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Abstract—A novel image solution for the canonical electrostatic
problem of a point charge in an anisotropic half-space bounded by
an anisotropic surface is presented. The image source is obtained in
operator form by using Fourier-transformed Maxwell equations and
transmission line theory. After applying methods from Heaviside
operator calculus, the image operator can be interpreted as a
combination of a point charge and a line-charge-bounded sector of
planar charge density. The new theory is shown to coincide with the
previously known image solutions of less general anisotropic media.
In addition to being applicable to any physically feasible anisotropic
medium of electrostatics, the method can be used for steady-current
conductivity problems via a duality transformation.
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1. INTRODUCTION

The image principle is a general field-theoretical method that can be
used to solve boundary-value problems by turning a difficult procedure
— construction of a Green function — into a simple field calculation
from sources in a geometry whose Green function is know beforehand.
The classical example of the image method is the determination of
electrostatic potential when a point charge is in front of an ideally
conducting infinite plane. The “reflected” part of the total potential
is obtained by placing a negative image charge to the mirror image
point behind the plane, removing the plane, and using the free-space
Green function to calculate the potential arising from the image source.
Though the potential can be computed everywhere it is physically
meaningful only in the half-space of the original source, this being
a typical limitation of the image method.

Easing the field calculations is not the only benefit of the image
method, however. Perhaps an even more remarkable but far too
often overlooked feature of the method is that it gives insight into
field theory: by inspecting the obtained image source it is possible to
develop mental pictures and deeper understanding of the physics of
the problem at hand. And this, in turn, makes it possible to derive
alternative presentations or approximations for the solution.

In this paper we tackle one of the so far (to the authors’ knowledge,
at least) unsolved canonical image problems of electrostatics, namely
the reflection image theory for a point charge in an anisotropic half-
space bounded by an anisotropic surface. Over the years limited special
solutions have been worked out, for example, for an anisotropic half-
space over a perfectly electrically or magnetically conducting surface
[1], for an isotropic half-space bounded by an anisotropic surface [2],
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and for a similarly anisotropic half-space and boundary [3]. Our
proposed general solution, in contrast, will work with all physically
justified medium parameters, and the known cases are built in the new
theory, as will be shown.

It seems that a good part of the literature concerning static
anisotropic problems deals with geophysics and current-based models
(see, e.g., [4–9]). We nevertheless chose to develop the theory with
electrostatic formulation due to its familiarity. The electrostatic
and steady current approaches are related via the traditional duality
transformations, so no applicability is lost.

The construction of the image starts, of course, from the Maxwell
equations, the (dyadic) constitutive relation, and the boundary
condition. These are spatially Fourier-transformed to obtain a
transmission-line model, which, in turn, is used to write out the
solution in a reflection coefficient-source formulation. Instead of inverse
Fourier-transforming the intermediate result directly, we use Heaviside
operator calculus to get the reflection image in operator form. The
operator is then cast into a differential equation, whose solution
finally is the “physical” image charge density. The paper ends with
a comparison of the new solution with the known ones.

2. CONSTRUCTING THE EQUATIONS

2.1. Fields in an Anisotropic Medium

The Maxwell equations of electrostatics read

∇× Ē(r̄) = 0̄, (1)
∇ · D̄(r̄) = �(r̄), (2)

�(r̄) being the source of the fields. The constitutive relation of an
anisotropic dielectric medium is

D̄(r̄) = ε0¯̄εr · Ē(r̄). (3)

The most general relative permittivity dyadic ¯̄εr of electrostatics is
real, symmetric, and positive definite [10, §13 and §21], and it can
be expressed in the right-handed basis formed from its orthonormal
eigenvectors ūu, ūv, ūw, as

¯̄εr = ūuūuεu + ūvūvεv + ūwūwεw. (4)

The eigenvalues εu, εv, εw of ¯̄εr are positive and, depending on the
medium, there may be one, two, or three distinct values.
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Figure 1. Geometry of the problem. The grey part depicts the
anisotropic half-space.

The impedance boundary condition of the anisotropic surface
(z = 0) of the anisotropic half-space (z > 0) is

n̄ · D̄(ρ̄, 0) = −∇t · ¯̄Ψs(ρ̄, 0) = −ε0∇t ·
(
¯̄ζr · Ēt(ρ̄, 0)

)
. (5)

The surface impedance dyadic ζr is symmetric and positive definite
(in the two-dimensional sense, see Appendix A2), and its dimension is
length (i.e. [ζr] = m)†. Furthermore,

ρ̄ = ūxx + ūyy (6)

is the transverse position vector, and subscript ‘t’ denotes ‘transverse’
with respect to z. The quantity ¯̄Ψs(ρ̄) is the electric surface flux
density, [ ¯̄Ψs] = As/m. The surface normal n̄ of the anisotropic
boundary coincides with ūz.

2.2. The Fourier Transformation

The configuration of the problem is shown in Figure 1. In order to
obtain the necessary transmission-line equations, we apply the two-
dimensional Fourier transformation

f(K̄, z) =
∫
Sρ

ejK̄·ρ̄f(r̄)dSρ ↔ f(r̄) =
1

(2π)2

∫
SK

e−jK̄·ρ̄f(K̄, z)dSK (7)

† The quantity ε0ζr should be called ‘surface admittance’, but the word ‘impedance’ is
used by convention of the authors.
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on every plane z = constant to the relevant Maxwell equations, yielding

∇× Ē(r̄) = (∇t + ūz∂z) × Ē(r̄) = 0̄
↔ −jK̄ × Ē(z) + ūz × ∂zĒ(z) = 0̄, (8)
∇ · D̄(r̄) = (∇t + ūz∂z) · D̄(r̄) = �(r̄)
↔ −jK̄ · D̄(z) + ūz · ∂zD̄(z) = �(z). (9)

Here we have adopted the compact notation f(z) ≡ f(K̄, z) for all
Fourier-transformed quantities; also ∂zf ≡ ∂f/∂z. The transverse
Fourier parameter vector

K̄ = ūxKx + ūyKy and |K̄| = K. (10)

It is worth noting that the Fourier transformation multiplies the
dimension of a quantity by a factor of length squared (or area), e.g.,
[D̄(r̄)] = As/m2 but [D̄(z)] = As.

Next we use (ūz, K̄/K, ūz × K̄/K) as our basis in the Fourier
space and write out the transformed Maxwell equations in this basis.
We are striving for equations compatible with the electric boundary
conditions: the continuity of transversal (w.r.t. z) electric field and
the z-component of D̄-field. Multiplying (8) by ūz · [ ] (or by K̄ · [ ],
the result will be the same) and by (ūz × K̄) · [ ], we obtain the two
equations

−jūz · K̄ × Ē(z) + ūz · ūz × ∂zĒ(z) = 0 ⇒ ūz × K̄ · Ē(z) = 0 (11)

and

−j(ūz × K̄) · (K̄ × Ē(z)) + (ūz × K̄) · (ūz × ∂zĒ(z))
= −jūz · K̄ × (K̄ × Ē(z)) + ūz · K̄ × (ūz × ∂zĒ(z))
= jK2ūz · Ē(z) + ∂z(K̄ · Ē(z)) = 0. (12)

From (11) we see that the electric field has only two components and
can thus be written as

Ē(z) =
(
K̄/K

) (
K̄/K

)
· Ē(z) + ūzūz · Ē(z) = ūKEK(z) + ūzEz(z)(13)

if we denote EK(z) = (K̄/K) · Ē(z) = ūK · Ē(z) and Ez(z) = ūz · Ē(z).
Now (12), in turn, gives a relation of the two components, namely

∂zEK(z) = −jKEz(z). (14)

Next we turn our attention to the D̄(z)-field. From the constitutive
relation (3) we get

Dz(z) = ūz · D̄(z) = ūz ·
(
ε0¯̄εr · Ē(z)

)
= ε0ūz · [¯̄εr · (ūKEK(z) + ūzEz(z))] (15)
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whence

Ez(z) =
1

ε0ūz · ¯̄εr · ūz

[
Dz(z) − ε0ūz · ¯̄εr · ¯̄It · ūKEK(z)

]
=

1
ε0εz

Dz(z) − ā · ūKEK(z) (16)

with

εz = ūz · ¯̄εr · ūz and (17)

ā =
1
εz

ūz · ¯̄εr · ¯̄It. (18)

Now (14) takes the form

∂zEK(z) + jK

(
1

ε0εz
Dz(z) − ā · ūKEK(z)

)

=
(
∂z − jā · K̄

)
EK(z) +

jK

ε0εz
Dz(z) = 0. (19)

Vector ā is perpendicular to ūz, i.e., ā · ūz = ūz · ā = 0. The transverse
unit dyadic ¯̄It = ¯̄I − ūzūz.

The K-component of D̄(z) is

DK(z) = ūK · D̄(z) = ε0ūK ·
(
¯̄εr · Ē(z)

)
= ūK · [ε0¯̄εr · (ūKEK(z) + ūzEz(z))]

= ε0

[
ūK · ¯̄εr · ūKEK(z) + ūK · ¯̄εr · ūz

·
(

1
ε0εz

Dz(z) − ā · ūKEK(z)
)]

. (20)

Applying this result to (9) we yield the equation

∂zDz(z) − jK̄ · D̄(z) = ∂zDz(z) − jKūk · D̄(z)

= (∂z − jā · K̄)Dz(z) −
jε0
εzK

K̄ · ¯̄T · K̄EK(z)

= �(z). (21)

We will study in Appendix A2 the properties of the two-dimensional
dyadic

¯̄T = εz
¯̄It · ¯̄εr · ¯̄It − ε2zāā. (22)
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Finally, the boundary condition at z = 0 Fourier-transforms as

ūz · D̄(ρ̄, 0) = −ε0∇t ·
(
¯̄ζr · Ēt(ρ̄, 0)

)
↔

Dz(0) = jε0K̄ · ¯̄ζr · Ēt(0) =
jε0
K

K̄ · ¯̄ζr · K̄EK(0). (23)

2.3. The Transmission-Line Equations

After these steps we have obtained the pair of Equations (19) and (21),
and the boundary condition (“loading impedance”) (23), which we next
cast into a form encountered in transmission-line theory. Writing (19)
and (21) in matrix form

 (∂z − jā · K̄)
jK

ε0εz

− jε0
εzK

K̄ · ¯̄T · K̄ (∂z − jā · K̄)


 (

EK(z)
Dz(z)

)
=

(
0

�(z)

)
(24)

and multiplying the equation by a nonzero number e−jā·K̄z we get
 ∂z

jK

ε0εz

− jε0
εzK

K̄ · ¯̄T · K̄ ∂z




(
EK(z)e−jā·K̄z

Dz(z)e−jā·K̄z

)
=

( 0

�(z)e−jā·K̄z

)
, (25)

which resembles the standard transmission-line equation(
∂z γZ

γ/Z ∂z

) (
U(z)
I(z)

)
=

(
u(z)
i(z)

)
. (26)

The formal solution of this equation is(
U(z)
I(z)

)
=

1
∂2
z − γ2

(
∂z −γZ

−γ/Z ∂z

) (
u(z)
i(z)

)
, (27)

and the corresponding telegraphy equation is

(
∂2
z − γ2

) (
U(z)
I(z)

)
=

(
∂z −γZ

−γ/Z ∂z

) (
u(z)
i(z)

)
. (28)

Especially, if we define the (Fourier-transformed) voltage and current
quantities

U(z) = −jKEK(z)e−jā·K̄z, [U(z)] = V, and (29)

I(z) = c0KDz(z)e−jā·K̄z, [I(z)] = A, (30)
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we can identify the transmission-line parameters propagation factor

γ =
1
εz

√
K̄ · ¯̄T · K̄, [γ] = rad/m, (31)

and characteristic impedance

Z =
Kη0√

K̄ · ¯̄T · K̄
=

Kη0

εzγ
, [Z] = Ω, (32)

and the distributed sources

u(z) = 0, [u(z)] = V/m, (33)

i(z) = c0K�(z)e−jā·K̄z, [i(z)] = A/m. (34)

As usual, c0 = 1/
√
µ0ε0 and η0 =

√
µ0/ε0. It is easy to see that the

Fourier-transformed potential φ(z) is related to the voltage U(z) as

φ(z) =
1
K2

U(z)e+jā·K̄z, [φ(z)] = Vm2. (35)

Naturally Ē(r̄) = −∇φ(r̄).
The boundary condition (23) will be represented by the loading

impedance

ZL = −U(0)
I(0)

=
jEK(0)
c0Dz(0)

=
Kη0

K̄ · ¯̄ζr · K̄
. (36)

The minus sign in front of the definition of ZL is due to the choice of
the positive direction of voltage and current on the transmission line.

3. IMAGE THEORY

3.1. The Image Sources

Let us consider a combination of voltage and current point sources
with amplitudes U0 and I0, respectively, at z = z0 on the transmission
line. This basic source can be expressed as(

ui(z)
ii(z)

)
=

(
U0

I0

)
δ(z − z0), (37)

and for this source the solution of (28) is(
U(z)
I(z)

)
=

1
2

(
sgn(z − z0) Z

1/Z sgn(z − z0)

) (
U0

I0

)
e−γ|z−z0|. (38)
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From now on we require z0 > 0, so the incident waves between
0 < z < z0 will be(

U i(z)
I i(z)

)
=

1
2

( −1 Z

1/Z −1

)(
U0

I0

)
e−γ|z−z0|=

(
U i(0)
I i(0)

)
e+γz. (39)

Because γ is purely real, we do not actually have propagating waves
but exponentially decaying direct current and voltage as we recede
from the source.

We next terminate the transmission line with the loading
impedance ZL at z = 0. From circuit theory we get the reflection
coefficient R for the voltage wave in the form

R =
ZL − Z

ZL + Z
=

1/Z − 1/ZL

1/Z + 1/ZL
. (40)

For the current wave the reflection coefficient is −R; this is due to
the previously mentioned current-voltage sign convention. Because
the reflection coefficient is a function of γ and K̄, we introduce the
notation R = R(γ, K̄).

The reflected waves in z > 0 can thus be written as(
U r(z)
Ir(z)

)
=

(
R 0
0 −R

) (
U i(0)
I i(0)

)
e−γz

=
(

R 0
0 −R

) (
U i(−z)
I i(−z)

)
. (41)

For the purpose of the inverse Fourier transformation the reflection
coefficient could be written as a Taylor series in powers of γ. If we
substituted such a series to the middle term in the expression above,
we would see that in every term of the series γne−γz = (−∂z)ne−γz.
Thus we write

R(γ, K̄)e−γz = R(−∂z, K̄)e−γz (42)

turning R into an operator. Then, noting the Fourier transformation
∇t ↔ −jK̄, we further write

R(−∂z, K̄) ↔ R(−∂z, j∇t). (43)

This is the formal inverse Fourier transformation of R(−∂z, K̄).
To obtain the sources of the reflected waves, we remove the loading

impedance, extend the z > 0 transmission line to z < 0, and insert (41)
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to (26), yielding(
ur(z)
ir(z)

)
=

(
∂z γZ

γ/Z ∂z

) (
U r(z)
Ir(z)

)

=
(

∂z γZ

γ/Z ∂z

) (
R 0
0 −R

) (
U i(−z)
I i(−z)

)

=
( −R 0

0 R

) ( −∂z γZ

γ/Z −∂z

) (
U i(−z)
I i(−z)

)

=
( −R 0

0 R

) (
∂z′ γZ

γ/Z ∂z′

) (
U i(z′)
I i(z′)

)∣∣∣∣∣
z′=−z

=
( −R(−∂z, K̄) 0

0 R(−∂z, K̄)

) (
ui(−z)
ii(−z)

)
. (44)

Extending the z > 0 transmission line to z < 0 means, of course, filling
the lower (transmission- side) physical half-space with the anisotropic
medium of the upper half-space.

3.2. The Image of a Point Charge

Now we are ready to return to our specific problem. Our charge density

�(r̄) = Qδ(r̄ − ūzz0), z0 > 0, (45)

representing a point charge in the anisotropic half-space. The
distributed sources are, as per (33) and (34),

ui(z) = 0, (46)

ii(z) = Qc0Ke−jā·K̄zδ(z − z0), (47)

and it is straightforward to read the reflection sources from (44):(
ur(z)
ir(z)

)
=

( −R(−∂z, K̄)ui(−z)
R(−∂z, K̄)ii(−z)

)

=

(
−R(−∂z, K̄) · 0

Qc0KR(−∂z, K̄)e+jā·K̄zδ(−z − z0)

)
. (48)

So, we only have a current source

ir(z) = Qc0KR(−∂z, K̄)e−jā·K̄z0δ(z + z0). (49)
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The symmetry property δ(−x) = δ(x) of the delta function has been
used.

In the Fourier space the image charge corresponding to the original
source (45) is thus

�r(z)

=
1

c0Ke−jā·K̄z
ir(z) =

Qc0K

c0Ke−jā·K̄z
R(−∂z, K̄)e−jā·K̄z0δ(z + z0)

= Qejā·K̄(z−z0)R(−∂z, K̄)δ(z + z0), (50)

and the image charge in the anisotropic space is the inverse Fourier
transformation of (50), being in operator form

�r(r̄) = Qe−(z−z0)ā·∇tR(−∂z, j∇t)δ(ρ̄)δ(z + z0). (51)

The remaining task is to interpret this expression. The easy part is
the exponential operator — it just shifts any function laterally (i.e., in
the xy-plane):

e(z0−z)ā·∇tf(ρ̄) = f (ρ̄ + ā(z0 − z)) . (52)

To interpret the reflection operator we shall study the reflection
coefficient.

4. THE IMAGE PROPER

4.1. The Reflection Operator

We first define the transformation

K̄′ =
1
εz

¯̄T
1/2 · K̄. (53)

Taking the square root is permitted on the basis of what is said about
¯̄T in Appendix A2. This changes (31) and (36) to read

γ =
1
εz

√
K̄ · ¯̄T · K̄=

1
εz

√
K̄ · ¯̄T

1/2 · ¯̄T
1/2

=
√

K̄′ · K̄′= K ′ and (54)

ZL =
Kη0

K̄· ¯̄ζr ·K̄
=

Kη0

ε2zK̄′ · ¯̄T−1/2 · ¯̄ζr · ¯̄T
−1/2 ·K̄′

=
Kη0

εzK̄′ · ¯̄ζ′
r · K̄′

, (55)

respectively; with this transformation we turn the upper half-space
isotropic. Here

¯̄ζ
′
r = εz

¯̄T
−1/2 · ¯̄ζr · ¯̄T

−1/2
= ū′

xū
′
xζ

′
x + ū′

yū
′
yζ

′
y, (56)
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because all important properties of ¯̄T and ¯̄ζr, namely the symmetry
and positive-definiteness, are carried over to ¯̄ζ

′
r. (For the details of ¯̄ζ

′
r

see Appendix A3.) We have chosen direction ū′
x to correspond to the

eigenvector of the larger eigenvalue of ¯̄ζ
′
r. We next define

ζ ′d = ζ ′x − ζ ′y, (57)

making ζ ′d ≥ 0, and get

K̄′ · ¯̄ζ′
r ·K̄′ = (ūxK ′

x+ū′
yK

′
y) · (ū′

xū
′
x(ζ

′
y+ζ ′d)+ū′

yū
′
yζ

′
y) · (ū′

xK
′
x+ū′

yK
′
y)

= K ′
x
2(ζ ′y + ζ ′d) + K ′

y
2
ζ ′y

= ζ ′yK
′2 + ζ ′dK

′
x
2 = ζ ′yγ

2 + ζ ′dK
′
x
2
. (58)

Substituting (32) and (36) into (40), we write

R(γ, K̄) =

Kη0

K̄ · ¯̄ζr · K̄
− Kη0

εzγ

Kη0

K̄ · ¯̄ζr · K̄
+

Kη0

εzγ

=
εzγ − K̄ · ¯̄ζr · K̄
εzγ + K̄ · ¯̄ζr · K̄

= −1 +
2εzγ

εzγ + εzK̄′ · ¯̄ζ′
r · K̄′

= −1 +
2γ

γ + ζ ′yγ2 + ζ ′dK
′
x
2 . (59)

Before proceeding it is good to elaborate the ζ ′dK
′
x
2 term a bit. In the

inverse Fourier transformation we integrate over the K̄-plane, but here
we have an expression containing K̄′. However, we see that

ζ ′dK
′
x
2 = ζ ′d(ū

′
x · K̄′)2 = ζ ′d(ū

′
x · ¯̄T

−1/2 · K̄/εz)2

= ζ ′′d(ū′′
x · K̄)2 ↔ ζ ′′d(jū′′

x · ∇t)2 = −ζ ′′d∂
2
x′′ (60)

with

ζ ′′d = (ζ ′d/ε
2
z)ū

′
x · ¯̄T · ū′

x and ū′′
x =

ū′
x · ¯̄T

1/2√
ū′
x · ¯̄T · ū′

x

. (61)
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The image expression in operational form is now

�r(r̄) =Qe(z0−z)ā·∇t

[
−δ(ρ̄)δ(z+z0)+

−2∂
−∂z + ζ ′y∂2

z − ζ ′′d∂
2
x′′

δ(ρ̄)δ(z+z0)

]

=−Qδ (ρ̄ + ā(z0−z))δ(z+z0)+Qe(z0−z)ā·(ū′′
x∂x′′+ū′′

y∂y′′ )

× −2∂z
−∂z + ζ ′y∂2

z − ζ ′′d∂
2
x′′

δ(x′′)δ(y′′)δ(z + z0)

=−Qδ(x′′ + s′′x)δ(y
′′ + s′′y)δ(z + z0)

+2Qδ
(
y′′ + a′′y(z0 − z)

) (
e(z0−z)ā·ū′′

x∂x′′ [∂zFp(x′′, z)]
)

(62)

with

s̄ = ā2z0, s′′x = ū′′
x · s̄ = 2z0(ū′′

x · ā) = 2z0a
′′
x,

and s′′y = ū′′
y · s̄ = 2z0(ū′′

y · ā) = 2z0a
′′
y; (63)

ū′′
y = ūz × ū′′

x, x′′ = ū′′
x · r̄ and y′′ = ū′′

y · r̄. (64)

So, our image consists of a point charge in the laterally shifted mirror
image point and of a planar surface charge, the possibly slanted plane
being y′′ = −a′′y(z0 − z).

4.2. The Planar Image Function

The planar image is contained in the function

Fp(x′′, z) =
1

∂z − ζ ′y∂2
z + ζ ′′d∂

2
x′′

δ(x′′)δ(z + z0), (65)

which is similar to the function F (x, z) encountered in [2] when solving
the problem of a point charge in an isotropic half-space over an
anisotropic impedance surface. Therefore it is not necessary to repeat
the solution process of the resulting Klein-Gordon type equation —
it is sufficient to compare the corresponding equation here and in the
reference, and to write out the solution for z + z0 ≤ 0 immediately:

Fp(x′′, z) = −e(z+z0)/(2ζ′y)

2
√

ζ ′yζ
′′
d

I0

(√
(z + z0)2

4ζ ′y
2 − x′′2

4ζ ′yζ ′′d

)

×Θ
(
−

√
ζ ′′d/ζ

′
y(z+z0)−x′′

)
Θ

(
−

√
ζ ′′d/ζ

′
y(z+z0)+x′′

)
.

(66)
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The solution was required to vanish in the region z + z0 > 0. Here
I0(ξ) is the zeroth-order modified Bessel function.

The Heaviside unit step functions Θ(ξ) above implicate that the
solution is discontinuous along the lines

x′′ = ±
√

ζ ′′d/ζ
′
y(z + z0) = ±g(z), (67)

and that the solution vanishes outside the sector |x′′| ≤ −g(z).

4.3. The Solution

To take into account the last exponential operator, e(z0−z)ā·ū′′
x∂x′′ (an

x′′-shift), we need to export it inside the ∂z-differentiation. The planar
part will read

e(z0−z)ā·ū′′
x∂x′′

[
∂zFp(x′′, z)

]
= ∂z

[
e(z0−z)ā·ū′′

x∂x′′Fp(x′′, z)
]
− ∂z

[
e(z0−z)ā·ū′′

x∂x′′
]
Fp(x′′, z)

= ∂z
[
Fp

(
x′′ + a′′x(z0 − z), z

)]
+ a′′x∂x′′

[
Fp

(
x′′ + a′′x(z0 − z), z

)]
.

(68)

We have finally arrived to the solution of our problem. The reflection
image source is

�r(r̄) = −Qδ(r̄ + s̄ + ūzz0) −
Q√
ζ ′yζ

′′
d

δ(y′′ + a′′y(z0 − z))

×
{
∂z

[
exp

(
z + z0

2ζ ′y

)
I0

(√
(z + z0)

2

4ζ ′y
2 − ξ2

4ζ ′yζ ′′d

)

×Θ(−g(z) − ξ)Θ(−g(z) + ξ)

]}
ξ=x′′+a′′x(z0−z)

(69)

= −Qδ(r̄ + s̄ + ūzz0)

− Q√
ζ ′yζ

′′
d

δ(y′′ + a′′y(z0 − z))(∂z + a′′x∂x′′)

·
[

exp
(
z + z0

2ζ ′y

)
I0

(√
(z + z0)

2

4ζ ′y
2 − [x′′ + a′′x(z0 − z)]2

4ζ ′yζ ′′d

)

×Θ
(
−

√
ζ ′′d/ζ

′
y(z + z0) − x′′ − a′′x(z0 − z)

)
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Q

—Q

z0

z0

z

z =0
ε0 rε

Figure 2. Geometry of the image charge in the anisotropic space.
The planar part (darker grey) is laterally symmetric with respect to
its centerline (the dashed oblique line). The plane of the image is
generally not the plane of the Figure nor parallel with it.

×Θ
(
−

√
ζ ′′d/ζ

′
y(z + z0) + x′′ + a′′x(z0 − z)

)]
. (70)

We have retained the differentiation ∂z because it can be eliminated in
a partial integration when calculating the fields from the electrostatic
Green function of anisotropic space.

To summarize, we have a point charge in the laterally shifted
mirror image point and a slanted, laterally skewed planar sector of
surface charge, the tip of which is in the shifted mirror image point,
Figure 2. As has been shown in [2], the planar part has concentrated
line charges on its edges (due to the differentiation ∂zΘ(z)), and
between the edges there is a smooth distribution of surface charge.
Alternative expressions for the surface charge have been given in the
same article.

Figures 3 and 4 sketch the charge density, excluding the line
charges. A circle denotes the shifted mirror image point, i.e. the tip
of the charge sector. The chosen parameters are shown with Figure 3;
we have used the final, doubly primed coordinate system because it is
difficult to construct media which give “nice” parameter values in the



250 Hänninen, Lindell, and Nikoskinen

-20 -15 -10 -5 0
-35

-30

-25

-20

-15

-10

-5

0

 x’’/m

 z
/m

ρr(r) in units  Q/(ζ
y

ζ
d

) 1/2 m-2

-0.04

-0.028787

-0.020718

-0.01491

-0.010731

-0
.0

07
72

28

-0
.0

05
55

8

-0
.00

55
58

-0
.0

04

-0.004

-0
.0

04

-0
.0

03

-0
.0

03

-0
.0

03

-0
.0

03

-0
.0

02

-0
.0

02

-0
.0

02

-0
.0

02

-0
.0

01

-0
.0

01

-0
.0

01

-0
.0

01

0

0

0

0

0.
00

1

0.
00

1

0.
00

1

0.
00

1

0.002

0.
00

2

0.
00

2

0.002

0.003

0.003

Figure 3. Equicharge lines of the surface charge for ζ ′y = 2.7, ζ ′′d = 0.3,
a′′x = 0.3, a′′y = 0.2 and z0 = 1.1. The circle is at the shifted mirror
image point. The line charges are excluded.

final coordinates. The two coordinate transformations just stretch the
image laterally and rotate it around the z-axis, so no generality is lost
in the current way of representation.

To calculate the fields the electrostatic Green function for a
homogeneous anisotropic medium is needed. For example, the reflected
potential is (the primes now denoting the source region)

φr(r̄) =
∫
V ′

�r(r̄′)

4πε0
√

det¯̄εr

√
(r̄ − r̄′) · ¯̄ε−1

r · (r̄ − r̄′)
dV ′. (71)

Although this is computable everywhere (outside the source, at least),
it has physical significance only in the region z ≥ 0.
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Figure 4. The location and orientation of the surface charge for the
parameters of Figure 3. The circle is at the shifted mirror image point.
The shading corresponds the charge density.

5. VERIFYING THE RESULT

5.1. An Isotropic Half-Space with an Anisotropic Boundary

As a first test we consider an isotropic half-space:

¯̄εr = εr
¯̄I = εr(¯̄It + ūzūz). (72)

It is easy to see that εz = εr, ā = 0̄, and ¯̄T = ε2r
¯̄It. Because ¯̄T

is isotropic in the xy-plane, we can choose ¯̄ζr = ūxūxζx + ūyūyζy,
ζx ≥ ζy, without loss of generality. This leads to

¯̄ζr = εz
¯̄T
−1/2 · ¯̄ζr · ¯̄T

−1/2
= εr(ε−1

r
¯̄It) · ¯̄ζr · (ε−1

r
¯̄It) = ¯̄ζr/εr. (73)
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So, the unprimed and primed coordinate systems coincide, and ζ ′x,y =
ζx,y/εr. Furthermore,

ζ ′′d =
[
(ζx − ζy)/ε3r

]
ūx · ¯̄T · ūx = ζd/εr

and ū′′
x =

ūx · (εr¯̄It)√
ūx · (ε2r ¯̄It) · ūx

= ūx. (74)

This shows that the doubly primed coordinate system coincides with
the unprimed system, too. Substituting these values to (70), the image
source becomes

�r(r̄) = −Qδ(r̄ + ūzz0) −
Qεr√
ζyζd

δ(y)∂z

·
[

exp
(
εr(z + z0)

2ζy

)
I0

(
εr

√
(z + z0)

2

4ζy2
− x2

4ζyζd

)

×Θ
(
−

√
ζd/ζy(z + z0) − x

)
Θ

(
−

√
ζd/ζy(z + z0) + x

)]
.

(75)

This agrees with the previous result in [2] when εr = 1.

5.2. Similar Anisotropy of the Half-Space and the Boundary

In this context ‘similar anisotropy’ means that the modified surface
impedance ¯̄ζ

′
r is isotropic, i.e.,

¯̄ζ
′
r = ζ ′r

¯̄It = εz
¯̄T
−1/2 · ¯̄ζr · ¯̄T

−1/2 ⇔ ¯̄ζr =
ζ ′r
εz

¯̄T

⇔ ¯̄ζ
−1

r =
εz
ζ ′r

¯̄T
−1

=
1
ζ ′r

¯̄It · ¯̄ε−1
r · ¯̄It. (76)

In this case ζ ′d = ζ ′′d = 0 because ζ ′r ≡ ζ ′x ≡ ζ ′y. We look back to
the reflection coefficient (59) and assume 0 < ζ ′y < ∞. The reflection
coefficient is now

R(γ, K̄) = −1 +
2

1 + ζ ′yγ
, (77)

and the operational-form image source is

�r
0(r̄) = Q

(
e(z0−z)ā·∇tδ(ρ̄)

) (
−δ(z + z0) +

2
1 − ζ ′y∂z

δ(z + z0)
)

. (78)
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The rightmost operator part, denoted F2(z), is interpretable through
the differential equation(

1 − ζ ′y∂z
)
F2(z) = 2δ(z + z0) (79)

with the requirement F2(z) = 0 for z > z0. The solution is

F2(z) =
2
ζ ′y

e(z+z0)/ζ′yΘ(−z − z0), (80)

giving us the image source

�r
0(r̄) = −Qδ(ρ̄+s̄)δ(z+z0)+

2Q
ζ ′y

e(z+z0)/ζ′yδ(ρ̄ + ā(z0−z))Θ(−z−z0).

(81)

This equals the result obtained in [3], where an affine transformation
was used to solve the problem‡. The reference deals with static
currents, but the result is applicable to electrostatics just by changing
the symbols: Q for I0, ¯̄εr/

3
√

det¯̄εr for ¯̄σr and ε0/
3
√

det¯̄εr for σ0 (by
comparison of the Poisson equation of this problem and that of the
reference); ¯̄ζ

−1

r /ε0 for ¯̄Zs (by the boundary conditions); z0 for h,
−(z0 + z)

√
ūz · ¯̄εr · ¯̄εr · ūz/εz, for ζ, and εz/(ζ ′y

√
ūz · ¯̄εr · ¯̄εr · ūz) for τ/ν

(by the role and transformation behaviour of each coordinate).
To see that (70) is reducible to the exponential line (81), we

repeat the limiting process ζ ′′d → 0 for the complete solution. As
ζ ′′d → 0, the planar image sector becomes just the semi-infinite line
δ(ρ̄ + ā(z0 − z))Θ(−z − z0). Simultaneously the magnitude of the
planar image grows, so we expect to obtain a delta function (a line
source) and truly an image similar to (81). To see the amplitude of
the delta function, we will integrate the non-differentiated part of the
planar image over the x′′-coordinate at constant z . We first take the
identity [12, formula 2.15.2.6]

∫ s

0

ξI0(tξ)√
s2 − ξ2

dξ =
√

s

2t
Γ

(
1
2

)
I1/2(st) =

√
s

2t
√
π

√
2

πst
sinh(st)

=
sinh(st)

t
, (82)

‡ The referenced article, [3], seems to be inaccurate at a few key points. The following list
proposes some amendments.
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change the variable ξ to
√

s2 − ψ2, and get

∫ s

0

ξI0(tξ)√
s2 − ξ2

dξ =
∫ 0

s

√
s2 − ψ2I0

(
t
√

s2 − ψ2
)

√
s2 − (s2 − ψ2)

−ψdψ√
s2 − ψ2

=
∫ s

0
I0

(
t
√

s2 − ψ2
)
dψ. (83)

With these results at our disposal, we integrate over the planar part:

−Qe
z+z0
2ζ′y√

ζ ′yζ
′′
d

Θ(−z − z0)
∫ −

√
ζ′′d /ζ

′′
y (z+z0)−a′′x(z0−z)

−
√
ζ′′d /ζ

′′
y (z+z0)−a′′x(z0−z)

·I0

(
1

2ζ ′y

√
(z + z0)2 −

ζ ′y
ζ ′′d

[x′′ + a′′x(z0 − z)]2
)

dx′′

= −4
Qe(z+z0)/(2ζ′y)√

ζ ′yζ
′′
d

ζ ′y

√
ζ ′′d
ζ ′y

sinh
(
− 1

2ζ ′y
(z + z0)

)
Θ(−z − z0)

= −2Qe
z+z0
2ζ′y

(
e
− z+z0

2ζ′y − e
z+z0
2ζ′y

)
Θ(−z − z0)

= −2Q
(
1 − e(z−z0)/ζ′y

)
Θ(−z − z0). (84)

Now we can continue with the full planar part; after ζ ′′d → 0 we have
the line source

�r
1p(r̄) = −2Qδ

(
y′′ + a′′y(z0 − z)

) (
∂z + a′′x∂

′′
x

)
·
[(

1 − e(z−z0)/ζ′y
)
δ
(
x′′ + a′′y(z0 − z)

)
Θ(−z − z0)

]
=

2Q
ζ ′y

e(z+z0)/ζ′yδ (ρ̄ + ā(z0 − z)) Θ(−z − z0). (85)

This is clearly of the form (81) and is thus the image source in the case
of similar anisotropy.

• Eq. (30): the right half: r → r′ = ¯̄σ
−1/2
r · r

• Eq. (46): the unit step function: U(ζ′)

• Eq. (47): ri(ζ) = ¯̄σ
1/2
r · r′i(ζ′) = ¯̄σ

1/2
r · r′i − ¯̄σ

1/2
r · n̄′ζ′ = ri(0) − qζ

• Eq. (48): q = (¯̄σr · uz)/
√

uz · ¯̄σr · ¯̄σr · uz , ζ = νζ′, ν =√
uz · ¯̄σr · ¯̄σr · uz/

√
uz · ¯̄σr · uz
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5.3. An Anisotropic Half-Space with a PEC or PMC
Boundary

If a planar perfect electric (PEC) or magnetic (PMC) conductor is the
boundary of the anisotropic half-space, the boundary impedance will
be isotropic and can be defined as the limit

¯̄ζ
E

r = lim
ζE→∞

ζE
¯̄It (PEC) or (86)

¯̄ζ
M

r = lim
ζM→∞

ζM
¯̄It (PMC). (87)

In the basis ūx, ūy dictated by ¯̄T we have ζx = ζy = ζE,M and can
therefore denote this common eigenvalue with ζ. We also see that

ζc = 0. So, the eigenvalues of ¯̄ζ
E′,M′

r are(
ζ ′x
ζ ′y

)
=

1
2
εz

(
ζ

τ1(1 + ν1)
+

ζ

τ1
±

[
ζ

τ1
− ζ

τ1(1 + ν1)

])

=
(

εzζ/τ1

εzζ/[τ1(1 + ν1)]

)
, (88)

which can be obtained by a direct comparison of the last two forms of
(110), too. The corresponding eigenvectors are, perhaps surprisingly,
ū′
x = ūy and ū′

y = −ūx due to the requirement ζ ′x > ζ ′y
The next part of the “recipe” would give us the doubly primed

quantities

ζ ′′d =
1
ε2z

(
εzζ

τ1
− εzζ

τ1(1 + ν1)

)
ūy · (ūxūxτ1(1+ν1)+ūyūyτ1) · ūy

=
ζν1

εz(1 + ν1)
, (89)

ū′′
x =

ūy · (ūxūx
√

τ1(1 + ν1) + ūyūy
√
τ1√

τ1
= ūy,

and ū′′
y = −ūx; x′′ = y and y′′ = −x. (90)

• Eq. (50): Ii(ζ) = I0
[
−δ(ζ) + 2(τ/ν)e−(τ/ν)ζU(ζ)

]
• Three lines below Eq. (55): 1/σ0 = 1/ 3

√
det(¯̄σ)

• Eq. (56), the third term: +
∫ ∞
0

(
2(τ/ν)I0e−(τ/ν)ζ

)
/ (4πσ0Dσ(r − ri(ζ))) dζ

The corrections should, of course, be propagated through the rest of the article
correspondingly. These modifications (especially the introduction of the unit vector q)
are necessary because the original article does not sufficiently take into account changes
of metric inside the field integral in the affine transformation. One must also keep an eye
on the field integral (71) of this paper when comparing — or constructing — the image
sources.
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(We could have chosen ū′
x = −ūy and ū′

y = ūx, causing a sign-change
in the double-primed coordinates and unit vectors. Nevertheless, the
image source would remain the same.) From this point on, we could
write out the image function with these eigenquantities and study its
behaviour on the limits ζ → 0 or ∞, but we just use the results from the
last section because a similar anisotropy (ζ ′′d = 0) produces an isotropic
ideal surface impedance on these extreme limits. We therefore replace
ζ with ζ ′y of the last section.

Letting ζ ′y → ∞ (the PEC case), we see that the planar part (now
the exponential line charge) vanishes, and we only have a negative
point charge shifted laterally from the mirror image point, as in [1]:

�r
E(r̄) = lim

ζ′y→∞
σr

1p(r̄) = −Qδ(ρ̄ + s̄)δ(z + z0). (91)

If, in addition, ā = 0̄ (in other words, if ¯̄εr has ūz as its eigenvector),
we have the familiar PEC image theory of electrostatics (a negative
point charge in the mirror image point).

By utilizing the delta sequence limκ→0(1/κ)e−|x|/κΘ(−x) = δ(x)
we get

�r
M(r̄) = lim

ζ′y→0
�r
1p(r̄)

= −Qδ(ρ̄ + s̄)δ(z + z0) + 2Qδ(z + z0)δ(ρ̄ + ā(z0 − z))
= Qδ(ρ̄ + s̄)δ(z + z0), (92)

which, in turn, coincides with the PMC result in [1].

6. CONCLUSION

We have constructed, via the steps described in the Introduction, an
electrostatic reflection image theory for an anisotropic boundary of
an anisotropic half-space. The image function has features from the
previously known theories: a negative point charge on the classical
mirror image depth, but laterally shifted; a planar sector charge (with
line charges on the edges) as in the image theory of an anisotropic
boundary of isotropic half-space, but laterally shifted and skewed; and,
as a limiting case, a slanted exponential line charge when the boundary
and the half-space have similar anisotropy. The known PEC and PMC
boundary cases can also be obtained.

It is good to remember that there is no need for a transmission
image: the fields behind the boundary are zero. It should also be
recalled that this electrostatic theory is readily applicable to steady-
current problems by a duality transformation — one form of which was
used in the checks of the theory.
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APPENDIX A. DYADIC FORMULAS FOR THE MEDIA

A.1. Eigenvalues and Eigenvectors of Dyadics

We first define some dyadic tools. The dyadic double-cross product
×× , double-dot product : , and double-cross square ¯̄A

(2)
are

(āb̄) ×× (c̄d̄) = (ā × c̄)(b̄ × d̄), (āb̄) : (c̄d̄) = (ā · c̄)(b̄ · d̄),

and ¯̄A
(2)

=
1
2

¯̄A ×× ¯̄A, (A1)

respectively. We also define

tr ¯̄A = ¯̄A : ¯̄I and spm ¯̄A =
1
2

¯̄A ×× ¯̄A : ¯̄I = tr ¯̄A
(2)

, (A2)

which are the trace and the sum of principal minors of any dyadic ¯̄A,
respectively. The eigenvectors āi and eigenvalues αi of a symmetric
real dyadic ¯̄A satisfy the equation

āi · ¯̄A = ¯̄A · āi = αiāi. (A3)

The equation for solving the eigenvalues is [11, (2.107)]

−det( ¯̄A − αi
¯̄I) = α3

i − α2
i tr

¯̄A + αispm ¯̄A − det ¯̄A = 0. (A4)

The determinant of a dyadic is defined as

det ¯̄A =
1
6

¯̄A ×× ¯̄A : ¯̄A. (A5)

If, in addition, ¯̄A is two-dimensional (ū · ¯̄A = ¯̄A · ū = 0 for some
real unit vector ū), we have det ¯̄A = 0, and there are at most two
nonzero eigenvalues. (The third eigenvalue, say α3, is zero.) These
two eigenvalues are the solutions of the remaining quadratic equation

α2
i − αitr ¯̄A + spm ¯̄A = 0 (A6)

and read

α1,2 =
1
2

(
tr ¯̄A ±

√
(tr ¯̄A)2 − 4spm ¯̄A

)
=

1
2

(
tr ¯̄A ±

√
(tr ¯̄A)2 − 4tr ¯̄A

(2)
)

.

(A7)
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Eigenvectors corresponding to simple nonzero roots of (A6) are of the
form

āi = ( ¯̄A − αi
¯̄I) ×× ( ¯̄A − αi

¯̄I) · c̄ (A8)

with a suitably chosen c̄. if α1 = α2 = α �= 0, we have ¯̄A = α(¯̄I− ūū),
and any vector ā1,2 satisfying ū · ā1,2 = 0 is an eigenvector. An
eigenvector corresponding to a zero eigenvalue is any vector āi with
the property ¯̄A · āi = 0.

A.2. The Anisotropic Half-Space

Let us look at the properties of the ¯̄T-dyadic (22). We can use the
dyadic identity [11, (2.47)]

¯̄A
(2) ×× ¯̄B = ¯̄A( ¯̄A : ¯̄B) − ¯̄A · ¯̄B

T · ¯̄A (A9)

and subsequently write

K̄ · ¯̄T · K̄ = K̄ ·
(
εz

¯̄It · ¯̄εr · ¯̄It − ε2zāā
)
· K̄

= K̄ ·
(
εz

¯̄It · ¯̄εr · ¯̄It − ε2z

(
ūz · ¯̄εr · ¯̄It

εz

) (
ūz · ¯̄εr · ¯̄It

εz

))
· K̄

= ūz · ¯̄εr · ūzK̄ · ¯̄εr · K̄ − K̄ · ¯̄εr · ūzūz · ¯̄εr · K̄
= K̄ · [¯̄εr(¯̄εr : ūzūz) − ¯̄εr · ūzūz · ¯̄εr] · K̄
= K̄ ·

[
¯̄ε(2)
r

×× ūzūz
]
· K̄. (A10)

Thus, ¯̄T can be written in the alternative forms

¯̄T = εz
¯̄It · ¯̄εr · ¯̄It − ε2zāā = ¯̄ε(2)

r
×× ūzūz =

(
¯̄ε−1
r

×× ūzūz
)

det ¯̄εr, (A11)

the last of which follows from the identity ¯̄A
−1

= ¯̄A
(2)T

/det ¯̄A and the
symmetry of ¯̄εr (and ¯̄ε−1

r ). The positive-definiteness of ¯̄εr ensures that
the inverse ¯̄ε−1

r exists and that det¯̄εr > 0.
We already saw, while defining ¯̄T, that it is symmetric and two-

dimensional (ūz · ¯̄T = ¯̄T · ūz = 0); from (A11) we now also see
that ¯̄T is positive definite in the two-dimensional sense, i.e., for every
nonzero b̄⊥ūz we have ¯̄T : b̄b̄ > 0. This, in turn, means that ¯̄T
has two positive eigenvalues and two orthogonal eigenvectors in the
xy-plane. We therefore can choose the coordinate axes so that the
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unit (eigen)vector corresponding to the larger eigenvalue is ūx and the
other unit vector is ūy = ūz × ūx. Taking, for example, two numbers
τ(> 0) and ν(≥ 0), we would arrive to the form

¯̄T = ūxūxτ(1 + ν) + ūyūyτ, (A12)

which satisfies all requirements for a meaningful ¯̄T.
Because the two nonzero eigenvalues of ¯̄T are positive, we can

immediately see the ordering of the eigenvalues (A7), namely

α1,2 =
(

τ(1 + ν)
τ

)
=

1
2

(
tr ¯̄T ±

√(
tr ¯̄T

)2
− 4spm ¯̄T

)

=
1
2

(
tr ¯̄T ±

√(
tr ¯̄T

)2
− 4tr ¯̄T

(2)

)

=
1
2

(
¯̄ε(2)
r :

[
(ūzūz : ¯̄I)¯̄I − ūzūz

]

±
√(

¯̄T : ¯̄I
)2

− 4
1
2

[([
¯̄ε(2)
r

×× ūzūz
]

: ¯̄ε(2)
r

)
ūzūz

]
: ¯̄I

)

=
1
2

(
¯̄ε(2)
r : ¯̄It ±

√(
¯̄ε(2)
r : ¯̄It

)2
− 4ūzūz :

(
1
2
¯̄ε(2)
r

×× ¯̄ε(2)
r

))

=
1
2

(
¯̄ε(2)
r : ¯̄It ±

√(
¯̄ε(2)
r : ¯̄It

)2
− 4εzdet¯̄εr

)
(A13)

We use the identity ¯̄A
(2)× ā = ( ¯̄A · ā)× ¯̄A and denote c̄ = ūz× d̄ (with

an arbitrary scalar coefficient) to get a prototype for the eigenvectors
of ¯̄T from (A8):

t̄i =
(

¯̄T − αi
¯̄I
)

××
(

¯̄T − αi
¯̄I
)
· c̄ =

(
¯̄T − αi

¯̄I
)(2)

· (ūz × d̄)

=
[(

¯̄T − α¯̄I
)(2)

× ūz

]
· d̄ =

([(
¯̄T − αi

¯̄I
)
· ūz

]
×

(
¯̄T − αi

¯̄I
))

· d̄

= −αiūz ×
[(

¯̄T − αi
¯̄I
)
· d̄

]
= −αiūz ×

[(
¯̄ε(2)
r

×× ūzūz−αi
¯̄I
)
·d̄

]
= αi

(
ūzūz · ¯̄ε(2)

r − ¯̄ε(2)
r + αi

¯̄I
)
·
(
ūz × d̄

)
=

(
αi

¯̄It − ¯̄It · ¯̄ε(2)
r · ¯̄It

)
· c̄. (A14)

The final c̄ is any vector such that t̄i �= 0̄. It is good to remember
that the eigenvectors actually define “eigenorientations” and that the
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goal is to construct two orthonormal unit vectors ūy = ūz × ūx, ūx
corresponding to the larger eigenvalue (1 + ν)τ in (A12). Should the
eigenvalues be equal, the procedure above is not necessary — see the
discussion below (A8). Sometimes the eigenvectors and eigenvalues
can be seen directly from the expression of ¯̄T. Examples are given in
the main body of the text.

If we choose c̄ = t̄i, we see that

t̄i =
(
αi

¯̄It − ¯̄It · ¯̄ε(2)
r · ¯̄It

)
· t̄i ⇔ (αi − 1)t̄i =

(
¯̄It · ¯̄ε(2)

r · ¯̄It

)
· t̄i. (A15)

This means that αi − 1 is an eigenvalue of ¯̄It · ¯̄ε(2)
r · ¯̄It (the planarized

¯̄ε(2)
r ) and that t̄i is the corresponding eigenvector.

One important property of ¯̄T shall be mentioned last. Because of
the (two-dimensional) positive-definiteness, ¯̄T has a two-dimensional
inverse ¯̄T

−1
, which behaves very much like the normal inverse: ¯̄T

−1 ·
¯̄T = ¯̄T · ¯̄T

−1
= ¯̄It. No confusion should arise from the multipurpose

use of one inversion symbol.

A.3. The Surface Impedance

After finding the eigenvectors of ¯̄T as in Appendix A2 we can write
the surface impedance dyadic in this basis as

¯̄ζr = ūxūxζx + (ūxūy + ūyūx) ζc + ūyūyζy; (A16)

ζx = ūx · ¯̄ζr · ūx, ζc = ūx · ¯̄ζr · ūy = ūy · ¯̄ζr · ūx,
and ζy = ūy · ¯̄ζr · ūy. (A17)

Then the modified surface impedance dyadic will be

¯̄ζ
′
r = εz

¯̄T
−1/2 · ¯̄ζr · ¯̄T

−1/2

= εz

(
ūxūx√

τ1
√

1 + ν1
+

ūyūy√
τ1

)
· [ūxūxζx + (ūxūy + ūyūx) ζc

+ūyūyζy] ·
(

ūxūx√
τ1
√

1 + ν1
+

ūyūy√
τ1

)

= εz

(
ūxūx

ζx
τ1(1 + ν1)

+ (ūxūy + ūyūx)
ζc

τ1
√

1 + ν1
+ ūxūx

ζy
τ1

)
= ū′

xū
′
xζ

′
x + ū′

yū
′
yζ

′
y. (A18)
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Applying (A7), we get the eigenvalues

α1,2 =
(

ζ ′x
ζ ′y

)
=

1
2

(
tr¯̄ζ

′
r ±

√(
tr¯̄ζ

′
r

)2
− 4spm¯̄ζ

′
r

)

=
1
2
εz

(
ζx

τ1(1 + ν1)
+

ζy
τ1

±
√[

ζx
τ1(1 + ν1)

− ζy
τ1

]
+

4ζ2
c

τ2
1 (1 + ν1)

)
.

(A19)

If the eigenvalues are equal, which happens when ζx = ζy(1 + ν1) and
ζc = 0, we can choose ū′

x = ūx and ū′
y = ūy. Otherwise we need the

procedure of Appendix A1 for the determination of the eigenvectors.
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