguide in the
absence of the target and scattered fields (Es,Hs) due to the presence
of the target. That is

E = Ei + Es and H = H i + Hs, (6)

where the imposed fields satisfy the curl equations

∇∧ Ei = iωµ0H i

∇∧ H i = −iωε0Ei.
(7)

Subtracting equations (7) from equations (4), we find that the scattered
fields satisfy

∇∧ Es = iωµ0Hs

∇∧ Hs = −iωε0N
2Es − iωε0(N2 − 1)Ei.

(8)

The magnetic field is eliminated from equations (8) on taking the
curl of the first equation, to give

∇∧∇ ∧ Es = k2N2Es + k2(N2 − 1)Ei (9)

where k = ω/c0 is the free space wavenumber.
The electric and magnetic fields of the dyadic Green’s function

(EGi,HGi) are due to an isolated point current with strength j0 that is
located at x = x′ within the waveguide and is oriented in the direction
e(i). They satisfy

∇∧ EGi = iωµ0HGi

∇∧ HGi = −iωε0EGi + j0δ(x − x′)e(i).
(10)

When the curl of the first equation is taken to eliminate the magnetic
field, we have

∇∧∇ ∧ EGi = k2EGi + iωµ0j0δ(x − x′)e(i). (11)

Forming the dot product of Es with equation (11) minus the dot
product of EGi with equation (9) and simplifying the left-hand side
using the vector identity ∇ · (a∧ b) = b · (∇∧a)−a · (∇∧ b), we have

∇ · ((∇∧ EGi) ∧ Es − (∇∧ Es) ∧ EGi)) =

−k2(N2 − 1)E · EGi + iωµ0j0δ(x − x′)Es · e(i). (12)

This last relation is integrated over (i) a rectangular volume V +

of the waveguide that is exterior to the target and bounded by the
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waveguide sidewalls and planes S1 and S2 of constant z to either
side of the target, and over (ii) the complementary volume V of the
target itself. The results simplify due to the boundary conditions on
the waveguide sidewalls and the jump conditions across the target
surface. The waveguide sidewalls are perfectly conducting, so that the
tangential component of the electric field and the normal derivative
of its normal component vanish there. This applies to each of the
imposed, scattered, and dyadic Green’s function fields separately, that
is,

Ek∧n = 0 and
∂

∂n
(Ek · n) = 0 on the waveguide sidewalls (13)

for k = i, s, and Gi. Since the target conductivity is finite,
equations (8) imply that the tangential component of the scattered
electric and magnetic fields are continuous across the target surface,
which expressed in terms of Es alone becomes

[Es ∧ n] = 0 and [(∇∧ Es) ∧ n] = 0 (14)

where [·] denotes the jump across the target surface S.
When equation (12) is integrated over the volume V + and x′ is

inside V +, where N2 = 1, we find on applying the divergence theorem
that

iωµ0j0Es(x′)·e(i)=
∫
S1+S2

(∇∧EGi)·(Es∧n)−(∇∧Es)·(EGi∧n)dS

−
∫
S+

(∇∧EGi)·(Es∧n)−(∇∧Es)·(EGi∧n)dS.(15)

Here, the unit normal n points outward from the boundary of V +

except on the target surface S where n points outward from the target,
and S+ denotes that the scattered field Es and its derivatives, which
are discontinuous across S, are evaluated immediately outside S.

In (15) the surface integral over the perfectly conducting
waveguide sidewalls is zero and has been omitted, since the boundary
conditions (13) imply that the tangential components of Es and EGi

are zero there. The integrals over the planes S1 and S2 also vanish,
as is clear when the planes are taken far from x′ and the target. To
see this, we note that since the waveguide permits only a TE10 mode
to propagate, in the absence of a short both Es and EGi are scalar
multiples of a left-going TE10 mode on S1 and are multiples of a right-
going TE10 mode on S2. The anti-symmetry of the integrand under
interchange of Es and EGi implies that the integrand vanishes on each
of S1 and S2, so that the integrals vanish separately. In the presence
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of a perfectly conducting short, S2 is chosen to coincide with the short
and the boundary conditions (13) apply, so that the integrand over S2

is again zero. Thus, (15) is

iωµ0j0Es(x′)·e(i) = −
∫
S+

(∇∧EGi)·(Es∧n)−(∇∧Es)·(EGi∧n)dS.

(16)
Integration of equation (12) over the volume of the target V , gives∫

S−
(∇∧ EGi) · (Es ∧ n) − (∇∧ Es) · (EGi ∧ n)dS

+k2
∫
V

(N2 − 1)E · EGidV = 0 (17)

where S− denotes that the scattered field is evaluated immediately
inside S. Combining equations (16) and (17), we find that

iωµ0j0Es(x′)·e(i) =−
∫
S
[(∇∧EGi)·(Es∧n)−(∇∧Es)·(EGi∧n)]+−dS

+ k2
∫
V

(N2 − 1)E · EGidV

where [·]+− denotes the jump across the target surface S. In this last
expression, the surface integral over S is zero since EGi is smooth
across S while the boundary conditions (14) imply that both Es ∧ n
and (∇∧ Es) ∧ n are continuous across S. Hence

iωµ0j0Es(x′) · e(i) = k2
∫
V

(N2 − 1)E · EGidV. (18)

This gives the scattered field at a point x′ outside the target in terms
of the total field and dyadic Green’s function integrated over the target
volume.

When x′ is removed far from the target, equation (18) gives the
scattered far-field needed for calculation of the target’s reflection and
transmission coefficients. However, since the scattered far-field in a
TE10 waveguide consists of propagating TE10 waves alone, Es is in
the direction of e(2) with magnitude Es given by setting i = 2 in (18).
The construction of the dyadic Green’s function for the waveguide is
given in the Appendix, and since only the y-component of the Green’s
function contributes to the scattered far-field, its contribution is given
by taking the one term with m = 1 and n = 0 in the sum of equation
(A7) there. This is the far-field approximation of the Green’s function
(A8), which is written as EG2 ∼ Ep

G2e
(2), where
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EP
G2(x,x

′) =

−j0k
2

ωε0WHk10
sin

πx

W
sin

πx′

W



eik10|z−z′| no short

eik10|z−z′|−e−ik10(z+z′−2L) with short.

(19)

Inspection shows that (19) is a scalar multiple of a left-going
TE10 wave with argument the left-most in the z direction of x or x′,
multiplied by the scaled imposed field ei of (3) with argument the right-
most of x or x′. Like the imposed field, the Green’s function varies
solely on the length scale of the waveguide width W , so that by the
same reasoning given after equation (33) below, when EG2 is expressed
in terms of polar coordinates in and near the target it is represented
by its Taylor series in r, in which the magnitude of successive terms
decreases by the aspect ratio α. In the far-field, we therefore have

iωµ0j0Es(x′) = k2
∫
V

(N2 − 1)E · e(2)Ep
G2dV (20)

for the strength of the scattered field.

4. THE SCATTERED FIELD IN AND NEAR THE
TARGET

We now formulate and solve a boundary value problem to construct
the scattered near-field, in and near the target.

The magnetic field is eliminated from equations (4) by taking the
curl of the first equation of the pair, to give

(∇2 + k2N2)E = ∇(∇ · E). (21)

The divergence of the second of equations (4) implies that ∇·(N2E) =
0, which can usefully be regarded as the expression for conservation of
electric charge written in terms of E. On expanding this relation and
eliminating ∇ · E from (21), we have

(∇2 + k2N2)E = −∇
(

E · ∇N2

N2

)
. (22)

Jump conditions across the target surface can be written in terms
of E as

[E ∧n] = 0 [(∇∧E)∧n] = 0 [N2E ·n] = 0

[
∇ · (N2E)

N2

]
= 0 (23)
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Figure 2. Target orientation and coordinate system: O′ is an origin
on the cylinder axis and the Cartesian x′y′z′-axes are parallel to the
original xyz-axes of Figure 1. When the x′y′z′-axes are rotated through
φ about u = cosψe(1)−sinψe(3), which is normal to the vertical plane
containing the cylinder’s axis, the y′-axis is rotated to the s-axis and
the y′z′-coordinate plane is rotated to the θ = 0 plane of the cylindrical
coordinate system.

where [·] denotes the jump across the surface. The first two conditions
follow from the curl equations (4), while the last two conditions follow
from the expression ∇ · (N2E) = 0 noted below equation (21). These
constitute six jump conditions for the sixth order system (22).

To construct the near-field solution, we introduce local cylindrical
polar coordinates (r, θ, s) relative to an origin O′ on the cylinder axis,
which in turn has Cartesian coordinates (x0, y0, z0) relative to the
original coordinate system. The cylinder axis and s-axis coincide. The
orientation of the cylinder axis is defined by introducing two angles,
and we choose φ as the angle from the y-axis to the s-axis and ψ as
the angle from the z-axis to the projection of the s-axis on the xz-
coordinate plane, as indicated in Figure 2. The transformation from
local polar to original Cartesian coordinates is

x = x0 + s sinψ sinφ + r(sinψ cosφ cos(θ − ψ) + cosψ sin(θ − ψ))
y = y0 + s cosφ− r sinφ cos(θ − ψ) (24)
z = z0 + s cosψ sinφ + r(cosψ cosφ cos(θ − ψ) − sinψ sin(θ − ψ)).

We shall also need the expression for e(2) in terms of unit vectors in
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the polar coordinate directions, which is

e(2) = − sinφ cos(θ − ψ)e(r) + sinφ sin(θ − ψ)e(θ) + cosφe(s), (25)

and with the cylinder surface given by the equation r = ρ(s) its
outward normal n is in the direction e(r)−ρ′(s)e(s). Here and elsewhere
a prime on ρ is used to denote its derivative with respect to s.

The electric field is written as the sum of imposed and scattered
contributions E = Ei + Es as in (6). The imposed field satisfies
equation (22) with N2 set to unity everywhere, i.e., it satisfies the
Helmholtz equation (∇2 +k2)Ei = 0, and the scattered field is written
in terms of its polar components Es = (er, eθ, es). Inside the target N2

is a function of the axial coordinate s alone and ∇N2 = ∂sN
2e(s), so

that setting Ei = Eie
(2) we find that E · ∇N2 = (Ei cosφ + es)∂sN

2.
Equation (22) thus becomes

(∇2 + k2N2)Es = −k2(N2 − 1)Eie
(2) − ∂sN

2

N2
∇T (Ei cosφ + es)

−e(s) ∂

∂s

(
(Ei cosφ + es)

∂sN
2

N2

)

where ∇T is the projection of ∇ on the (r, θ) plane.
In terms of the components of the scattered field, this is

Ler −
2
r2
∂θeθ +

∂sN
2

N2
∂res + (∂2

s + k2N2)er =

k2(N2 − 1)Ei sinφ cos(θ − ψ) − ∂sN
2

N2
cosφ∂rEi (26)

Leθ +
2
r2
∂θer +

∂sN
2

N2

1
r
∂θes + (∂2

s + k2N2)eθ =

−k2(N2 − 1)Ei sinφ sin(θ − ψ) − ∂sN
2

N2

cosφ
r

∂θEi (27)(
L +

1
r2

)
es + ∂s

(
es
∂sN

2

N2

)
+ (∂2

s + k2N2)es =

−k2(N2 − 1)Ei cosφ− cosφ∂s

(
Ei

∂sN
2

N2

)
(28)

where L = 1
r∂rr∂r − 1

r2 + 1
r2∂

2
θ . In terms of components, the jump

conditions (23) are

[eθ] = 0 [es]+ρ′[er] = 0 [∂res]−[∂ser] = 0 [∂reθ]−
1
ρ
[∂θer] = 0 (29)
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[N2er] − ρ′[N2es] = [N2]Ei(sinφ cos(θ − ψ) + ρ′ cosφ) (30)

[∂rer] +
1
ρ
[er] +

[
∂s(N2es)

N2

]
= −Ei cosφ

[
∂sN

2

N2

]
, (31)

and are evaluated across r = ρ(s). The last of conditions (29) follows
on simplifying the θ component of the second of conditions (23), by
noting that the quantities eθ and es + ρ′er are continuous across the
cylinder surface and the derivatives ∂θ and ∂s + ρ′∂r are tangential to
the surface so that [(∂s + ρ′∂r)eθ] = 0 and [∂θ(es + ρ′er)] = 0.

We construct the scattered near-field by a perturbation method
based on the small aspect ratio of the cylindrical target. If ρ0 is a
reference value of the radius such as its average with respect to distance
along the cylinder axis then ρ0 	 W where W is the waveguide width,
so that the aspect ratio is α = ρ0

W 	 1. Inside and in the vicinity
of the cylinder the scattered field varies on the length scale ρ0 in the
plane transverse to the cylinder axis but varies on the length scale W
in the direction along the cylinder axis. It also depends parametrically
on the aspect ratio. Thus

Es = Es(
r

ρ0
, θ,

s

W
;α). (32)

It follows that in the boundary value problem for the scattered field
(26) to (31), r

s ∼ α and when r and s derivatives act on the scattered
field ∂

∂r ∼ 1
α

∂
∂s . Also, since the cylinder radius ρ(s) is of magnitude ρ0

but varies on scale W , ρ′(s) ∼ α.
In contrast the imposed field is a smooth function of position

everywhere and varies on the one length scale W in all directions,
so that in local polar coordinates

Ei = Ei(
r

W
, θ,

s

W
). (33)

When r and s derivatives act on the imposed field ∂
∂r ∼ ∂

∂s ∼ 1
W .

Further, inside and in the vicinity of the target r is of order ρ0, so
that r

W ∼ α, and the imposed field and its derivatives are represented
by their Taylor expansions in r, in which successive terms decrease in
magnitude by a factor α. For example, the series for the imposed field
Ei = E0ei is found from the expression for ei in equations (2) and
(3) under the transformation from Cartesian to polar coordinates (24)
followed by expansion for small r. The first term in the series for ei is
written ei0; it is a function of the axial coordinate s and the orientation
angles φ and ψ, and is the imposed field evaluated on the target axis.
Thus,

ei0 = ei(x0(s), z0(s)) where
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x0(s) = x0 + s sinψ sinφ and z0(s) = z0 + s cosψ sinφ. (34)

In view of the above remarks, inspection of the boundary value
problem (26) to (31) shows that the components of the scattered field
have expansions in terms of integer powers of α of the form

er = er0 + er1 + . . . , eθ = eθ0 + eθ1 + . . . , es = es1 + . . . , (35)

where the subscript integer denotes the integer power of α that is the
term’s magnitude, e.g., er0 = O(1) and es1 = O(α).

4.1. First Approximation to the Near-Field

The problem for the components of the scattered near-field in the first
approximation, i.e., at order one with respect to α, is found by use of
the expansion (35) in equations (26) and (27) with the first and fourth
of jump conditions (29) and jump conditions (30) and (31). It is

Ler0 −
2
r2
∂θeθ0 = 0 Leθ0 +

2
r2
∂θer0 = 0 (36)

subject to the jump conditions

[eθ0] = 0 [∂reθ0] −
1
ρ
[∂θer0] = 0 (37)

[N2er0] = [N2]E0ei0 sinφ cos(θ − ψ) [∂rer0] +
1
ρ
[er0] = 0. (38)

This has the solution

(er0, eθ0) =
N2 − 1
N2 + 1

E0ei0 sinφ(cos(θ − ψ),− sin(θ − ψ)) 0 < r < ρ

(39)

(er0, eθ0) = −N2 − 1
N2 + 1

E0ei0ρ
2

r2
sinφ(cos(θ − ψ), sin(θ − ψ)) ρ < r.

(40)

From this point on, when writing the solution for the scattered field
for r > ρ we use N2 to denote its value taken at the same value of s
but inside the target.

The mechanism that generates this leading order scattered field
is expressed in the right-hand side of the first of the jump conditions
(38), which is proportional to sinφ. In the absence of this term the
system (36) to (38) would be homogeneous and er0 and eθ0 would
vanish. When φ 
= 0, the cylinder axis is out of complete alignment
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with the direction of the imposed electric field, which therefore has
a non-zero component in its transverse or (r, θ) plane. Free and
loosely bound charges within the target material move in response to
the imposed electric field, and the component in the transverse plane
induces a periodic accumulation of charge at the target’s surface over
a microwave period. It is this surface charge which, in turn, induces
the scattered field.

The scattered near-field constructed in equations (39) and (40)
may lose validity near the end-points of the cylinder, where it intercepts
the waveguide boundaries, for some choices of orientation. From the
form (3) of the imposed field ei for a TE10 guide, where the cylinder
intercepts a sidewall x = 0 or x = W or the short z = L the factor ei0
in (39) and (40) vanishes on the cylinder axis but is non-zero and small
like the cylinder radius ρ in a region that is confined to the near-field
and within a distance of order ρ from the end. The scattered near-field
(39) and (40) does not therefore satisfy exactly the boundary condition
of zero tangential electric field on the sidewall over this small region,
and is subject to an end-effect correction at higher order. However,
where the cylinder intercepts a top or bottom waveguide boundary
y = 0 or y = H, the factor ei0 is typically of order one, and unless the
cylinder axis intercepts the boundary close to the normal so that the
factor sinφ � 0 in (39) and (40) the end-effect correction is of order one.
Similarly, if the cylinder axis is parallel to a waveguide boundary and
close to it on the order of the cylinder radius, the scattered near-field
must be modified to account for the waveguide boundary conditions,
and the correction is greatest when the axis is close to the boundaries
y = 0 and y = H.

4.2. Second Approximation to the Near-Field

The second approximation to the scattered near-field, i.e., the field
at order α, has longitudinal component es1, which satisfies the field
equation (

L +
1
r2

)
es1 = 0

and is subject to the jump conditions

[es1] + ρ′[er0] = 0 [∂res1] − [∂ser0] = 0.
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This problem is found by use of the expansion (35) in equation (28)
and the second and third of jump conditions (29). It has the solution

es1 =




∂s

(
N2−1
N2+1

ei0
)
rE0 sinφ cos(θ − ψ) 0 < r < ρ

∂s

(
N2−1
N2+1

ei0ρ
2
)

E0
r sinφ cos(θ − ψ) ρ < r.

(41)

The r and θ components of the scattered near-field at order α
satisfy the field equations

Ler1 −
2
r2
∂θeθ1 = 0 Leθ1 +

2
r2
∂θer1 = 0

and are subject to the jump conditions

[eθ1] = 0 [∂reθ1] −
1
ρ
[∂θer1] = 0

[N2er1] = [N2]E0(ei1 sinφ cos(θ − ψ) + ρ′ei0 cosφ) (42)

[∂rer1] +
1
ρ
[er1] = −E0ei0

[
∂sN

2

N2

]
cosφ.

These are found by pursuing expansion of the same equations that were
used to formulate the leading order problem (36) to (38). Here ei1 is
the second term in the Taylor expansion of ei evaluated on the target
surface r = ρ(s). Since ei is a function of the Cartesian coordinates
x and z, we find from (24) that the term in jump condition (42)
containing ei1 is

ei1 sinφ cos(θ−ψ) =
ρ

2
sinφ {β cosφ(1 + cos 2(θ − ψ)) + γ sin 2(θ − ψ)}

where (
β
γ

)
=

(
∂xei ∂zei
−∂zei ∂xei

)
x0(s),z0(s)

(
sinψ
cosψ

)
.

Thus β and γ are functions of s, φ, and ψ.
The solution for er1 and eθ1 is the sum of θ-independent parts

(e(0)
r1 , e

(0)
θ1 ) and θ-dependent parts (e(2)

r1 , e
(2)
θ1 ). The θ-independent part

is

e
(0)
r1 =



−E0ei0

(
∂sN2

N2

)
r cosφ

2 0 < r < ρ

−E0

{
ei0∂sN

2+(N2−1)
(

2ρ′

ρ ei0+β sinφ
)}

ρ2 cosφ
2r ρ < r

(43)
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with
e
(0)
θ1 = 0 for all r. (44)

The θ-dependent part is

e
(2)
r1 = Er1

{
r 0 < r < ρ
−ρ4

r3 ρ < r
e
(2)
θ1 = Eθ1

{
r 0 < r < ρ
ρ4

r3 ρ < r
(45)

where( Er1

Eθ1

)
=

N2 − 1
N2 + 1

E0

2
sinφ

(
γ β cosφ

−β cosφ γ

) (
sin 2(θ − ψ)
cos 2(θ − ψ)

)
.

(46)

4.3. Power Deposition in the Target

The rate at which the electric field deposits energy within the target,
averaged over a microwave period, has volume density σ

2 E · E∗.
Averaging this over the target’s circular cross-section, we have the
average power density deposited within the target

< P >=
σ

2πρ2

∫
r<ρ

E · E∗dA,

which is a function of the axial coordinate s.
The solution for the scattered near-field allows us to compute two

successive approximations to < P >. In the first approximation, the
total electric field is given by

E = E0ei0e
(2) + er0e

(r) + eθ0e
(θ),

where (er0, eθ0) is the first approximation to the components of the
scattered near-field inside the target as given by (39). Using this
together with the expression (25) for e(2) in a cylindrical geometry,
we find that the average power over a cross-section is

< P >=
σ

2
E2

0 |ei0|2

1 + sin2 φ




∣∣∣∣∣N
2 − 1

N2 + 1

∣∣∣∣∣
2

− 2Re

(
N2 − 1
N2 + 1

)



 .

(47)
This can be regarded as a sum of three separate contributions, which
can readily be identified on recalling that the first approximation to
the scattered near-field (39) is proportional to N2−1

N2+1
. Referring to the

terms in parenthesis, the first contribution is the power deposition due
to the imposed field alone, the second is due to the scattered field
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alone, and the third is due to the superposition of both the imposed
and scattered fields.

When the second approximation to the electric field is included,
we find a non-zero correction to the power deposition at each point
within the target. However, due to the azimuthal or θ-dependence of
the first and second approximations to the total electric field, when this
is averaged over the target cross-section we find that the correction to
< P > which it induces is zero.

5. REFLECTION AND TRANSMISSION COEFFICIENTS
FOR THE TARGET

We now evaluate the scattered electric field Es far from the target and
use it to derive expressions for the target’s reflection and transmission
coefficients. The scattered field is given by evaluating the integral in
equation (20), for which we need the near-field solution of Section 4
and the far-field expansion of the Green’s function (19).

Since the scattered far-field and the far-field Green’s function are
in the direction of the unit vector e(2), we compute the quantity E ·e(2)

in the integrand of (20), which has an expansion in terms of the target
aspect ratio α. At leading order this is given by taking the expression
(34) for the imposed field and the expression (39) for the scattered field
inside the target. Using (25) for the expression of e(2) in a cylindrical
geometry, we have

E · e(2) = E0ei0

(
1 − N2 − 1

N2 + 1
sin2 φ

)
+ O(α). (48)

Similarly, the arguments x and z of the far-field Green’s function in the
integrand of (20) are expanded with respect to r using the coordinate
transformation (24).
Reflection

For reflection, the field point x′ is to the left of the target, i.e.,
z′ < z, so that from the comment immediately below equation (19), the
far-field Green’s function is a multiple of a left-going TE10 mode with
argument x′ and, on expansion for small r, the leading order imposed
field ei0 evaluated on the target axis. On now interchanging x and
x′, we find that far from the target the scattered field is Es = Ese

(2)

where

Es =
iπk2E0

WHk10
sin

πx

W
e−ik10z

∫ s2

s1
ρ2e2

i0(N
2 − 1)

(
1 − N2 − 1

N2 + 1
sin2 φ

)
ds.

(49)
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The total electric field at a point far from the target is E = (E0ei+
Es)e(2) in terms of the imposed and scattered fields, whereas in terms
of the reflection coefficient R it is E = E0 sin πx

W (eik10z +Re−ik10z)e(2).
Equating these two expressions and using (49) for the scattered field,
we find that the reflection coefficient is

R=−e2ik10L

+
iπk2

WHk10

∫ s2

s1
ρ2e2

i0(N
2−1)

(
1−N2−1

N2+1
sin2φ

)
ds with short. (50)

Here the first term is due to reflection from the short in the absence of
the target and the second term is due to the presence of the target. In
the absence of a short, we have what is formally the same as the last
term in (50), i.e.,

R =
iπk2

WHk10

∫ s2

s1
ρ2e2

i0(N
2−1)

(
1 − N2 − 1

N2 + 1
sin2 φ

)
ds no short. (51)

In comparing these two expressions for R, we note that the scaled
imposed field ei0 defined at (3) and (34) differs between (50) and (51).
Transmission

A transmission coefficient is defined only in the case where the
waveguide has no short. For transmission, the field point x′ of equation
(20) is to the right of the target, so that the far-field Green’s function is
a multiple of a left-going TE10 mode with argument x and the imposed
field ei, which in this case of no short is a right-going TE10 wave, with
argument x′. On expanding the argument x for small r within the
target and then interchanging x and x′, we find that the scattered
field far from the target is Es = Ese

(2) where

Es =
iπk2E0

WHk10
sin

πx

W
eik10z

∫ s2

s1
ρ2|ei0|2(N2−1)

(
1 − N2 − 1

N2 + 1
sin2 φ

)
ds.

(52)
In terms of the transmission coefficient T , the total electric field

far to the right of the target is E = TE0 sin πx
W eik10ze(2). Equating

this to the total electric field as the sum of the imposed and scattered
fields, E = (E0ei + Es)e(2), we find from (52) that

T = 1+
iπk2

WHk10

∫ s2

s1
ρ2|ei0|2(N2−1)

(
1 − N2 − 1

N2 + 1
sin2 φ

)
ds no short.

(53)
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The absence of a short implies that |ei0|2 = sin2 πx0(s)
W . It is

useful to find an order of magnitude estimate for the reflection and
transmission coefficients from the formulas (50), (51), and (53) by
estimating the magnitude of the terms containing integrals over the
length of the target axis within the guide. Each of these, which
is necessarily dimensionless, contains a factor ρ2 multiplied by a
dimensional quantity that is of order 1/W 2, so that the integral terms
are all of order O(α2), where α = ρ0/W 	 1 is the target’s aspect
ratio.

We can proceed further. First, using the estimate for the electric
field near the cylinder ends which was discussed after equations (39)
and (40), we estimate the correction to the reflection and transmission
coefficients due to end-effects. In the expression (20) for the scattered
far-field, the region of integration over the cylinder ends is of order
ρ3. Where the cylinder intercepts a boundary y = 0 or y = H the
integrand in (20) is typically of order one, but where the cylinder
intercepts a sidewall x = 0 or x = W or the short z = L since both
the imposed field ei and the Green’s function (19) are of order ρ the
integrand is of order ρ2. The correction to the scattered far-field and
the scattering coefficients that is caused by end-effects is therefore of
order O(α3) for an end that intercepts y = 0 or y = H and is of order
O(α5) for an end that intercepts x = 0, x = W , or z = L. Next we
compute the correction to the scattering coefficients due to the second
approximation of the near-field away from the cylinder ends, which is
given by (41) and (43) to (46). To do so, we compute the terms at
order O(α) in equation (48) leaving a remainder at order O(α2), and
then compute the correction at order O(α3) to the scattered far-field
by evaluating the integral that appears in equation (20). However, in
computing this integral, the azimuthal or θ-dependence of all terms
for the correction is either sin(θ − ψ) or cos(θ − ψ) and integrates to
zero over the target volume. As a result, the correction induced in
the scattered far-field and the reflection and transmission coefficients
is of order O(α4). To each of the formulas (50), (51), and (53) we can
therefore add an error bound that is at most of order O(α3).

5.1. An Identity Satisfied by the Coefficients

A partial check on the validity of the expressions that have been derived
for the target’s reflection and transmission coefficients can be made as
follows. The vector identity ∇ · (a ∧ b) = b · (∇ ∧ a) − a · (∇ ∧ b)
together with equations (4) and (5) show that

∇ · (E ∧ H∗) = iw(µ0H · H∗ − εE · E∗) − σE · E∗
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where ∗ denotes the complex conjugate. The first two terms on the
right-hand side are pure imaginary while the last term is real, so that
on taking real parts we have

Re∇ · (E ∧ H∗) = −σE · E∗.

When the last relation is integrated over a rectangular region of
the waveguide, which is bounded by the waveguide sidewalls and two
planes S1 and S2 at z = constant to either side of the target, and the
divergence theorem is used, we find the identity

−Re
∫
S1+S2

(E ∧ H∗) · ndS =
∫
V
σE · E∗dV. (54)

Here V denotes the volume of the target, outside which the
conductivity σ vanishes, and n is the outward unit normal on the
rectangular region of integration. The boundary conditions at a
perfectly conducting surface have been used, i.e., that E ∧ n = 0
and H · n = 0 so that (E ∧ H∗) · n = 0, to show that the surface
integral over the guide sidewalls vanishes. Further, in the presence of a
conducting short S2 coincides with the short, and the surface integral
in (54) is then over S1 alone. The identity (54) has a simple physical
interpretation, that, on multiplying through by one half, it equates the
net electromagnetic energy flux irradiating the target, on the left-hand
side, to the total power deposited within the target, on the right-hand
side, time-averaged over the period of a microwave. The same result
can be found by taking the time-average of Poynting’s expression for
conservation of electromagnetic energy.

To use the identity as a check on the expressions obtained for the
reflection and transmission coefficients for the target, we note that its
right-hand side can be expressed in terms of the time and cross-section
averaged power deposition < P > of Section 4.3, as 2π

∫ s2
s1

ρ2 < P > ds
where s ∈ (s1, s2) denotes the axial length of the target within the
waveguide, and that the expression for < P > valid to second order in
the aspect ratio appears in equation (47). In the left-hand side of the
identity, the plane S1 with and without a short and the plane S2 in the
absence of a short are taken to be in the remote far-field of the target.
The electric field strength there is expressed in terms of the reflection
and transmission coefficients as defined above equations (50) and (53),
and the magnetic field strength which is needed to compute the energy
flux, is derived from the electric field using the first of equations (4).

Introducing the quantity

F(N2, φ) = 1 + sin2 φ




∣∣∣∣∣N
2 − 1

N2 + 1

∣∣∣∣∣
2

− 2Re

(
N2 − 1
N2 + 1

)
 ,
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which appears via the result (47) for < P >, we find that the identity
(54) gives the following relation to be satisfied by the absolute values
of the coefficients, that

2πk2

k10WH

∫ s2

s1
ρ2|ei0|2Im(N2)F(N2, φ)ds + O(α3)

=
{

1 − |R|2 − |T |2 no short
1 − |R|2 with short. (55)

The term containing the integral on the left-hand side is of order O(α2),
and the error bound O(α3) follows from the remarks below equation
(53) concerning correction to the scattered field due to end-effects.

It is now a matter of straightforward algebraic manipulation to
verify that the formulas given for the reflection and transmission
coefficients at (50), (51), and (53) satisfy the relation (55).

5.2. Examples

We consider specific examples for a cylindrical target of constant radius
0.4 cm that is placed in a TE10 waveguide with short, a microwave
source of frequency 2.45 GHz, and standard waveguide width W =
8.64 cm and height H = 4.32 cm. The quantity we calculate is
Rt = R + e2ik10L, where R is the reflection coefficient of equation
(50) for the target and short, so that Rt is given by evaluation of the
integral in (50) and is the contribution to R due to the target alone.

We consider two locations of the origin O′(x0, y0, z0) on the target
axis, with respect to which the orientation angles φ and ψ and positions
of the short z = L are taken, see Figures 1 and 2. These are referred
to as

location 1: x0 = W/2, y0 = H/2, z0 = 0, L = π/(2k10),
location 2: x0 = W/3, y0 = H/2, z0 = 0, L = π/(3k10).

Location 1 is at a local maximum of the imposed electric field strength,
while location 2 is slightly removed from it being closer to one side of
the waveguide and closer to the short. A constant baseline profile of

N2 = N2
0 = 10 + i0.00073

is taken based on data for alumina at 2.45 GHz and uniform
temperature 30◦C [9]. To indicate the effect of an inhomogeneity in
the target’s electrical conductivity we also consider a modified profile
of

N2 = N2
m = N2

0 + i0.073 exp

(
−(s− 1)2

2

)
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Table 1. Values of Re(Rt) and Im(Rt) for a cylinder placed vertically
at two different locations in a waveguide with short. N2 is either
constant (N2

0 ) or modified by a Gaussian spike in electrical conductivity
(N2

m).

Location: (x0, L) N2 Re(Rt) Im(Rt)
1: (W/2, π/2k10) constant, N2

0 -0.00012354 1.52309344
1: (W/2, π/2k10) Gaussian, N2

m -0.00640426 1.52309344
2: (W/3, π/3k10) constant, N2

0 0.74192391 0.42843021
2: (W/3, π/3k10) Gaussian, N2

m 0.74015746 0.43148980

which has a Gaussian ‘spike’ in the conductivity of 100 times the
baseline value centered 1 cm from the origin with length scale

√
2 cm.

This increase in conductivity corresponds to a localized temperature
increase to 1400oC at the spike center for alumina, and values for silica
under the same conditions are very nearly the same [9].

The real and imaginary parts of Rt for a vertical orientation of the
cylinder’s axis, φ = 0, are given in Table 1. With this orientation the
imposed electric field strength is constant along the cylinder axis, and
with N2 = N2

0 a change from location 1 to location 2 decreases the
modulus of Rt by a factor of 9/16 and decreases its argument by π/3.
The change in Rt that is caused by change of the conductivity profile
from the constant N2

0 to Gaussian N2
m profile with location fixed is

small, at most 2% in Re(Rt).
In Figure 3 we show the real and imaginary parts of Rt for the

target with N2 = N2
0 , origin at location 1, and constant angle of

declination φ = 2π/7 for ψ ∈ [0, 2π]. Here, φ is sufficiently small that
for all ψ the ends of the cylindrical target intercept the top and bottom
sides, y = 0 and y = H, of the waveguide and with the symmetrical
location of the target origin there is a high degree of symmetry to
this configuration. The plot in the Rt plane shows a straight line,
and points are marked on the path for ψ = 0 near bottom right end,
ψ = π/4 at top left end, and ψ = π/2 at bottom right end. The same
path is traced out continuously with further increase of ψ. Figure 4
shows the effect of change to the Gaussian profile N2 = N2

m on Rt with
all other conditions the same. The path in the Rt plane splits due to
the presence of the inhomogeneity, and from the different scales of the
real axes in the two figures a significant change in Re(Rt) is seen with
a much smaller change in Im(Rt). Figure 5 shows Im(Rt) versus ψ/2π
for the conditions of Figure 4 from which Rt is seen to be an even
function of ψ about ψ = π/2 and ψ = π.
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Figure 3. Real and Imaginary parts of Rt for N2 = N2
0 , location 1,

φ = 2π/7, and ψ ∈ [0, 2π].
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Figure 4. Real and Imaginary parts of Rt for the same conditions as
in figure 3 but with N2 = N2

m.
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Figure 5. Im(Rt) versus ψ/2π for the same conditions as in figure 4

Next we consider the effect of increasing the angle of declination
of the cylinder’s axis to φ = 3π/7 with the origin at the same location
1. Now φ is sufficiently large that when ψ = 0 one end of the axis
intercepts the waveguide short z = L, while the other end intercepts
the bottom side y = 0. As ψ is increased to ψc1 � 0.1509π this
end intercepts the side x = 0 and with further increase of ψ past
ψc2 � 0.2496π the end that intercepted the short begins to intercept
the side x = W . The real and imaginary parts of Rt with constant
N2 = N2

0 are given in Figure 6 for ψ ∈ [0, 2π], which shows a straight
line. The path is traced out from the top left of the figure when ψ = 0
to the bottom right when ψ = π/2 but in a non-monotone way; as ψ
is increased from a value that is just greater than ψc1 to a value equal
to ψc2 the direction of the path in the Rt plane is reversed and values
of Rt at these values of ψ are indicated in the figure by points. The
path is traced out continuously as ψ is increased further.

Figure 7 shows the effect of change to the Gaussian profile N2 =
N2

m on Rt with all other conditions as in Figure 6. Figure 7 shows
a substantial change in the shape of the path in the Rt plane, which
is due mostly to a change in the magnitude and behavior of Re(Rt).
The path is traced out from the top left when ψ = 0 to the bottom
right when ψ = π/2, and has a turning point when ψ is just less than
ψc1 and a cusp at ψ = ψc2. The combination of a value of φ that is
sufficiently large that the ends of the cylinder can intercept the short
with the displacement of the inhomogeneity in electrical conductivity
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Figure 6. Real and Imaginary parts of Rt for N2 = N2
0 , location 1,

increased declination φ = 3π/7, and ψ ∈ [0, 2π].
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Figure 7. Real and Imaginary parts of Rt for the same conditions as
in figure 6 but with N2 = N2

m.
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Figure 8. Im(Rt) versus ψ/2π for the conditions of figure 7.

away from the origin O′ introduces an asymmetry to Rt about ψ = π/2,
but this effect is found to be numerically small. When ψ is increased
beyond π/2 the path in the Rt plane is retraced exactly until the cusp
is reached at ψ = π − ψc2. With further increase of ψ the initial path
of Rt is followed so closely that departure from it is not visible on the
scale of the figure, being at most in the ninth decimal place in Re(Rt)
and always less than the tenth decimal place in Im(Rt). Figure 8 shows
Im(Rt) versus ψ/2π for this case, from which much of the change in
Rt is seen to occur when ψ is close to either zero or π.

When the cylinder origin O′ is moved to location 2, closer to
the waveguide short and sidewall x = 0, the electric field intensity
is reduced over much of its length. For a given orientation of the
cylinder’s axis the effect of a change in N2 from constant N2

0 to
modified N2

m is therefore expected to be less than that found for
location 1. Figure 9 shows the path traced out in the Rt plane for
location 2 with declination φ = 2π/7 for ψ ∈ [0, 2π]. This shows a
straight line (dashed) for constant N2 = N2

0 and the curve nearby for
non-constant N2 = N2

m. Although the difference in Rt that is caused
by the change in N2 is confirmed to be slight, its effect is sufficient
to show a just-perceptible change in the path from a straight line to
form a narrow V-shape. When the declination is increased further to
φ = 3π/7 this difference, though still present, is too small to be visible
in a figure, and the difference in the real and imaginary parts of Rt at
a given value of ψ is less than 0.25%.
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Figure 9. Real and Imaginary parts of Rt for N2 = N2
0 (dashed) and

N2 = N2
m (solid line), location 2, φ = 2π/7, and ψ ∈ [0, 2π].

6. CONCLUSION

We have used a dyadic Green’s function technique to derive reflection
and transmission coefficients for a narrow, inhomogeneous cylindrical
target that has arbitrary orientation in a rectangular TE10 waveguide.
The technique gives the scattered far-field in terms of the total electric
field within the target, which in turn is constructed by solving the
problem for the scattered field in and near the target by a multiple
scales perturbation method.

The multiple scales method is based on the target’s small aspect
ratio. That is, as a function of distance, the scattered near-field varies
on the length scale of the target’s radius in the plane perpendicular to
the target’s axis, while it varies on the length scale of the waveguide
width in the direction parallel to the target’s axis. Conversely, since
they are independent of the presence of a target within the guide, both
the imposed electric field and the Green’s function vary solely on the
length scale of the waveguide width.

The solution for the scattered near-field has been used to derive
an expression (47) for the power deposition or rate of generation of
heat inside the target, averaged over its narrow cross-section and the
fast time scale of a microwave period. This expression will appear as
a source term in an equation for the target’s thermal energy balance,
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which can be solved to find its temperature provided the temperature-
dependence of the electrical conductivity is known.

An expression for the reflection coefficient of the target when the
waveguide has a perfectly conducting short has been given at (50),
and expressions for the reflection and transmission coefficients in the
absence of a short have been given at (51) and (53). Each of these
expressions, which are dimensionless, shows that the contribution of
the target alone to the reflected and transmitted far-fields is of order
O(α2), where α 	 1 is the target’s aspect ratio. By constructing the
first correction to the scattered field within the target for small α and
considering end-effects, we have shown that the expressions given for
the reflection and transmission coefficients have an error that is at most
of order O(α3).

The analysis has been carried out for a general, inhomogeneous
target, for which the target material’s electrical properties, its
permittivity and electrical conductivity, are arbitrary functions of
position along the target’s axis. As explained in the Introduction, this
generalization is necessary when the material’s electrical properties,
and in particular its electrical conductivity, are temperature dependent
and the target is subjected to an imposed field that has a spatial
gradient and is of a sufficient intensity that it heats the target. This
situation typically occurs in microwave heating applications, where a
target may reach temperatures of 1400◦C or more.

Our motivation for considering the scattering problem has been
two-fold. First, in a low intensity field the target is very nearly
homogeneous and its electrical properties can be determined in terms
of the one dimensionless grouping N2 by measuring the strength of the
scattered field and using the expressions that have been given for the
reflection and transmission coefficients. Second, in microwave heating
applications the target is often placed in a resonant cavity between an
iris or diaphragm and a short, and the cavity is tuned by varying its
length and aperture width so as to significantly increase the imposed
field. If the target is sufficiently removed from the iris that evanescent
mode interaction can be neglected, S-matrix theory can be applied as in
[10] to combine expressions for the scattering coefficients for an isolated
iris and a target with short to determine parameters that optimize the
field within the cavity and enhance the heating process.

We have included the effect of variations in the cylindrical target’s
radius that are on the length scale of the waveguide width. This effect
is absent from the expression for the averaged power deposition but
does appear in the expressions for the target’s scattering coefficients
and will appear in the energy balance for the target’s temperature.

The analysis is restricted to values of Im(N2) that are small or of
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order one in magnitude. For a highly conducting target, Im(N2) can
be sufficiently large that the skin depth δ is smaller than the target
radius, and δ then enters the problem as an additional length scale
for the scattered near-field. Although the multiple scales analysis of
Section 4 could be extended to include such a case, microwaves do not
provide an effective means of heating a target in the high conductivity
limit. Further, for ceramics, the electrical conductivity data of [9]
indicates a value of the skin depth δ � 3.25 cm for alumina at 4 GHz
and 1400◦C, while at lower frequencies and temperatures δ is still
larger. Values of δ in the centimeter range are of the same order of
magnitude as the waveguide width, as opposed to being the same or
smaller than the values of a high aspect ratio target’s radius, which
is of the order of millimeters or less. The electrical conductivity can
increase by a further two orders of magnitude before δ decreases toward
the millimeter range.

APPENDIX A. THE DYADIC GREEN’S FUNCTION

When i = 2 the divergence of equation (10) implies that ∇.EG2 =
−iκ∂yδ(x − x′) where κ = j0

ωε0
, so that equation (11) can be written

(∇2 + k2)EG2 = −iκ
(
∂2
xye

(1) + (∂2
yy + k2)e(2) + ∂2

yze
(3)

)
δ(x − x′).

The boundary conditions on the sidewalls, and on the short if present,
are given by (13)

EG2 ∧ n = 0 and
∂

∂n
(EG2.n) = 0.

A condition of no incoming radiation is imposed as z → −∞, and in the
absence of a short as z → ∞. We construct the Cartesian components
EGi of EG2. The problem for the x-component is

(∇2 + k2)EG1 = −iκδ′(x− x′)δ′(y − y′)δ(z − z′)

on x = 0,W ∂xEG1 = 0, on y = 0, H EG1 = 0

and, with a short, on z = L EG1 = 0

The transverse eigenfunctions are therefore

φmn =




√
2

WH sin nπy
H m = 0, n = 1, 2, . . .

2√
WH

cos mπx
W sin nπy

H m,n = 1, 2, . . .
(A1)
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Setting EG1 =
∑

m,n αmnφmn, we find that αmn satisfies

(∂2
z + k2

mn)αmn = −iκ∂2
x′y′φmn(x′, y′)δ(z − z′) (A2)

where

k2
mn = k2 −

((
mπ

W

)2

+
(
nπ

H

)2
)
. (A3)

This expression for kmn is the same as the expression for the z
component of the wavenumber of TE and TM modes in the waveguide.
For a TE10 waveguide π

W < k < min( π
H , 2π

W ), so that k2
mn > 0 if and

only if m = 1 and n = 0; this is the only mode that propagates in the
z direction and all other modes are evanescent. Here, the transverse
eigenfunctions φmn have indices m = 0, 1, . . . and n = 1, 2, . . . so that
there is no term with m = 1 and n = 0 in the sum. As a result,
all terms in the sum for EG1 are evanescent, and from the expression
(20) for the magnitude of the scattered field, the x component of the
Green’s function does not contribute to the scattered field far from the
target.

When m = 0, φmn is independent of x and the right-hand side
of equation (A2) is zero, so that α0n = 0 and the index range in the
sum is thus restricted further to m, n = 1, 2, . . .. For later reference,
it is useful to give the expression for the x component of the Green’s
function, which is

EG1 = −κ

2

∞∑
m,n=1

1
kmn

φmn(x, y)∂2
x′y′φmn(x′, y′)ψmn(z, z′)

where ψmn =

{
eikmn|z−z′| no short
eikmn|z−z′| − e−ikmn(z+z′−2L) with short.

(A4)

For the y-component, the problem is

(∇2 + k2)EG2 = −iκδ(x− x′)(δ′′(y − y′) + k2δ(y − y′))δ(z − z′)

on x = 0,W EG2 = 0, on y = 0, H ∂yEG2 = 0

and, with a short, on z = L EG2 = 0.

The transverse eigenfunctions can be formed from (A1) by
interchanging both m and n and the dimensionless coordinates x/W
and y/H, so that if the same symbol φmn is used, here

φmn =




√
2

WH sin mπx
W n = 0, m = 1, 2, . . .

2√
WH

sin mπx
W cos nπy

H m,n = 1, 2, . . . .
(A5)
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and the index set is now m = 1, 2, . . . and n = 0, 1, . . .. With
EG2 =

∑
m,n αmnφmn, the coefficients αmn satisfy

(∂2
z + k2

mn)αmn = −iκ(∂2
y′ + k2)φmn(x′, y′)δ(z − z′), (A6)

which is equation (A2) under ∂2
x′y′φmn �→ (∂2

y′ + k2)φmn.
The transverse eigenfunctions for EG2 now include the one

propagating m = 1 and n = 0 mode among the index set m = 1, 2, . . .
and n = 0, 1, . . .. Further, the right-hand side of equation (A6) and
hence the coefficients αmn are non-zero for all such m and n. The
expression for EG2 is therefore given from (A4) by modifying the index
set and putting ∂2

x′y′φmn �→ (∂2
y′ + k2)φmn, so that

EG2 = −κ

2

∞∑
(m,n)=(1, 0)

1
kmn

φmn(x, y)(∂2
y′ + k2)φmn(x′, y′)ψmn(z, z′)

(A7)
where φmn is defined by (A5) but ψmn remains unchanged from (A4).

The problem for the z-component of the Green’s function is

(∇2 + k2)EG3 = −iκδ(x− x′)δ′(y − y′)δ′(z − z′)

on x = 0,W EG3 = 0, on y = 0, H EG3 = 0

and, with a short, on z = L ∂zEG3 = 0.

The transverse eigenfunctions are

φmn =
2√
WH

sin
mπx

W
sin

nπy

H
m, n = 1, 2, . . . ,

and with EG3 =
∑

m,n αmnφmn the αmn satisfy

(∂2
z + k2

mn)αmn = iκ∂y′φmn(x′, y′)δ′(z − z′).

The one propagating m = 1 and n = 0 mode is not included in
the index set, so that by the same reasoning given after equation (A3)
for the x-component the Green’s function, each term in the sum for
the z-component is evanescent and neither component of the Green’s
function contributes to the scattered field far from the target. For
completeness, we give the expression

EG3 =
iκ

2

∞∑
m,n=1

φmn(x, y)∂y′φmn(x′, y′)ψmn(z, z′)

where ψmn =

{
∂z|z − z′|eikmn|z−z′| no short
∂z|z − z′|eikmn|z−z′| − e−ikmn(z+z′−2L) with short.
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We see that only the y-component of the Green’s function
contributes to the scattered field far from the target, and the
contribution is given by taking the one term with m = 1 and n = 0
in the sum of (A7). This is the far-field approximation of the Green’s
function, EG2 ∼ Ep

G2e
(2) where

Ep
G2(x,x

′) =

−j0k
2

ωε0WHk10
sin

πx

W
sin

πx′

W

{
eik10|z−z′| no short
eik10|z−z′|−e−ik10(z+z′−2L) with short.

(A8)
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