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Abstract—In this work, we summarize the existing theoretical
methods based on statistical and quanty theory and give some
non-standard mathematical approaches based on such theories to
explain the principal scalar and vector electrodynamic problems for
future applications to acoustic, radio and optical wave propagation
in homogeneous, isotropic, anisotropic and inhomogeneous media.
We show of how the statistical description of wave equations can
be evaluated based on quantum field theory with presentation of
Feynman’s diagrams by a limited-to-zero finite set of expanded Green
functions according to perturbation theory for single, double, triple,
etc, scattering phenomenon. It is shown that at very short wavelengths,
the Green’s function is damped over a few wavelengths if the refractive
index fluctuations in the medium are strong; at long wavelengths the
effective phase velocity of electromagnetic waves may be increased.
It is shown, that the coupling between different wave modes and the
energy transfer between different wave modes, may be important, even
for week random fluctuations of parameters of the medium, but it takes
a very long time.

1 Introduction

2 Main Wave Equations and Random Functions
2.1 Wave Equations
2.2 Random Functions and Their Moments
2.3 Random Equations

3 The Perturbation Method for Multiple Scattering

4 An Exact Solution of 1D-Equation



136 Blaunstein

5 The Perturbation Method and Its Approximations
5.1 Low Order Approximations
5.2 Convergence of the Perturbation Expansion
5.3 Bourret’s Bilocal and Kraichnan’s Random Coupling

Models

6 Random Taylor Expansion at Short Wavelengths

7 Exact Solution of the Scalar Wave Equation

8 Electromagnetic Wave Equation

9 Propagation in Statistically Inhomogeneous Media

10 Propagation in Homogeneous Anisotropic Media
10.1 Coupling Between Wave Modes
10.2 Energy Transfer Between Wave Modes

References

1. INTRODUCTION

The entire subject of wave propagation through random media, such
as terrestrial, atmospheric and ionospheric (e.g., plasma), has been
investigated theoretically by many authors [1–35]. As follows from
numerous theoretical works, the problem of wave propagation through
a random medium could be understood by use of non-standard
mathematical tools that are based on relations between the statistical
description of the wave field (electromagnetic and scalar) and the
treatments in quantum field theory. Because the problems of random
equations are not tractable with standard mathematical tools, we must
use some special methods such as Feynman’s diagram method [1–3],
the method of renormalization [9, 24], etc.

The main goal of this work is to summarize the existing theoretical
methods based on statistical and quantity theory and to give some non-
standard mathematical approaches based on such theories to explain
the principal problems of wave propagation for future applications
to problems of radio, acoustic and optical communications. An
example of one of the successful application of this approach to radio
propagation in terrestrial environment, rural, mixed and urban, can be
found in [31–35], where the combination of statistical description of the
terrain, as an array of randomly distributed discrete obstructions, and
the statistical description of wave equations have been evaluated based
on quantum field theory with presentation of Feynman’s diagrams
by a limited-to-zero finite set of expanded Green functions according
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to perturbation theory for single, double, triple, etc., scattering
phenomenon.

Below, in Section 2, we introduce briefly main random equations
and random functions that describe stochastic processes in the random
medium. Here, we give a direct definition of the Fourier transforms of a
stationary random function. We explain also the mathematical aspects
of random equations. In Section 3, we introduce the perturbation
method according to [9, 15, 18–20, 24] for description of wave multi-
scattering processes by use of the Feynman’s diagram procedure
[1–3]. Here, we extend this method to non-Gaussian functions by
means of a cluster expansion of the random refractive index [4–6].
In Section 4, we introduce a one-dimensional random propagation
equation having an exact solution, and containing already most
features of the general theory. Section 5 continues to describe a formal
perturbation method and its approximations for scalar wave equation
with random refractive index, with or without time dependence by use
the same Feynman’s diagram approach [1–3] to the formal perturbation
method of all orders. As in Section 3, here we continue to discuss
several approximate procedures related to the perturbation method,
such as Born’s approximation [9, 18–20, 24], Keller’s expansion [16],
Bourret’s closure assumption [15] and Kraichnan’s random coupling
model [23]. In Section 6, we use a random Taylor expansion
[9, 24] of the random refractive index, that is, we find under what
conditions it is possible to replace the random index by a mere
random variable or a linear function with random coefficients. Here
we show that at very short wavelengths compared to the range of
index correlations, the mean propagator (or Green’s function) is
damped over a few wavelengths if the refractive index fluctuations
are strong. Section 7 describes the exact solution of the scalar wave
equation through functional integration. In Section 8, we introduce the
vector electromagnetic wave equation with random index and harmonic
time dependence. It is shown here that at long wavelengths the
effective phase velocity of electromagnetic waves is increased because
of the coupling between transverse and longitudinal waves. Section 9
describes wave propagation in a statistically inhomogeneous random
medium. It is shown here that the Bourret’s approximation [15] for
the mean propagator and the subsequent damping remain valid if
the random medium is statistically inhomogeneous with a scale of
variation which is very long compared to the wavelength. In Section
10, we describe more general propagation equations of linear waves
in anisotropic random medium (namely, in plasma), and especially
the coupling between different wave modes and the subsequent energy
transfer. It is shown here the energy transfer between different wave
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modes, in e.g., a turbulent plasma, may be important, even for week
random fluctuations of parameters, but it takes then a very long time.

Despite the fact that the material in the text presented below is
based mostly on theoretical aspects of wave propagation in random
media developed and described by Bourret [15], Furutsu [7, 9, 24]
and Tatarskii [18–20], it based on some non-standard mathematical
receipts recommended by ourselves to explain the same propagation
subject through the prism of the unified fully coupled stochastic
approach based on statistical and quantum field theory to describe
the corresponding physical phenomena.

2. MAIN WAVE EQUATIONS AND RANDOM
FUNCTIONS

2.1. Wave Equations

We investigate a random medium as a medium whose parameters,
such as pressure, density, temperature, or location of the discrete
obstructions are random functions of position and time. A random
medium can also be thought of as a collection of inhomogeneous media,
each of which may be either continuous (turbulent medium) or discrete
(medium with random inclusions or obstructions). Below we will
briefly introduce the main equations that describe stochastic processes
in the random medium. The propagation phenomena of linear waves in
random medium is described by different linear differential equations
with random coefficients:

A. Scalar wave equation can be presented in the following form:

∆Ψ(r, t) − n2(r, t)
c2

∂2Ψ(r, t)
∂t2

= 0 (1)

where Ψ(r, t) is the wave field amplitude in space and time domain,
n(r, t) is the refractive index which is a random function of space (r)
and time (t), c is the wave velocity in free space.

B. Reduced scalar wave equation with any source g(r) can be
presented as follows:

∆Ψ(r) − k2n2(r)Ψ(r) = g(r) (2)

Here (2) is deduced from (1) assuming a harmonic time dependence
∼ exp{i·c·k·t} and a time independent refractive index n, where k = 2π

λ
is the wave number and λ is the wavelength. The source term g(r) is
assumed to be given and non random. For mathematical convenience
the wave number k is assumed to have a small positive imaginary part
which ensures that we are looking for the outgoing wave. Moreover,
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this imaginary part does not correspond to a damping process and may
be canceled after the correct solution has been found.

C. Electromagnetic wave equation can be presented by the
following form:

∆E(r, t) −∇(∇ · E(r, t)) − n2(r, t)
c2

∂2E(r, t)
∂t2

= 0, (3)

Here E(r, t) is the vector presentation of electromagnetic field in space
and time domain.

We must note that theoretical investigations here will be limited
to the two first equations (1) and (2), and a one-dimensional model
equation will be introduced in Section 4. Nevertheless, the results of
the theoretical investigations will be applied to the electromagnetic
wave equation in Section 8, and to more general equation in Section 9.

We shall always treat the refractive index as a time independent
random function, which is equivalent to the assumption that the
characteristic time of index fluctuations is much longer than the
period of the wave. The medium in such conditions will be taken
statistically homogeneous. This assumption excludes a medium where
the turbulence is concentrated in a small volume of space. This
restriction will be partially dropped in Section 10, where the scale of the
inhomogeneity will be taken very large compared to the wavelength.

To conclude this subsection, let us show that the scalar wave
equation (1) and the reduced scalar wave equation (2) may be treated
simultaneously. Equation (1) corresponds to an initial value problem
that well-known as the Cauchy problem, that is, we must be given
Ψ(r, 0) and ∂Ψ(r,0)

∂t in order to find Ψ(r, t). Equation (2) corresponds
to a radiation problem. Let us introduce the Laplace transform of wave
function Ψ(r, t)

Ψ(r, q) =
∞∫
0

Ψ(r, t) · exp{i · q · t} · dt, Im(q) > 0. (4)

It satisfies the following equation, which is the Laplace transform of
(1):

∆Ψ(r, q)+
q2

c2
·n2(r) ·Ψ(r, q) =

n2(r)
c2

[
i · q · Ψ(r, t = 0) − ∂Ψ(r, t = 0)

∂t

]
(5)

Equations (5) and (2) can be identified if one takes

q = c · k, Ψ(r, t = 0) = 0,
∂Ψ(r, t = 0)

∂t
= − c2

n2(r)
g(r) (6)
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We shall always choose these initial conditions for equation (1) and
treat (1) and (2) simultaneously, interchanging q and c · k, whenever
necessary.

2.2. Random Functions and Their Moments

A detailed treatment of stochastic processes may be found in [16]. In
connection with random equations, see also [17, 18]. Here we give the
main definitions in three dimensional (3D) space. By introducing any
finite number of points r1, r2, . . . , rn, we assume that the the mean
value of random functions µ(r1) · µ(r2) · · ·µ(rn) always exists. It will
denote with an angular bracket, that is,

〈µ(r1) · µ(r2) · · ·µ(rn)〉 =
∫
Ω

µ(r1) · µ(r2) · · ·µ(rn) · P (dω) (7)

This expression is usually called a moment of order n. A random
function (r. f.) will often be characterized by the infinite set of all its
moments. The r. f. µ(r) is centered if

〈µ(r)〉 = 0 (8)

It is stationary if the joint distribution of any finite number of
random variables µ(r1) ·µ(r2) · · ·µ(rn) is invariant with respect to any
simultaneous translation of its arguments. For space dependent r. f.,
it would perhaps be better to call it a stationary homogeneous r. f.
(homogeneous turbulencies). If the random function is also real valued,
the second order moment

Γ(r1, r2) = 〈µ(r1) · µ(r2)〉 (9)

is called the covariance function.
If now the random function µ(r) is stationary, the covariance

function Γ(r) is only a function of (r1 − r2), i.e.,

Γ(r1, r2) = Γ(r1 − r2) (10)

The function Γ(r) has a Fourier transform which is a positive measure
Γ(k), called the spectral measure of the stationary r. f., or spectral
density function if it reduces to an ordinary function of wave number
k. It is sometimes necessary to assume the existence of mean square
derivatives of the random function µ(r) up to a given order; this subject
will be discussed in Section 6.

Gaussian random function. A random function µ(r) is called
Gaussian if the joint distribution of any finite number of random
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variables µ(r1) · µ(r2) · · ·µ(rn) is Gaussian. This function is of
very great theoretical interest and has many practical applications,
especially because of following property:

Any scalar linear functional of a Gaussian random function
is a Gaussian random variable.

Furthermore, we note the important property of the moments of a
centered Gaussian random function

〈µ(r1) · µ(r2) · · ·µ(r2n+1)〉 = 0, (11a)

〈µ(r1) · µ(r2) · · ·µ(r2n)〉 =
∑

〈µ(ri) · µ(rj)〉 〈µ(rk) · µ(rm)〉 · · ·︸ ︷︷ ︸
p factors

(11b)

Here the summation extends over all (2·n)!
2n·n! partitions of r1 . . . r2n into

pairs. For example, for n = 2 one can easily obtain from (11)

〈µ(r1) · µ(r2) · µ(r3) · µ(r4)〉 = 〈µ(r1) · µ(r2)〉 · 〈µ(r3) · µ(r4)〉 +
〈µ(r1) · µ(r3)〉 · 〈µ(r2) · µ(r4)〉 + 〈µ(r1) · µ(r4)〉 · 〈µ(r2) · µ(r3)〉 (12)

Fourier transforms of stationary random functions. Let us consider
random valued measures as Fourier transforms of stationary random
functions. A stationary random function on real line µ(κ, ω), with
continuous covariance function has a spectral representation

µ(κ, ω) =
∞∫

−∞
dZ(k, ω) exp{ikκ} (13)

Let us explain briefly the meaning of this formula. Z(k, ω) is a random
function with orthogonal increments; this means that whenever the
parameter values satisfy

k1 < k2 ≤ k3 < k4

〈[Z(k2) − Z(k1)][Z(k4) − Z(k3)]〉 = 0
(14)

The integral in (13) is to be understood as a Stieltjes integral. With
this definition the Fourier transforms of a stationary r. f. does not
appear as another random function but as some derivative of a r. f. with
orthogonal increments. Integral presentation (13) can be generalized
for the case of three dimensional (3D) r. f.; we do not enter in this
subject transmitting the reader to [1–3].

The cluster expansion of the centered r. f. and its F. T. If the r. f.
µ(r) is centered, its covariance is else its two-point correlation
function, but this is not true for higher moments. But, as was
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shown in [1–6], the n-point correlation functions are not simultane-
ously correlated. We introduce therefore the correlation functions
h(r1, r2), h(r1, r2, r3), . . . , h(r1, r2, . . . , rp) through the following clus-
ter expansions:

〈µ(r1)µ(r2)〉 = h(r1, r2)
〈µ(r1)µ(r2)µ(r3)〉 = h(r1, r2, r3)

〈µ(r1)µ(r2)µ(r3)µ(r4)〉 = h(r1, r2)h(r3, r4) + h(r1, r3)h(r2, r4)
+h(r1, r4)h(r2, r3) + h(r1, r2, r3, r4) (15)

− − − − − − − − − − − − − − − − − − − − −

〈µ(r1)·µ(r2)· · ·µ(rp)〉=
∑

h(ri1, . . . , rik)h(rj1, . . . , rjm)h(rl1 , . . . , rln) . . .

where the summation is extended over all parameters of the set
1, 2, . . . , p into clusters of at least two points. From (11) it follows
that for a centered Gaussian random function (g. r. f.) all correlation
functions except the second order one vanish.

A graphic representation in terms of Mayer diagrams [1–3] may
be helpful. The correlation function h(r1, r2, . . . , rp) is represented by
a set of p points connected by p lines:

h(r1, r2) = 1

2
, h(r1, r2, r3) = , . . . (16)

the cluster expansion is then written graphically. For example

〈µ(r1)µ(r2)µ(r3)µ(r4)〉 = (17)

1 3

2 4

1 3 1 3 1 3

2 4 2 4 2 4

+ + +

This definition of the correlation functions ensures that they vanish
if the points r1, r2, . . . , rp are not inside a common sphere of radius �
(the proof follows by induction). We shall also need the F. T. of the
correlation functions

h(k1, k2, . . . , kp) =
1

(2π)3p

∫
h(r1, r2, . . . , rp)

· exp{−i(k1r1 + · · · + kprp)}d3r1 · · · d3rp (18)

If the random function µ(r) is stationary, this is not a function, but
a measure concentrated in the hyperplane k1 + k2 + · · · + kp = 0. We
shell therefore write

h(k1, k2, . . . , kp) = g(k1, k2, . . . , kp) · δ(k1 + k2 + · · · + kp) (19)
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and call the ordinary functions g(k1, k2, . . . , kp), somewhat improperly
the F. T. of the correlation functions, or simply the correlation
functions in k-space. Using these functions, we can write the cluster
expansion of the moments in k-space as

〈µ(k1)µ(k2)〉=g(k1, k2) · δ(k1 + k2)
〈µ(k1)µ(k2)µ(k3)〉=g(k1, k2, k3) · δ(k1 + k2 + k3) (20)

〈µ(k1)µ(k2)µ(k3)µ(k4)〉=g(k1, k2)·g(k3, k4)·δ(k1+k2)·δ(k3+k4)+· · ·

2.3. Random Equations

A random equation such as (2)

∆Ψ(r) − k2n2(r)Ψ(r) = g(r) (21)

describes linear waves and does not constitute a linear problem because
the mean solutions not satisfy the mean equation. This is because〈

n2(r)Ψ(r)
〉

=

〈
n2(r)

〉
〈Ψ(r)〉

In other words, the wave function and the refractive index are not
statistically independent. If we try to evaluate

〈
n2(r)Ψ(r)

〉
, we must

multiply (21) by n2(r) and average afterwards; this will rise to a form
∼

〈
n2(r1)n2(r)Ψ(r)

〉
, and so on.

Keller [16] has obtained an equation for a functional generating
the whole set of moments. This equation may perhaps suggest now
approximation procedures, but it does not solve the problem. The
fact that even the lowest order moment of the wave function 〈Ψ(r)〉
depends upon all the infinite set of moments of the refractive index
seems to make the problem hopelessly difficult. It happens however,
that in certain limiting cases one may obtain solutions which do not
depend upon all the moments of the refractive index.

Therefore, the perturbation method described in Section 3, gives
the Bourret equation which depends only on the mean value and the
covariance of the refractive index. It is only valid for wavelengths which
are longer compared to the range of index correlations. Conversely,
for the random Taylor expansion (see Section 6) we need only the
probability distribution of the index and some of its derivatives at one
fixed point. It is valid for wavelengths which are very short compared
to the range of index correlations.

Another case of great interest is when n2(r) is a Gaussian random
function (g. r. f.). It is then possible to get an exact solution of (21)
through functional integration, which gives all the moments of the
wave functions in terns of mean value and covariance of n2(r) (see
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Section 7). Unfortunately this method cannot be generalized to other
equations such as the electromagnetic wave equation (3). Finally, it
must be stressed that no rigorous mathematical treatment (existence,
unity) of (21) has been given up to now. This is mainly because one is
not able to solve linear partial differential equations with nonconstant
coefficient in the large.

3. THE PERTURBATION METHOD FOR MULTIPLE
SCATTERING

The multiple scattering perturbation method is a general method for
studying propagation equations with linear coefficients. It has been
first introduced by Bourret [15] and Furutsu [7, 9, 24], and studied later
by Tatarskii et al. [18–20]. It is not a rigorous method and cannot be
made rigorous because it makes constant use of divergent series (see
Section 5). Divergent series however, have been used successfully both
in quantum field theory and in non-equilibrium statistical mechanics.
It is our aim to show that the perturbation method and especially
Bourret’s approximation can be used to find uniform approximation
of the mean wave function, when the wavelength is long compared to
the range of index correlations. In this section, this will be proved
rigorously for a one dimensional model which has exact solution. It
will also be justified for the scalar wave equation, using the method of
extraction of the most divergent secular terms (terms which increase
as some power t or R) and n dimensional analysis of all perturbation
terms. Such a method has been used previously by Ishimary [26, 27]
and Balescu [28] in non-equilibrium statistical mechanics. It is not
rigorous but can be considered as physically satisfactory. In order to
avoid unnecessary complication of algebra, we shell only consider the
scalar wave equation

∆Ψ(r, t) − n2(r)
c2

∂2Ψ(r, t)
∂t2

= 0 (22)

together with the initial conditions

Ψ(r, 0) = 0,
∂Ψ
∂t

= − c2

n2(r)
j(r) (23)

In Section 2 this equation was shown to be equivalent to the random
problem (2). The solution of (2.2) is obtained by changing z into ck0

in Laplace transform (L. T.) of Ψ(r, t). We shall make the assumption
that the refractive index is a stationary random function of position,
and is time independent. The assumption of strict stationary (i.e.,
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not only for the two first moments) is essential. We separate now the
constant mean value of n2(r) and its random part.

n2(r) =
〈
n2(r)

〉
[1 + ε · µ(r)]

〈µ(r)〉 = 0 (24)

Here ε is a dimensionless small positive parameter characterizing the
relative strength of index fluctuations. Equation (22) is now written

∆Ψ(r, t) − 1
c2

[1 + ε · µ(r)]
∂2Ψ(r, t)

∂t2
= 0 (25)

where
〈
n2(r)

〉
has been incorporated into 1

c2
. Laplace pransform (L. T.)

with respect to time and Fourier transform (F. T.) with respect to space
will be two powerful tools in our future investigations. The L. T. and
F. T. of Ψ(r, t) are defined as

Ψ(r, z) =
∞∫
0

exp{izt}Ψ(r, t)dt, Im(z) > 0 (26)

and

Ψ(k, ·) =
∞∫
0

exp{−ik · r}Ψ(r, ·)d3r (27)

and similar definition for j(k) the F. T. of the source function. It should
be observed that the same Ψ(v, u) is used for the wave as a function
of (r, t), (r, z), (k, t), and (k, z).

The stationary r. f. is written in terms of its F. T. µ(r) which is a
random valued measure (r. v. m.)

µ(r) =
∫

exp{ik · r}µ(k)d3k (28)

The L. T. of (22), taking into account the initial conditions (23) is

∆Ψ(r, z) +
z2

c2
[1 + εµ(r)]Ψ(r, z) = j(r) (29)

and the F. T. of this equation is[
−k2 +

z2

c2

]
Ψ(k, z) +

εz2

c2

∫
µ(k − k′)Ψ(k′, z)d3k′ = j(k) (30)
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Equation (29) and (30) are both of the type

(L0 + εL1)Ψ = j (31)

where L0 is a non-random operator whose inverse G(0) = I−1
0 , called

the unperturbed propagator (or Green’s function), is known, and L1

is a random operator. In r-space

L0 = ∆ +
z2

c2
, G(0)(r, r′; z) =

exp{iz|r − r′|}
−4π|r − r′| , L1 =

z2

c2
µ(r) (32)

acting as an integral convolution operator. In k-space

L0 = −k2 +
z2

c2
, G(0)(k; z) =

c2

z2 − c2k2
, L1 =

z2

c2
µ(k − k′) (33)

acting as an integral convolution operator. In r-space L1 is diagonal
operator and L0 is not; in k-space it is the converse. The solution of
(31) is now formally expanded in powers of ε yielding

Ψ = (L0 + εL1)−1j = L−1
0 j− εL−1

0 L1L
−1
0 j + ε2L−1

0 L1L
−1
0 L1L

−1
0 j + · · ·

(34)
where (L0 + εL1)−1 = G is called the perturbed propagator (or Green’s
function).

Let us represent the perturbation series for G with the aid of
diagrams which will be called bare diagrams to discriminate between
them and other drossed diagrams to be introduced afterwards. We
make the following conventions:

a) The unperturbed propagator G(0)(r, r′) is represented by a solid
line r r′.

b) The random operator −εL1 is represented by a dot •.
c) Operators act to the right.

If so, we may write

G = (35)· · ·+ + + +

Let us write down explicitly a few terms of the perturbation series in
r- and k-space.
G(r, r′; z) = G(0)(r, r′; z) − ε

z2

c2

∫
G(0)(r, r1; z)µ(r1)G(0)(r1, r

′; z)d3r1

+ε2 z
4

c4

∫∫
G(0)(r, r2; z)µ(r2)G(0)(r2, r1; z)µ(r1)G(0)(r1, r

′; z)d3r1d
3r2

(36)
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G(k, k′; z) = G(0)(k; z)δ(k − k′) − ε
z2

c2
G(0)(k; z)µ(k − k′)G(0)(k′; z)

+ε2 z
4

c4

∫
G(0)(k; z)µ(k − k1)G(0)(k1; z)µ(k1 − k′)G(0)(k′; z)d3k1 (37)

where δ(k− k′) is Dirac’s measure. In order to help the interpretation
of bare diagrams, it is sometimes useful to introduce subscripts under
certain elements:

G(r, r′; z) =
r r′

+
r r1 r′

+
r r2 r1 r′

+ · · ·

G(k, k′; z) =
k k′

+
k k1 k′

+
k k2 k21 k′

+ · · ·
(38)

The subscripts are always written under the operators which are
diagonal (the dot in r-space, the solid line in k-space). If so, the
dashed curve will connect the concrete points for which r. v. m. µ(r1)
and µ(r2) (or µ(k − k1) and µ(k1 − k′)) are inside the integrals, i.e.,

µ(r1)µ(r2) ∼ •
r2

−− •
r1

or µ(k − k1)µ(k1 − k′) ∼ • −−
k1

− •

We give now the physical interpretation of the perturbation expansion.
The r-space diagrams correspond to multiple scattering of the wave at
points r1, r2, . . . , rN . The k-space diagrams correspond to multiple
interactions between Fourier components of the wave and of the
random inhomogeneities: at each vortex of a diagram a Fourier
component kp of the wave function interacts with a Fourier component
(kp+1−kp) of the random inhomogeneities, giving, as a result, a Fourier
component kp+1 ≡ kp+1−kp+kp of the wave function. Both viewpoints
are useful; the first one, particularly for single or double scattering,
and the second one for multiple scattering, because of the wave vector
conservation conditions.

In future description, we also need the expansion of the perturbed
double propagator G ⊗ G∗, i.e., the tensor product of the perturbed
propagator and its complex conjugate. In r-space

G⊗G∗ = G(r, r′; z)G∗(r1, r
′
1; z

′) (39)

In k-space
G⊗G∗ = G(k, k′; z)G∗(k1, k

′
1; z

′) (40)

This expansion can also be written in terms of diagrams:
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G⊗G∗ = + + + + + · · ·

(41)

If we make the convention that operators of the lower line are the
complex conjugate of the usual ones, for example

k k′

k1 k1
′

= ε2 z
2z′2

c4
G(0)(k; z)µ(k − k′)G(0)(k′; z)

·G(0)∗(k1; z′)µ∗(k1 − k′1)G
(0)∗(k′1; z

′) (42)

we can now to present the mean perturbed propagator.
The mean perturbed propagator. Let us produce it in r-space

first. We take the mean value of (35)

〈
G(r, r′; z)

〉
=

r r′
+

r r1 r′
+

r r2 r1 r′
+ · · · (43)

because it is non random measure;

= 0 because of 〈µ(r)〉 = 0.

=

Higher order diagrams contain moments of µ(r) such as 〈µ(r1)µ(r2) · · ·
µ(rp)〉, which must be calculated before integration over r1, r2, . . . , rp
is performed. Such a moment can now be written as a sum of products
of correlation functions corresponding to all possible partitions of
r1, r2, . . . , rp into clusters of at least two points (see Section 2).

To every partition we associate a dressed diagrams constructed
from the bare perturbation diagrams according to the following rules:

a) If ri and rj belong to a two point cluster, we draw a curved dotted
line from ri to rj (see above, −

ri
−−−

rj
).

b) If ri, rj , rk, . . . belong to a p-point cluster (p > 2), we draw a set
of dotted lines (curved or not, namely, −•

ri
−−•

rj
−) starting from

the points ri, rj , rk, . . . and ending at a common circle.

To each bare diagram, we associate as many dressed diagrams as there
are different partitions. Their number is increasing very fast with
n. Let us for example write down all diagrams up to fourth order
of perturbation
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〈G〉 =

+ · · ·

+ + +

++

Such diagrams are called Feynman diagrams [1–3]. For random
equations, they have been introduced by Bourret [15], in the Gaussian
case, where only two point clusters are needed. If we want to write
down explicitly the contribution of any diagram, we first write the
multiple integral with µ(r1) ·µ(r2) · · ·µ(rp) for the corresponding bare
diagram, replace then 〈µ(r1) · µ(r2) · · ·µ(rp)〉 by the product of the
correlation functions corresponding to the clusters which appear in
the diagram, and finally perform the integration over r1, r2, . . . , rp.
For example:

r r4 r3 r2 r1 r′
=ε4 z

8

c8

∫
G(0)(r,r4)µ(r4)G(0)(r4,r3)µ(r3)G(0)(r3,r2)

×µ(r2)G(0)(r2,r1)µ(r1)G(0)(r1,r
′)d3r1d

3r2d
3r3d

3r4

(44a)

from which according to presented above follows

= ε4 z
8

c8

∫
G(0)(r, r4)G(0)(r4, r3)G(0)(r3, r2)G(0)(r2, r1)

×G(0)(r1, r
′)h(r1, r2)h(r3, r4)d3r1d

3r2d
3r3d

3r4 (44b)

The same diagrams can be constructed in k-space, because the cluster
expansion is valid in both spaces. We recall that the F. T. of a
correlation function being singular, it is preferable to write them as
a product of original function and a δ-measure:

h(k1, k2, . . . , kp) = g(k1, k2, . . . , kp)δ(k1 + k2 + · · · kp) (45)

If we want to calculate a diagram in k-space, we first write the
multiple integral with µ(k − kp)µ(kp − kp−1) · · · for the corresponding
bare diagram, replace then 〈µ(k − kp) · · ·µ(k1 − k′)〉 by the product
of k-space correlation functions and δ-measures corresponding to the
clusters which appear in the diagram, and finally perform in integration
over k1, k2, . . . , kp. For example
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k k3 k2 k1 k′
= ε4 z

8

c8

∫
G(0) (k−k3)G(0)(k3)µ(k3−k2)G(0)(k2)

× µ(k2−k1)G(0)(k1)µ(k1−k′)G(0)(k′)d3k1d
3k2d

3k3

(46a)

(k)µ

or

= ε4 z
8

c8

∫
G(0)(k)G(0)(k3)G(0)(k2)G(0)(k1)G(0)(k′)

×g(k−k3, k3−k2)g(k2−k1, k1−k′)δ(k−k2)δ(k2−k′)d3k1d
3k2d

3k3

(46b)

The vector differences k1 − k′, k2 − k1, . . . etc., which appear as
arguments of correlation functions, are called transition vectors. The
wave vector conservation condition k1+k2+· · ·+kp = 0 states that the
sum of the transition vectors of a given cluster is zero. An immediate
consequence of this is that any diagram has the same wave vector at
both ends. In other words, the mean perturbed propagator is a diagonal
operator in k-space. It will be noted as 〈G(k; z)〉.

The mean double propagator. If we assume the random function
to be real, the extension of the diagram technique to the mean double
propagator is straightforward in r-space. To any bare double diagram,
we associate as dressed double diagrams as there are partitions of the
whole set of upper and lower points into clusters, for example:

+ (47)++

The explicit calculation of a diagram is performed exactly as for the
mean propagator, remembering that operators in the lower lines are
complex conjugate of the usual ones.

In k-space the situation is somewhat different, because the F. T.
of a real function is not real, but enjoys the property f∗(k) = f(−k).
When we calculate a diagram in k-space, we must therefore replace
transition vectors appearing in the lower line by their opposite in the
correlation functions. For example,

k k′

k1 k′1
= ε2 z

2z′2

c4
G(0)(k′; z) G∗(0)(k′1; z

′)G∗(0)(k1; z′)

g(k − k′, k′1 − k1)δ(k − k′ + k′1 − k1) (48)

G(0)(k ; z)

×
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A consequence of the wave vector conservation condition is that the
difference of the wave vectors appearing to the right and to the left of
any double diagram is the same. If we take them equal, we obtain the
following result:

The mean spectral energy propagator
〈∣∣G(k, k′; z

∣∣2〉
satisfies a separate equation

Mass operator and Dyson equation. Feynman diagram (single or
double) is said to be unconnected if it can be cut into two or more
diagrams, without cutting any dotted lines. The following diagrams
are connected:

The following are unconnected (we give a possible cut)

The strong lines at the end of a diagram are called its terminals. We
can write any unconnected diagram as a product of connected diagrams
without terminals and strong lines. The decomposition is unique for
the single propagator, for example:

= ××××        
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=

×

× × × ×

× ××

We define now the mass operator M as the sum of all connected
diagrams without terminals contributing to the single propagator:

M = + · · ·
(49)

+ + +

In k-space M is diagonal operator M(k; z); in r-space, it is an integral
convolution operator M(r, r′; z). It is useful to introduce two new
symbols for the mean perturbed propagator and the mass operator

〈G〉 = M = (50) ========= , 

Using the decomposition of unconnected diagrams into products of
connected ones, the following expansion is easily derived:

=

(51)+ · · ·

+ +

+

This is formally equivalent to an equation called the Dyson equation
in quantum field theory:

(52)= +

If M(k; z) is known, this is an ordinary equation for 〈G(k; z)〉 in k-
space; solving it we get

〈G(k; z)〉 =
G(0)(k; z)

1 −G(0)(k; z)M(k; z)
(53)

In order to find the double propagator counter part of the Dyson
equation, we define the operator as the sum of all connected
double diagrams without terminals. Using this operator the following
expansion is derived for the mean double propagator:
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〈G⊗G∗〉 = + · · · (54)+ +

Equation (54) is formally equivalent to an equation called sometimes
the Bethe-Salpeter equation:

〈G⊗G∗〉 = (55)+ 〈G⊗G∗〉

If the mean perturbed propagator and the operator are known, this
is an integral equation for the mean double propagator.

Before, we try to use all this perturbation formalism to get
approximate solutions for the mean propagator and double propagator,
we shall study in the next section a one-dimensional (1D) random
equation which has exact solution. It will help us to find out what
kind of approximation are acceptable and what kind are not.

4. AN EXACT SOLUTION OF 1D-EQUATION

In this section, we study the one-dimensional equation:

∂Ψ(x, t)
∂x

+
1
c
[1 + εµ(x)]

∂Ψ(x, t)
∂t

= 0 (56)

where µ(x) is a real, centered and stationary Gaussian random function
(g. r. f.) with covariance function

Γ(x, x′) =
〈
µ(x)µ(x′)

〉
(57)

and the associated radiation problem

∂Ψ(x)
∂x

− ik0[1 + εµ(x)]Ψ(x) = δ(x) (58)

where δ(x) is Dirac’s distribution at the origin. The wave number
k0 = 2π/λ = 2πf/c is taken positive. Here λ is the wavelength, f is
the radiated frequency and c is the velocity of light. Equations (56)
and (58) can be treated simultaneously if we take the initial conditions

Ψ(x, 0) =
δ(x)

[1 + εµ(x)]
(59)

The L. T. of (56) and (58) are then identified by introducing z and ck0.
The underlying physical problem is the following: The

monochromatic source of frequency ω = 2πf = ck0 is radiating
into a semi-infinite one-dimensional medium whose refractive index
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is n(x) = 1 + εµ(x). Only propagation toward (x > 0) is considered;
reflections are assumed to be negligible. Integration of (58) gives

Ψ(x) = Y (x) exp[ik0x] exp


ik0

x∫
0

εµ(y)dy


 (60)

where Y (x) being Heaveside’s step function.
To calculate now the mean value of (60), the only random term is

the second potential. For fixed x,
x∫
0
εµ(y)dy being a linear functional

of the g. r. f., µ(x), is a centered Gaussian random variable (g. r. v.) ϕ.
If so, 〈eik0ϕ〉 is the characteristic function of this random variable. As
ϕ is Gaussian 〈

eik0ϕ
〉

= e−
1
2
k2
0〈ϕ2〉 (61)

we evaluate now

〈
ϕ2

〉
=

〈
ε2

∣∣∣∣∣∣
x∫

0

µ(y)dy

∣∣∣∣∣∣
2〉

= ε2

x∫
0

dy

y∫
0

Γ(y − y′)dy′ (62)

and finally obtain

〈Ψ(x)〉 = Y (x) exp[ik0x] exp


−1

2
k2

0ε
2

x∫
0

dy

y∫
0

Γ(y − y′)dy′

 (63)

The mean wave function is thus expressed in terms of the covariance
function of the refractive index. Higher order moments such as
〈Ψ(x)Ψ(x′)〉 are easily obtained, using the characteristic function of
a multivariate Gaussian distribution [18–20]. We introduce now the
covariance function

Γ(x− x′) = exp
{
−

∣∣∣∣x− x′

�

∣∣∣∣
}

(64)

where � is the range of index correlation. The mean wave function can
now be calculated strictly

〈Ψ(x)〉 = Y (x) exp[ik0x] exp
{
−ε2k2

0�
2
(
x

�
+ e−

x
� − 1

)}
(65)

The dimensionless parameter which determines the behavior of the
solution is εk0�. There are two interesting limiting approximations:
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a) εk0� � 1. It is a long wave length approximation (λ � �), and
corresponds to weak interactions in quantum field theory. A uniform
approximation for 〈Ψ(x)〉 is then

〈Ψ(x)〉 = Y (x) exp[ik0x] exp
{
−ε2k2

0�x
}

(66)

As follows from (66), the initial excitation is damped with an extinction
length

xex =
(
ε2k2

0�
)−1

(67)

Let us compare xex and the wavelength λ ∼ (k0)−1

xex

λ
∼ 1

ε2k0�
=

1
ε
· 1
εk0�

� 1 (68)

The damping is thus very slow; it is due to phase mixing and is not
related to any dissipative mechanism. The mean wave function 〈Ψ(x)〉
can also be written as

〈Ψ(x)〉 = Y (x) exp
{
i
(
k0 − iε2k2

0�
)
x
}

(69)

The effect of randomness on the mean wave function, as follows from
(69), is simply a renormalisation of the wave number. The renormalised
wave number is now equals k = k0−iε2k2

0� which has a small imaginary
part (because εk0� � 1). In the next section, we shall obtain this
wave approximation as a sum of an infinite series extracted from the
perturbation expansion of the mean propagator.

b) εk0� � 1. It is a short wave length approximation (λ � �)
corresponding to strong interactions in quantum field theory. A
uniform approximation for 〈Ψ(x)〉 is then

〈Ψ(x)〉 = Y (x) exp[ik0x] exp
{
−1

2
ε2k2

0x
2
}

(70)

The initial excitation is damped again, with an extinction length
xex = (εk0)−1 ∼ λ/ε; the damping is more rapid than in the preceding
case. This approximation is equivalent to a renormalization of the
wave number, because x2 appears in the second exponent in (70).

Should be noted that this approximate solution is the exact
solution of the initial equation (58) if µ is not a random function, but a
mere random variable. We can conclude that when the range of index
correlations is much longer than the wavelength, the random index
behaves like a random variable. This observation will be generalized
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in Section 6. In the sequel, we shall also need F. T. of the exact mean
function (65)

〈Ψ(k)〉=
∞∫

−∞
exp(−ik0x) 〈Ψ(k)〉 dx

=
∞∫

−∞
exp[i(k0−k)] exp

(
ε2k2

0�
2x

)
exp(−ε2k2�x)exp

{
−ε2k2

0�
2e−

x
�

}
dx

(71)

Expand the last exponential term in a uniformly convergent series and
integrate (71), we finally obtain

〈Ψ(x)〉 = exp
(
ε2k2

0�
2
) ∞∑

n=0

(
−ε2k2

0�
2
)n

n!
1

ik − ik0 + ε2k2
0� + n/�

(72)

As follows from (72), 〈Ψ(x)〉 has the poles kn = k0 + iε2k2
0� + in/�,

which correspond to more and more damped partial waves in r-space.
If εk0� � 1, we can approximate 〈Ψ(x)〉 by the first partial wave
(n = 0) which gives again (69), apart a factor exp(ε2k2

0�
2) 
= 1.

5. THE PERTURBATION METHOD AND ITS
APPROXIMATIONS

In this section, we shall try to justify certain approximation procedures
using the formal perturbation series of Section 3. We recall, once more,
that the random function µ(r) is strictly stationary with respect to
space translations. Our investigations will be only concerned with the
mean propagator 〈G〉.

5.1. Low Order Approximations

In precedent section the mean wave function of the 1D-model was
shown to be damped through destructive phase mixing, the damping
length located with this phenomenon being very long compared to
the wave length. The more general situations such as the scalar wave
equation, we expect the no thing to happen. It is therefore necessary
to get approximate solutions for the mean propagator which are valid
at distances long compared to the wavelength (radiation problem)
and times long compared to the period (initial wave problem). We
shall show that low order perturbation approximations do satisfy this
condition, even for very small strength of random fluctuations ε.
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Born approximation for the mean propagator is the lowest order
non vanishing approximation of the corresponding perturbation series,
that is,

〈G〉Born = + (73)
k k k ′ k

i.e., explicitly in k-space

〈G〉 =
c2

z2 − c2k2
+

ε2z4c2

(z2 − c2k2)2

∫ Γ(k − k′)
z2 − c2k′2

d3k′ (74)

If so, G(k − k′) = g(k − k′, k′ − k) is the F. T. of the covariance
function. The squared perturbed propagator appearing in the second
term on the random homogeneous space of (74) is consequence of the
wave vector conservation conditions. This term has two double poles
z = ±cK = ±c|k|. It is well known that such double poles will be two
contributions to the inverse Laplace transform 〈G(k, t)〉, proportional
to t ·exp[icKt] and t ·exp[−icKt]. In other words the first perturbation
term has a secular behavior, i.e., it increases without any limit as
t → +∞. As this prevents any damping of the mean propagator, we
conclude:

The Born approximation is only a short time

(or short distance) approximation

It will be useful in the sequel to have a better knowledge of the
time dependence of the Born approximation. Let us, for example, take
the covariance function as

Γ(r) = exp
[
−R

�

]
, R ≡ |r| (75)

Here �, as above, is the range of refraction index correlations. To
evaluate the convolution integral

=
∫

c2Γ(k − k′)
z2 − c2k′2

d3k′ (76)

we note that it is the F. T. of

exp
[
−R

�

]
exp[izR/c]
−4πR

=
exp[(i/c) · [z + (ic/�)R]

−4πR
(77)

and changing z into z + (ic/�), we finally find
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=
c2

[z + (ic/�)]2 − c2k2
(78)

and

=
ε2c2z4

(z2 − c2k2)2 {[z + (ic/�)]2 − c2k2} (79)

Besides the double poles z = ±cK, two other poles have appeared
in (79): z = ±cK − ic/�. The corresponding contributions to L. T.
〈G(k, t)〉 are proportional to exp{±icKt} · exp{ic(t/�)}. They are thus
damped with a damping time td = �/c. This damping time is the time
the wave takes to travel a distance � equal to the size of the scattering
blobs. We call it as in quantum field theory the interaction time tint.
We turn back now to the perturbation series for the mean propagator,
and show that, as we take more and more perturbation terms we get
more and more divergent secular terms. The fourth order diagrams
are (see Section 3):

Because of the wave vector conservation condition the same vector
occurs in the middle and at the terminals of the diagram

k k k

The factor G(0)(k; z) = c2

z2−c2k2 occurs thus twice in this diagram,
producing secular terms proportional to t2 · exp[icKt] and t2 ·
exp[−icKt]. More generally, any unconnected diagram which is the
product of p connected diagrams produces secular terms proportional
to tp · exp[icKt] and tp · exp[−icKt]. We call them the leading terms of
the diagram. Besides of leading terms, there are other secular terms
with lower power of t, and also damped terms, with a damping time
which is found to be always of the order of tint = �/c. If the damping
time of the mean propagator is much longer than tint, the asymptotic
time dependence of the mean propagator will be governed essentially
by the leading terms.

Let us show that secular terms arise in the radiation problem
too. We are now looking for 〈G(r)〉, whose F. T. may be obtained by
changing z into ck0 in 〈G(k; z)〉. Taking again the covariance function
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exp(−R/�), we obtain

〈G(k)〉 =
1

k2
0 − k2

+
ε2k2

0(
k2

0 − k2
)2

1
[(k0 + i/�)2 − k2]

+ · · · (80)

This is the function of K = |k| only. Its inverse F. T. 〈G(R)〉 can be
obtained by a single integration

〈G(R)〉 =
1

(2π)2

∞∫
0

eiKR − e−iKR

iKR
K2 〈G(k)〉 dK (81)

In 〈G(k)〉 the poles K = k0 appear again with increasing multiplicity,
as we take more and more perturbation terms. As a consequence of
this, we can write

〈G(R)〉 = eik0R · [1 + AR + BR2 + · · ·] (82)

where A,B, . . . do not depend on R. As we take the limit Im(k0) → 0,
we obtain secular terms in R.

We conclude that no finite order approximation of the
perturbation series can be used because it would diverge as t → ∞
or R → ∞. It is trivial observation however that an infinite sum of
secular terms may be non-secular; for example

exp(−t2) =
∞∑
n=0

(−t2)n

n!
(83)

but any finite sum has a secular behavior. If we want to do something
with the formal perturbation series, we must thus use at least an
infinite subseries. This result is independent of ε, the strength of
refractive index fluctuations, because secular terms do only disappear
for ε = 0.

5.2. Convergence of the Perturbation Expansion

A fundamental question arises as above: does the perturbation series
converge? It is rather difficult to give a general answer to this question
because we do not say what kind of convergence we expect (or do
not expect). Let us first indicate that there is a proof in [1–6] that
the perturbation series for G(r) (radiation problem) is mean square
convergent for Gaussian µ(r).

Let us now consider the 1D-model. For εk0� � 1 (� � λ), we can
write the mean propagator〈

G(x, x′)
〉

= Y (x− x′) exp
{
ik0(x− x′)

}
exp

{
−ε2k2

0�(x− x′)
}

(84)
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The perturbation expansion of the mean propagator in power of ε is
thus

〈
G(x, x′)

〉
= Y (x− x′) exp

{
ik0(x− x′)

} ∞∑
n=0

[
−ε2k2

0�(x− x′)
]n

n!
(85)

If x and x′ are fixed, this is an analytic function of ε; but this is of no
interest because 〈G(x, x′)〉 does not acts as a multiplication, but as an
integral convolution operator. The convolution product of a bounded
source function with Y (x) exp{ik0x} × exp{−ε2k2

0�x} is convergent,
but the convolution product with Y (x) exp{ik0x}xn is generally not,
because the secular behavior of this term.

As last example, let us consider the convergence of the F. T. 〈G(k)〉
for the 1D-model. In Section 4, we proved that (72) presented now as

〈
G(x, x′)

〉
= exp

(
ε2k2

0�
2
) ∞∑

n=0

(
−ε2k2

0�
2
)n

n!
1[

ik − ik0 + ε2k2
0� + n/�

]
are series on random homogeneous space (r. h. s.) is convergent, but this
is not the perturbation series, because ε appears in the denominator;
〈G(k)〉 acts as a multiplication. We ask if this is an analytic function
of ε in some neighbourhood of ε = 0 and all values of k.

For n ≥ 1, [ik− ik0 + ε2k2
0�+ n/�] is an analytic function of ε for

|ε| < n
k0�2

and all values of k. But for n = 0, εk0� � 1 (� � λ) is not
an analytic function of ε in any neighbourhood of ε = 0 because k−k0

may vanish. We conclude that the perturbation expansion does not
convergence. However, it may easily be shown that for εk0l < 1 (l < λ)
one can write〈

G(x, x′)
〉

=
[
ik − ik0 + ε2k2

0� + n/�
]−1 {

1 + ε2k2
0�

2R(k, ε)
}

(86)

where R(k, ε) is a bounded function of k and ε. This means that we
can approximate 〈G(k)〉 uniformly by the first term of the series (72)
for k0� � 1. This term, though not analytic, can be formally expanded
in powers of ε:

1[
ik − ik0 + ε2k2

0�
] =

1
(ik − ik0)

∞∑
p=0

(
− ε2k2

0�

ik − ik0

)p

(87)

In the sequel we shall do exactly the converse: given a formal divergent
series we shall extract from it another divergent subseries whose formal
sum easy to calculate.
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5.3. Bourret’s Bilocal and Kraichnan’s Random Coupling
Models

We describe now two attempts to overcome the difficulty of divergent
perturbation series arising from random equations. Both methods
[15, 25] use the fact that there are certain infinite subseries of the
formal perturbation series for the mean propagator, the exact solution
of which is possible. As has been pointed by Kraichnan [25] in a
fundamental paper on the dynamics of non-linear stochastic systems,
the use of subseries of a perturbation series is very dangerous, because
they may give unphysical results such as negative energy densities. It
may also be happen that a certain subseries containing a given class of
diagrams gives a good approximation, and that if one tries to improve
it by enlarging this class, the resulting sum becomes unacceptable. It
will therefore be necessary to proceed very carefully. we give now the
first method.

Bourret’s bilocal approximation [13]. We take all diagrams whose
connected parts have only two vertices; the resulting series is called
the Bourret series 〈G〉B:

〈G〉B = + + . . .

(88)
++

We have taken into account here all multiple scattering which are a
succession of double scatterings. This series has been introduced by
Bourret [15] for Gaussian random function (g. r. f.), and also studied by
Tatarskii et al. [18–20]. Recalling that the mass operator is the sum of
all connected diagrams without terminals, we find that the Bourret
series corresponds to the lowest order approximation of the mass
operator. The corresponding Dyson equation, which is immediately
derived from (88) is

(89)〈G〉B = + 〈G〉B

This equation has also been derived by Keller [16] but his derivation
must be considered incorrect, because he treats the second term of the
full perturbation series (−•−•−) as a small perturbation. As we know,
this is only time of the mean propagator. Before we discuss Bourret’s
approximation for the single propagator; let us give the corresponding
double propagator approximation

〈G⊗G∗〉B = + + . . . (90)+

Bourret’s equation (89) for the single propagator is easily solved in k-
space; we shall not derive the corresponding solution for the radiation
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problem, because this may be found in [15, 16, 18–20]. It is also
instructive to study the behavior of 〈G(k, t)〉B for a given k, i.e., the
time dependence of an initial excitation proportional to exp{ikr}. The
main result is that the natural frequencies ω = ±cK are renormalized.
For an exp(−R/�) covariance function, the renormalized frequencies
are

ωr = ±cK ∓ ε2cK3�2

2
− iε2cK4�3 (91)

The damping time corresponding to the imaginary part of ωr is td =
1

ε2cK4�3
. We turn not to the discussion of the Bourret’s approximation;

we shall show what it is an uniform approximation which is only valid
when the wavelength is much longer than the range of refractive index
correlations: K� � 1.

Bourret’s derivation is based upon the following bilocal closure
assumption:

〈µ(r1)µ(r2)Ψ(r2)〉 = 〈µ(r1)µ(r2)〉 〈Ψ(r2)〉 (92)

Such closure assumptions have been studied by Kraichnan [23]; he has
shown that they are generally not uniformly valid for t → ∞. However
the examples considered by him are rather strong perturbations
(such as random oscillator, or the non-linear stochastic Navier Stokes
equation). As we shall see the case Kl � 1 corresponds to week
perturbation (i.e., weak interactions in quantum field theory and
weakly coupled gases in statistical mechanics). The damping time
associated with the solution of Bourret’s equation is td = 1

ε2cK4�3
; for

K� � 1
td � tint =

�

c
(93)

The asymptotic behavior of any diagram is thus governed by its leading
term (see Section 5.1). Bourret diagrams having p connected parts
gives a leading term proportional to ε2p · tp · exp(±icKt); for t ∼ td
this becomes ε-independent. Any other diagram will give rise to
uncompensated powers of ε, and may thus be constructed as small.
This is rather poor justification of the Bourret approximation, because
we did not make a dimensional analysis of the diagram with respect
to the other parameters c, K. Let us give the main lines of a more
rigorous justification. The leading term of

︸ ︷︷ ︸
P times

=
c2

z2 − c2k2

p+1

( )p (94).... [ [

is easily found to be
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i
c

2K

p+1

tp exp(−icKt) lim
z=cK+i0

( )p −exp(icKt) lim
z=−cK+i0

( )p

(95)
( ( ( ( ( ([ [

lim z = cK + i0 ⇔ lim
η→0,η>0

z = cK + iη

The asymptotic time behavior of (94) depends thus only on

lim
z=±cK+i0

( )

and not on the whole z-dependence of . This is immediately
generalized to any product of connected diagrams, belonging or not to
the Bourret series. Accordingly the asymptotic time dependence of the
whole perturbation series is only governed by limz=±cK+i0 M(k; z); M
being the mass operator. In order to show that the Bourret
approximation is uniform, we only need prove that for z = ±cK + i0,

is a good approximation of the mass operator. We shall just
give a dimensional justification of this for connected diagrams without
terminals and consisting more than two vertices. A connected diagram
in k-space is written as the F. T. of the corresponding r-space diagram.
The correlation functions corresponding to the different clusters of this
diagram are non-dimensionalized by introducing a new position vector
r′ = r/l. It is then easily found that for z = ±cK + i0, a connected
diagram Lp with p vertices and without terminals has the dimensional
dependence

Lp(ε, c,K, �) ∼ εpK2p�2(p−1)Λp(�K) (96)

where Λp(�K) being a non-dimensional function of the non-dimensional
quantity �K. For small values of �K we can write

Lp ∼ εpK2p�2(p−1)(1 + O(�K) + · · ·) (97)

For �K � 1 and p > 2, Lp is small compared to both L2 ∼
ε2K4�2 and its first O(1K) correction. This first order correction is
necessary, because it is found that ε2K4�2 does not contribute to the
damping time, but only to the real frequency shift of the renormalized
frequencies according to (91).

If the condition �K � 1 is violated, the contributions arising from
diagrams not belonging to the Bourret series become more and more
important, and for �K � 1 Tatarskii et al. [16–18] have shown that all
diagrams with the same number of vertices are almost equal (this is
only true for t � tint, but as in this case td � tint, it does not matter).
If all these dimensional considerations are not very convincing, it is
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still possible to check the validity of Bourret’s approximation on the
1D-model (see Section 4). The exact solution is (65)

〈Ψ(x)〉 = Y (x) exp[ik0x] exp
{
−ε2k2

0�
2
(
x

�
+ e−

x
� − 1

)}
(98)

The solution of Bourret’s equation, which is an ordinary equation in
k-space is:

〈Ψ(k)〉B =


ik − ik0 +

ε2k2
0

ik − ik0 +
x

�



−1

(99)

Taking the inverse F. T. we find

〈Ψ(k)〉B = Y (x)
eik0x

2
√

∆

{(
1 +

√
∆

)
exp

[
− 1

2�

(
1 −

√
∆

)
x

]

−
(
1 −

√
∆

)
exp

[
− 1

2�

(
1 +

√
∆

)
x

]}

∆ = 1 − 4ε2k2
0�

2 (100)

Expanding (100) for εk0� � 1, we find

〈Ψ(k)〉B = Y (x)eik0x exp
{
−ε2k2

0�x
}

(101)

which is the uniform approximation (66), already found for the exact
solution. If the condition εk0� � 1 is not satisfied (100) and (98) do
not agree. For example, if εk0� � 1, the Bourret approximation gives

〈Ψ(k)〉B = Y (x)eik0x cos(εk0x) exp{−x/2�} (102)

whereas the exact solution (70) is

〈Ψ(x)〉 = Y (x)eik0x exp
{
−1

2
ε2k2

0x
2
}

(103)

We conclude that:

The Bourret approximation is a long wave length approximation,
uniformly valid for any random perturbation, Gaussian or not,

which have a correlation range much shorter
than the wavelength (� � λ)

This approximation can also be used for more general random
equations than the scalar wave equation, because the dimensional
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analysis is easily generalized. In Section 8, we apply it to the
electromagnetic wave equation and in Section 9 to coupled wave
equation.

Let us consider now the Bourret approximation for the double
propagator. We have seen in Section 3 that the mean spectral energy
propagator

〈
|G(k; z)|2

〉
and thus the mean spectral energy density〈

|Ψ(k; z)|2
〉
, satisfy a separate equation. For the radiation problem,

using the Bourret approximation (90), this equation is〈
|Ψ(k)|2

〉
B

= |〈G(k)〉B|
2 |j(k)|2 + |〈G(k)〉B|

2 ε2k2
0k

∗2
0∫

Γ(k − k′)
〈∣∣Ψ(k′)

∣∣2〉
B
d3k (104)

where 〈G(k)〉B is the Bourret approximation for the single propagator,
and j(k) is the F. T. of the source function. Equation (104) is an
integral equation for the mean spectral energy density. As follows from
[15], the Bourret approximation for 〈G(k)〉 is only valid for Kl � 1,
but the integral term of (104) relates the region of the spectrum which
does satisfy this condition and the other one. Even if we assume that
j(k) is vanishing outside Kl � 1, we do not know if some energy
will not be transferred to the other part of the spectrum. There is
thus a serious difficulty here, and it may be possible that the Bourret
approximation is never uniform for the mean double propagator. This
question remains up today open.

Kraichnan’s random coupling model [25]. Given a random
equation, Kraichnan [23] has constructed an other equation which is
related to it, but can be reduced to a nonlinear nonrandom equation.
This was achieved through the introduction of an additional random
coupling between wave vectors, and called by him the random coupling
model. The remarkable point is that its solution can be considered both
as the exact solution of the model equation, and as an approximate
solution of the original equation. This ensures that if we can solve the
model equation, the solution will be physically acceptable. Kraichnan’s
perturbation diagrams are somewhat different from presented above,
but the connection is easy to establish. With our notations the
mean propagator of the random coupling model, which we denote
by 〈G(k)〉K , is the sum of all perturbation diagrams of the original
problem such that there are

- no clusters of more than two points;
- no intersecting dotted lines.

We give the first diagrams as
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〈G〉K = +

+ . . . (105)

++ +

+

This expansion is easily found to be equivalent to a nonlinear but
nonrandom equation (we use the symbol ===== for 〈G〉K)

= (106)+

The only difference with Bourret’s equation (89) is that the mean
propagator, and not unperturbed propagator appears under the dotted
line. The equation for the mean propagator of the random coupling
model is

〈G⊗G∗〉K = + 〈G⊗G∗〉K (107)

This linear equation can only be solved after the nonlinear equation
(106). All Bourret diagrams are included in the random coupling
model. Accordingly, we expect that it will give a better approximation.
But the main reason for studying this model is that there is no a priory
limitation to its validity such as Kl � 1. The solution of the random
coupling model for the wave equation would give at least a partial
answer to important questions such as

- Is there always a damping of the mean propagator?
- How does the damping time vary with k?
- What is the spectral mean energy distribution corresponding to a

given excitation or source function?

Let us write down the random coupling model equation for our
1D-model and the scalar wave equation. A one-dimension model gives:

〈G(k; z)〉K =
c

ick−iz
+

(εiz)2

c(ick−iz)
〈G(k; z)〉K

∫
Γ(k−k′)

〈
G(k′; z

〉
K d3k′

(108)
At the same time the scalar wave equation is

〈G(k; z)〉K =
c2

z2−c2k2
+

ε2z4

c2(z2−c2k2)
〈G(k; z)〉K

∫
Γ(k−k′)

〈
G(k′; z

〉
Kd3k′

(109)
If Γ(k−k′) = δ(k−k′) equations (108) and (109) are ordinary nonlinear
equations which can be solved analytically. This case corresponds to
a covariance function in r-space which is a constant. In other terms,
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the random function µ degenerates into a random value. As in this
case, the equation for the original problem can be solved without
perturbation method (see Section 6).

In the general case we show that such nonlinear integral equations
constitute a very difficult problem. They must be solved for Im(z) > 0,
but the asymptotic behavior of 〈G〉K is determined by the poles of the
analytic continuation of this solution in the lower half plane Im(z) < 0.
Even if we find an approximation method which converge in the upper
half plane, it will generally be very difficult, if not impossible, to extend
it by analytic continuation.

There are two possible iterations methods for the random coupling
model equation: given the equation (106)

= +

we can iterate it, considering the second term on the random
homogeneous space as a perturbation. This gives

= + + . . .

(110)
++

which cannot be used for long times because of the secular form. It
more interesting method is to write equation (106) as

〈G〉K =
G(0)

1 −G(0)L(〈G〉K)
(111)

where L is the linear operator

(112)L

Equation (111) is then iterated giving

〈G〉K =
G(0)

1 −G(0)L

(
G(0)

1 −G(0)L(. . .)

) (113)

This is the operator analogue of a continued fraction. It corresponds to
successive self-consistent approximation of the mass operator. For the
1D-model and the covariance function ∼ exp(−|x|/1) it was possible to
show that this iteration process converges for |εlz/c| < 1/2, and to find
its analytic continuation. The proof is somewhat artificial because we
used the fact that for any function f(k) which is bounded and analytic
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in the half plane Im(z) < 0∫
Γ(k − k′)f(k′)dk′ = f(k − i/1) (114)

We get thus a nonlinear finite difference equation which is solved by
means of a continued fraction. Unfortunately, it is not possible to
extend this method to the scalar wave equation.

6. RANDOM TAYLOR EXPANSION AT SHORT
WAVELENGTHS

In Section 5, we have found that in the limiting case εk0� � 1 the
random refractive index behaves as a mere random value (r. v.) and not
as a random function (r. f.). This is easily understood, because when
� is very large (� � λ), each realization (or sample) of the random
index is a very slowly varying function, which can be approximated
by a constant. At an intermediate level between general r. f. and r. v.,
we could try to approximate a r. f. by a linear function or a quadratic
function with r. v. as coefficients, i.e., make a limited random Taylor
expansion of the r. f. We shall not give a rigorous justification of this
procedure, but only check its validity according to [7, 22] on the 1D-
model. The random equation for this model is

∂Ψ(x)
∂x

− ik0[1 + εµ(x)]Ψ(x) = δ(x) (115)

where µ(x) is a random function, δ(x) is Dirac’s distribution at the
origin, the wave number k0 = 2π/λ = 2πf/c is taken, as in Section 4,
positive. Here λ is the wavelength, f is the radiated frequency and c
is the velocity of light. We want to approximate the r. f. µ(x) by its
random Taylor expansion [9, 24]

µ(x) = µ(0) + xµ′(0) +
x2

2
µ′′(0) · · · (116)

where µ(0), µ′(0), µ′′(0), . . . are r. v. (not independent). We cannot
keep the covariance function exp{−|x|/�} because the corresponding
r. f. is not mean square differentiable (see Section 2). As we do not need
to specify the covariance Γ, we shall only assume that it has derivatives
of all orders at x = 0 and that Γ(0) = 1. Approximate equation for
Ψ(x) is

∂Ψ(x)
∂x

− ik0

[
1 + εµ(0) + εxµ′(0) + ε

x2

2
µ′′(0)

]
Ψ(x) = δ(x) (117)
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It is solved for the mean wave function

〈Ψ(x)〉 = Y (x)eik0x

〈
exp

[
ik0εx

(
µ(0) + εxµ′(0) + ε

x2

2
µ′′(0)

)]〉
(118)

As µ(x) is a Gaussian random function (g. r. f.), the multivariate
distribution of µ(0), µ′(0), µ′′(0) is also Gaussian, it is thus determined
by its second order moment such as

〈
(µ(0))2

〉
,

〈
(µ′(0))2

〉
, 〈µ(0)µ′(0)〉

etc. They are easily calculated in terms of covariance function, for
example

〈
µ(0)µ′(0)

〉
= lim

h→0

〈µ(0)µ(h)〉 − 〈µ(0)µ(0)〉
h

= Γ′(0) ≡ 0 (119)

because Γ is an even function.
The mean value in (118) is easily related to the characteristic

function of µ(0), µ′(0), µ′′(0), and can be calculated in terms of Γ; this
gives

〈Ψ(x)〉 = Y (x)eik0x exp

[
−k2

0ε
2x2

2

(
1 +

x2

12
Γ′′(0) + O(x3)

)]
(120)

Let us compare this to the exact solution (63)

〈Ψ(x)〉 = Y (x)eik0x exp


−k2

0ε
2

2

x∫
0

y∫
0

Γ(y − y′)dydy′

 (121)

Expanding the covariance function in power of x and integrating we
get exactly the same result as in (120). If the condition∣∣∣∣∣ k

2
0ε

2

Γ′′(0)

∣∣∣∣∣ � 1 (122)

is satisfied we can use the random variable (r. v.) approximation

〈Ψ(x)〉 = Y (x)eik0x exp

[
−k2

0ε
2x2

2

]
(123)

An equivalent condition is that the damping length xd = 1/k0ε = λ/ε
corresponding to this approximation should be much shorter than the
range of random correlations � = |Γ′′(0)|−1/2. If it is satisfied, the
wave cannot escape the region where the random index is properly
approximated by a r. v. The r. v. approximation is easily applied to
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any propagation equation because we only need to solve a partial
differential equation with constant coefficients and average afterwards.
If we want higher order approximation, we must solve a partial
differential equation with linear or quadratic coefficients. The case of
linear coefficients can in principle be solved by means of a generalized
Laplace transformation, but this is rather complicated. In Section 9
we shall apply the r. v. method to coupled wave equations at short
wavelength.

To end this section we derive the short wave approximation for
the scalar wave equation with point source, which is actual for wireless
communications

∆Ψ(r) + k2
0[1 + εµ]Ψ(r) = δ(r) (124)

We assume µ to be a centered Gaussian r. v. and
〈
µ2

〉
= 1. Solving

(124) we get

Ψ(r) =
exp{ik0(1 + εµ)R}

−4πR
, R = |r| (125)

Taking the mean value of this wave function we find

〈Ψ(r)〉 =
exp(ik0R) exp

(
−1

2
ε2k2

0R
2
)

−4πR
(126)

The damping due to phase mixing is thus exponential with a damping
length

Rd = (ε|k0|)−1 > λ (127)

The condition R � 1 can be written as

ε|k0|� � 1 (128)

It is thus a short wavelength condition (� � λ). The result (126)
disagrees with a result derived by Tatarskii [16–18] for |k0|� � 1. His
mean wave function

〈Ψ(r)〉 =
exp(ik0R)
−4πR

· 1(
1 + ε2k2

0R�
)1/2

(129)

has not an exponential decrease, and a damping length

Rd =
(
ε2k2

0�
)−1

� λ (130)

His result is expressed as a certain integral over the solution of the
Bourret equation (89), and this integral is calculated by the method
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of stationary phase. The expansion of the solution of the Bourret
equation used by Tatarskii is only valid for |k0|� � 1. If the proper
expansion is used the result becomes identical with mentioned above.
This can also be checked on the 1D-model for which the calculation is
easier.

7. EXACT SOLUTION OF THE SCALAR WAVE
EQUATION

In [18–20] was suggested that functional space integration might be
used to solve random equations. The authors thought that it would be
necessary to generalize the Wiener measure to more general stochastic
processes than the Brownian motion. We recall however that the
success of functional integration methods is largely due to the fact
that the Brownian motion enjoys the Markov property, and that the
stochastic processes which are used in presented here problem do not.
Nevertheless we shall show that the reduced scalar wave equation can
be related to a complex version of the heat equation and solved via a
complex Wiener measure. The method indicated here can also be used
for the Schrodinger equation with random potential. We want to solve
the reduced scalar wave equation with random refractive index

∆Ψ(r) + k2
0[1 + µ(r)]Ψ(r) = δ(r) (131)

where, once more, δ(r) is Dirac’s distribution at the origin. As usually,
we shall assume that the wave number k0 has a small positive imaginary
part. µ(r) is a centered Gaussian random function (g. r. f.) with
covariance Γ(r, r′) which need not be stationary. In order to relate this
equation to the heat equation, we introduce a new unknown function
Ψ̃(r, θ) such that

Ψ(r) = − i

k0

∞∫
0

exp(ik0θ)Ψ̃(r, θ)dθ (132)

Because of the positive imaginary part of k0, this integral is convergent
if Ψ̃(r, θ) is not increasing too fast at infinity. Equation (132) is now
multiplied by k2

0 and integrated by parts

k2
0Ψ(r) = −

∞∫
0

Ψ̃(r, θ)
∂

∂θ
exp(ik0θ)dθ = Ψ̃(r, 0)+

∞∫
0

∂Ψ̃(r, θ)
∂θ

exp(ik0θ)dθ

(133)
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Using alternatively (132) and (133) we write

∆Ψ(r) + k2
0Ψ(r) + k2

0µ(r)Ψ(r)≡− i

k0

∞∫
0

exp(ik0θ)
[
∆Ψ̃ + k2

0µ(r)Ψ̃
]
dθ

+Ψ̃(r, 0) +
∞∫
0

∂Ψ̃(r, θ)
∂θ

exp(ik0θ)dθ

= δ(r) (134)

This is satisfied if we take

∂Ψ̃(r, θ)
∂θ

=
i

k0
∆Ψ̃(r, θ) + ik0µ(r)Ψ̃(r, θ) (135)

Let us compared (135) to the perturbed heat equation

∂Ψ̃(r, θ)
∂θ

= ∆Ψ̃(r, θ) + V (r)Ψ̃(r, θ) (136)

and the Schrodinger equation

∂Ψ̃(r, θ)
∂θ

= α∆Ψ̃(r, θ) + V (r)Ψ̃(r, θ) (137)

The first one (136) can be solved by functional integration for all
functions V (r) continuous and bounded from above, using the Wiener
measure of the Brownian motion process. For the second one (137)
there is no Wiener measure, and it is well known that for the
Schrodinger equation this solution through functional integration given
first by Feynman [1–3] is only (mathematically speaking) a formal
extension of the heat equation case. Fortunately it can be shown
that all equations such as (137) where has a positive real part, can
be rigorously solved with a complex Wiener measure. This is the case
here, because Re(i/k0) > 0. The solution of (134) is

Ψ̃(r, θ) =
∫
Ω

exp


ik0

θ∫
0

µ(ρ(τ))dτ


 dW

(
θ, r,

i

k0

)
(138)

where Ω is the space of continuous function ρ(τ) such that ρ(0) = 0
and ρ(θ) = r, and dW (θ, r, i/k0) is the complex Wiener measure
corresponding to the complex heat equation

∂Ψ̃(r, θ)
∂θ

=
i

k0
∆Ψ̃(r, θ) (139)
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Expression (138) can also be written more explicitly as the limit of
ordinary multiple integrals

Ψ̃(r, θ) = lim
n→∞

(
4πi∆τ

k0

)− 3
2
n∫

exp
{

ik0

4∆τ

[
r2
1 + (r2 − r1)2 + (r − rn−1)2

]}
× exp{ik0∆τ [µ(r1)+µ(r2)+· · ·+µ(rn−1)]}d3r1d

3r2 . . . d
3rn−1

(140)

where ∆τ = θ/n, (4πi∆τ/k0)−
3
2
n is the 3n-th power of the square root

of 4πi∆τ/k0 which has a positive real part. A formal proof of (140)
can be based upon the following formula

exp[(A + B) · θ] = lim
n→∞[exp(B · θ/n) · exp(A · θ/n)]n (141)

where A and B need not commute. This is applies to (135) written as

∂Ψ̃
∂θ

= A · Ψ̃ + B · Ψ̃ (142)

with A = i∆/k0 and B = ik0µ(r); exp(A · θ) is the r-convolution
operator with (4πiθ/k0)−

3
2 exp{ik0r

2/4θ} which is the elementary
solution of the following equation

∂Ψ̃(r, θ)
∂θ

=
i

k0
∆Ψ̃(r, θ), Ψ̃(r, 0) = δ(r) (143)

and
exp(B · θ) = exp{ik0µ(r)θ} (144)

acting as a multiplication. Reordering the exponentials in (141) we get
(140).

We calculate now the mean value of Ψ̃(r, θ) using (138) and
interchanging the functional integration and the mean value:

〈
Ψ̃(r, θ)

〉
=

∫
Ω

〈
exp


ik0

θ∫
0

µ(ρ(τ))dτ


〉

dW

(
θ, r,

i

k0

)
(145)

We shall now make use of the fact that µ(r) is a centered g. r. f., but the
Gaussian assumption can be dropped, because we actually only need to
know the characteristically functional F (ϕ(r)) =

〈
exp i

∫
ϕ(r)µ(r)d3r

〉
of µ(r).

The following calculations are almost the same as in Section 4

for the 1D-model. For a fixed curve ρ(τ), ϕ
θ∫
0
µ(ρ(τ))dτ is a linear
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functional of µ(r), it is thus a centered Gaussian random value (r. v.)
and 〈exp[ik0ϕ]〉 is its characteristic function

〈exp[ik0ϕ]〉 = exp
{
−1

2
k2

0

〈
ϕ2

〉}
(146)

where

〈
ϕ2

〉
=

θ∫
0

τ∫
0

〈
µ(ρ(τ))µ(ρ(τ ′))

〉
dτdτ ′ =

θ∫
0

τ∫
0

Γ(ρ(τ), ρ(τ ′))dτdτ ′

(147)
Turning back to the initial equation (145), we get

〈
Ψ̃(r)

〉
= − i

k0

∞∫
0

dθ exp(ik0θ)
∫
Ω

〈
exp


−1

2
k2

0

θ∫
0

τ∫
0

Γ(ρ(τ), ρ(τ ′))dτdτ ′

〉

· dW
(
θ, r,

i

k0

)
(148)

which solves the problem. This functional integral can also be
approximated for numerical purposes, for example, by multiple
integrals:

〈
Ψ̃(r)

〉
n

=− i

k0

∞∫
0

dθ exp(ik0θ)
(

4πi∆τ

k0

)− 3
2
n

×
∫

exp
{

ik0

4∆τ

[
r2
1 + (r2 − r1)2 + (r − rn−1)2

]}

× exp


−1

2
k2

0(∆τ)2
n−1∑
i,j=1

Γi,j


d3r1d

3r2 . . . d
3rn−1 (149)

where Γi,j = Γ(ri, rj) and ∆τ = θ/n.
The extension to higher order moments is straightforward, using

characteristic functions of multivariate Gaussian distributions. The
rigorous proof of (148) should not be too difficult due to the positive
imaginary part of k0 which makes all integrals convergent. There
is perhaps a restriction on the covariance function (not too negative
values).

Approximate evaluations of the functional integral (148). Let us
just give indications, further details are published elsewhere.

a) Short wavelength approximation. If the range of the covariance
function is much longer than the wavelength, we use a functional saddle
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point method, approximating the functional

exp


−1

2
k2

0

θ∫
0

τ∫
0

Γ(ρ(τ), ρ(τ ′))dτdτ ′



by a quadratic functional of ρ(τ) − ρ0(τ), where ρ0(τ) is the function
which makes the exponent stationary. It is then possible to calculate
exactly this approximate functional integral.

b) Long wavelength expansion. The multiple integral (149)
reminds us of the formula for the partition function of a gas in
thermodynamic equilibrium. We can write

exp


−1

2
k2

0(∆τ)2
n−1∑
i,j=1

Γi,j


=

n−1∏
i,j=1

(1+Fij)=1+
∑

Fij+
∑ ∑

FijFikl+· · ·

(150)
with

Fij = exp
{
−1

2
k2

0(∆τ)2Γi,j

}
− 1 (151)

The resulting integrals are then represented by Mayer diagrams [1–3].
This method can also be related to the perturbation method of Section
3.

8. ELECTROMAGNETIC WAVE EQUATION

In this section we study the full electromagnetic wave equation with
random refractive index

∆E(r) −∇(∇ · E(r)) + k2
0[1 + εµ(r)]E(r) = j(r) (152)

j(r) is related to the actual current density j∗(r) by j(r) =
−iωµ0j

∗(r); ω is the angular frequency ω = 2πf and µ0 = 4π · 10−7.
This equation is not equivalent to the reduced scalar wave equation
because of the term ∇(∇·E(r)) which is important when the refractive
index changes much over a wavelength. We shall therefore only
consider the case of long wavelengths such that |k0|� � 1, and use
the Bourret approximation. This problem has already been treated by
Tatarskii [18–20] but the results presented here do not agree. Taking
the F. T. of (152) we get[(

k2
0 − k2

)
δij + kikj

]
Ej(k)+εk2

0

∫
µ(k−k′)Ei(k′)dk = ji(k) (153)
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The unperturbed propagator G
(0)
ij (k) satisfies the following equation[(

k2
0 − k2

)
δij + kikj

]
G

(0)
ji (k) = δil (154)

This equation is easily solved

G
(0)
ji (k) =

1[
k2

0 − k2
] (

δij −
kikj
k2

0

)
(155)

The Bourret equation for the mean perturbed propagator 〈Gjl(k)〉 is

(156)〈G〉 = + 〈G〉

or

〈G(k)〉 = G(0)(k) + G(0)(k)ε2k4
0

[∫
Γ(k − k′)G(0)(k′)d3k′

]
〈G(k)〉

(157)
where Γ(k) is the F. T. of the covariance function. After a few
transformations, equation (157) becomes[(

k2
0−k2

)
δij+kikj−ε2k4

0

∫ Γ(k−k′)
k2

0−k′2

(
δij−

k′ik
′
j

k2
0

)
d3k′

]
〈Gjl(k)〉 = δil

(158)
Let us now denote tensor Tij(k)

Tij(k) =
∫ Γ(k − k′)

k2
0 − k′2

(
δij −

k′ik
′
j

k2
0

)
d3k′

and assume that the covariance function is isotropic. Then the tensor
Tij(k) is the convolution product of an isotropic tensor and an isotropic
function; it is thus an isotropic tensor and can be written as

Tij(k) = χ(k)δij + µ(k)
kikj
k2

0

(159)

The Bourret equation for the mean propagator becomes now[(
k2

0 − k2 − ε2k4
0χ(k)

)
δij +

(
1 − ε2k2

0µ(k)kikj
)]

〈Gjl(k)〉 = δil (160)

Let us now find the free oscillations which satisfy[(
k2

0 − k2 − ε2k4
0χ(k)

)
δij +

(
1 − ε2k2

0µ(k)kikj
)]

〈Ej(k)〉 = 0 (161)
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There are two kinds of oscillations:
a) Transverse oscillations. Here 〈ε〉 and k are perpendicular. The

dispersion equation is

k2
0 − k2 − ε2k4

0χ(k) = 0 (162)

b) Longitudinal oscillations. Here 〈ε〉 and k are parallel. The
dispersion equation is

1 − ε2
(
k2

0χ(k) + k2µ(k)
)

= 0 (163)

Let us also find the renormalized wave number K⊥ for transverse waves.
We take for this purpose the correlation function exp(−R/�). After
straightforward calculations we find that for k� � 1 (� � λ)

χ(K⊥) = −2
3
�2(1 + 2iK⊥�) +

1
3k2

0

+ O
(
�4K2

⊥
)

(164)

The dispersion equation for transverse oscillations is solved for the
renormalized wave number

K⊥ =
[
k2

0

(
1 − ε2k2

0χ(k)
)]1/2

≈ k0

[
1 − 1

6
ε2 +

1
3
ε2k2

0�
2(1 + 2ik0�)

]
(165)

We compare this result to the corresponding formula for the scalar
wave equation which can be found in [18–20] or deduced from Keller’s
result [16] with the covariance function exp(−R/�)

K⊥ = k0

[
1 +

1
2
ε2k2

0�
2(1 + 2ik0�)

]
(166)

First of all, the imaginary part of for the electromagnetic wave equation
has been reduced by factor ∼ (1/3), the damping length of the mean
wave being thus increased by 50%. Secondly, due to the additional
negative term ∼ 1

6k0ε
2, the real part of K⊥ is less than the real part of

k0 if 2k2
0�

2 < 1. As we assumed that k� � 1 (� � λ) this is satisfied.
We conclude that the effective phase velocity of transverse waves is

increased at long wave lengths, and not decreased as for the scalar wave
equation. This needs some explanation. There are two wave modes
actually in this medium: the transverse mode, whose phase velocity
is approximately ω/k0, and the longitudinal wave mode, whose phase
velocity is much longer (infinite in the nonrandom case). Due to the
term kikjEj of (153), the wave modes are coupled and some of the
mean transverse wave has travelled part of its way as a longitudinal
wave. The travelling time being thus decreased, the phase velocity is
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increased. Without this coupling it would be impossible to explain the
increase of the phase velocity. As the additional term 1

6k0ε
2 does not

depend on �, it is possible that it corresponds rather to a diffraction
effect by the scattering blobs (whose sizes are small compared to the
wavelength), than to a volume scattering effect.

9. PROPAGATION IN STATISTICALLY
INHOMOGENEOUS MEDIA

In this section we assume that the mean refractive index is constant
through space, but that its random part is not strictly stationary with
respect to space translations. The correlation functions Γ(x, x′) such
as are only functions of the difference x − x′ but also of (x + x′)/2.
We shall assume that this additional space dependence has a scale of
variations h which is large compared to the wavelength. As there is
no strictly homogeneous turbulence in nature, this is a very common
situation. Strictly speaking, the F. T. µ(k) of such a slowly varying
random function (r. f.) does not satisfy the wave vector conservation
condition

〈µ(k1)µ(k2) · · ·µ(kp)〉 = 0, if k1 + k2 + · · · kp 
= 0 (167)

and does not give rise to any secular terms in the perturbation series.
All arguments based upon extraction of leading secular terms seem
to disapear suddenly. we shall show however, that if the condition
ε2K4�3h � 1 is satisfied in addition to the usual condition K� � 1,
nothing is changed, because we have pseudosecular terms which behave
like secular terms.

We assume that the additional space variation of the correlation
functions X(r1, r2, . . . , rn) is given by a factor exp

[
is(r1+r2+···+rn

r1

]
,

where s is given vector. This is not of course the most general case,
but it will be sufficient for our purpose. The scale of variation of
this additional factor is h = 1/|s|. The Fourier transform (F. T.) of
the function exp

[
is(r1+r2+···+rn

r1

]
X(r1, r2, . . . , rn) is X(k1 + s

n , k2 +
s
n , . . . , rn + s

n). The wave vector conservation condition becomes thus

k1 + k2 + · · · + kn + s = 0 (168)

If we apply this to a connected diagram in k-space, such as

k k ′k

we find that
k − k′ = s (169)
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Because of the condition h � λ, which can also be written |s| < K,
the wave vectors at the terminals of a connected diagram are almost
equal. Instead of a squared unperturbed propagator, the terminals of

introduce a factor

c2

z2 − c2K2

c2

z2 − c2K ′2 =
c

2(K2 −K ′2)

[
1
K

(
1

z − cK
− 1

z + cK

)

− 1
K ′

(
1

z − cK ′ −
1

z + cK ′

)]
(170)

Let us find the corresponding contribution to the inverse L. T. It is
proportional to

1
(K2 −K ′2)

[
(e−icKt − eic

′Kt)
K

− (e−icK′t − eicK
′t)

K ′

]
(171)

then, using the fact that K − K ′ is small compared to K, we
approximate (171) by

1
2K2

[
e−icKt(1 − eic(K−K′)t)

K −K ′ − e−icKt(1 − e−ic(K−K′)t)
K −K ′

]
(172)

For c(K −K ′) � 1, we can make a Taylor expansion of (172) and find

− ic

2K2
(te−icKt + teicKt) (173)

This expression is not really secular, because it is only valid for
c|K − K ′|t � 1; this condition can also be written t � h/c. If
the damping time td corresponding to the Bourret approximation
in the stationary case is small compared to h/c, such an expression
behaves exactly as a secular term; we call it a pseudosecular term. As
td ∼ 1

ε2cK4�3
, the condition td � h/c can be written as

ε2K4�3h � 1 (174)

because of K� � 1 and ε2 < 1, h must be very large compared to the
wavelength.

Two examples on how to resolve equations for scattering wave
from the obstructions randomly distributed according to Poisson law
at the ground surface were shown in [34] for description of multiple
scattering from trees in forested environment and in [35] for description
of single scattering and diffraction from houses and trees placed at
the rough terrain. In these works, by use instead of the Feynman
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diagrams expansion (156), the symbolic operator form of Green
functions presentation (157), that is, in the symbolic operator form
based on integro-differential operators, a very simple formulas have
been obtained and successfully compared with experimental data based
on corresponding simulations of the obtained engineering formulas for
future prediction of propagation loss characteristics in the land wireless
communication channels.

10. PROPAGATION IN HOMOGENEOUS
ANISOTROPIC MEDIA

Waves in anisotropic media, such as a crystal or plasma with magnetic
field, satisfy partial differential equations which may be much more
involved then the scalar wave equations. The wave function may have
several components corresponding to a perturbed density, a perturbed
velocity, a perturbed magnetic field etc. Instead of a single dispersion
equation we may have several corresponding to different wave modes
(e.g., ordinary and extraordinary). The wave modes are defined to be
the time harmonic eigenfunctions of the propagation equations, with
the boundary conditions taken into account. If we change the shape of
the boundaries (e.g., from spherical to cylindrical) we change also the
nature of the wave modes.

10.1. Coupling Between Wave Modes

Here we shall only consider waves in free space because the
eigenfunctions are easily found by means of a Fourier transformation
(F. T.). Let us first consider the nonrandom case in order to introduce
some definitions and notations.

A. Nonrandom (deterministic) case. If the medium has constant
parameters the propagation equations have constant coefficients. We
assume that they can be written as a system of first order partial
differential equations; this is the most frequent case

∂Ψj(r; t)
∂t

= bjlm∇lΨm(r; t), l = 1, 2, 3, j,m = 1, 2, . . . , n (175)

where n being the number of unknowns. Introducing now the F. T.

Ψj(k; t) =
∫

exp(−ikr)Ψj(r, t)d3r (176)

equation (175) becomes

∂Ψj(k; t)
∂t

= ibjlmklΨm(k; t) (177)
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or in matrix notations

−i
∂Ψ(k; t)

∂t
= A(k)Ψ(k; t) (178)

with
Ajm(k) = bjlmkl (179)

We assume that A(k) is diagonalizable, i.e. that there exists a matrix
S(x) such that

S−1(k)A(k)S(k) = D(k) (180)

D(k) being a diagonal matrix whose elements are the solution of the
eigenvalue equation

det[ω −A(k)] = 0 (181)

This equation has n solutions (distinct or not)

ω = ωj(k), j = 1, 2, . . . , n (182)

We call equation (182) the dispersion equation of the jth mode in an
anisotropic medium. For mathematical convenience, we shall take n
modes even if some of them not physically distinct, such as x and y
polarization for an electromagnetic wave ∼ E exp(ikz) in an isotropic
medium. We introduce the wave mode amplitude vector

Q(k; t) = S−1(k)Ψ(k; t) (183)

which satisfies the following diagonal equation

−i
∂Q(k; t)

∂t
= D(k)Q(k; t) (184)

The jth component of Q(k; t) is called the complex amplitude of the
jth wave mode; it satisfies a separate propagation equation

−i
∂Qj(k; t)

∂t
= ωj(k)Qj(k; t) (185)

without summation on j.
We may conclude that in a nonrandom anisotropic medium

different wave modes are uncoupled. We define also the spectral energy
density of the jth wave mode

Ej(k; t) = |Qj(k; t)|2 (186)

If the medium is lossless, the frequencies ωj(k) are real and the spectral
energy densities remain constant. We shall see that in the random case
there are energy transfers from one mode to another.
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B. Random case. Let us assume now that the parameters of the
medium are stationary random functions (r. f.) of position, i.e., that
the medium is statistically homogeneous.

Separating as usually the mean values from the random part we
write the random propagation equation as

∂Ψj(r; t)
∂t

= bjlm∇lΨm(r; t) + εδbjlm(r)∇lΨm(r; t) (187)

ε is a small parameter; δbjlm(r) are stationary centered r. f. of r. Taking
the F. T. of (187) and using matrix notations, we have

−i
∂Ψ(k; t)

∂t
= A(k)Ψ(k; t) + ε

∫
δA(k − k′)Ψ(k′)d3k′ (188)

A(k) is defined by (179) and

δAjm(k) = δbjlmkl (189)

(188) is a random integral equation which could be used as starting
point of a perturbation expansion. We prefer to diagonalize A(k)
first, in order to obtain a set of coupled equations for the wave mode
amplitudes. The wave modes are defined in the same way as for the
nonrandom case, i.e., as for ε = 0. This is perhaps somewhat artificial,
but is well justified if the parameter fluctuations are not too strong.
The wave mode amplitude vector being defined by (183), we obtain a
set of coupled integral equations

−i
∂Q(k; t)

∂t
= D(k)Q(k; t) + ε

∫
C(k, k′)Q(k′; t)d3k′ (190)

with
C(k, k′) = S−1(k)δA(k − k′)S(k) (191)

Or using tensor notations

−i
∂Qj(k; t)

∂t
= ωl(k)δljQj(k; t) + ε

∫
Cjl(k, k′)Ql(k′; t)d3k′ (192)

The random integral operator Cjl(k, k′) give the coupling between wave
modes for j 
= l, and the scattering (or self coupling) for j = l.

Equations (190) and (192) are fundamental equations for wave
mode coupling which we shall use as starting point for the perturbation
expansion and the random variable approximation (lowest order of a
random Taylor expansion) in energy transfer.
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10.2. Energy Transfer Between Wave Modes

a) Let us begin with the perturbation method at long wavelengths
(K� � 1). The Laplace transform (L. T.) of Q(k; t)

Q̃(k; t) =
∞∫
0

exp(izt)Q(k; t)dt (193)

satisfies

[−iz − iD(k)]Q̃(k; z) − iε

∫
C(k, k′)Q̃(k′; z)d3k = Q(k, 0) (194)

This equation is of the type

(L0 + εL1)Q = j (195)

considered in Section 3. As in this section, we introduce the
unperturbed propagator

G(0) = L−1
0 = [−iz − iD(k)]−1 (196)

which is diagonal operator, and the perturbed propagator

G = (L0 + εL1)−1 (197)

The diagram methods for the mean perturbed propagator and the
mean double propagator are easily extended to this problem, the only
differences being that the solid line and the dot are no more scalar
operators, but tensor (or matrix) operators. The only new feature
is the coupling between wave modes (see subsection above). As we
want to avoid unnecessary complications, we shall only take two wave
modes and assume that there are no self-coupling terms and no losses.
Without these simplifications, the new features, such as energy transfer
between wave modes, would be more or less hidden. We study then the
following coupled wave equations:

−i
∂Q1(k; t)

∂t
= iω1(k)Q1(k; t) + ε

∫
C12(k, k′)Q2(k′; t)d3k′ (198a)

−i
∂Q2(k; t)

∂t
= iω2(k)Q2(k; t) + ε

∫
C21(k, k′)Q1(k′; t)d3k′ (198b)

The medium being lossless, the total energy must be constant∫ [
|Q1(k; t)|2 + |Q2(k; t)|2

]
d3k = 0 (199)
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This implies that ω1(k) and ω2(k) are real and

C12(k, k′) = −C∗
21(k, k

′) (200)

We rewrite now the Bourret equation (see Section 5) for the mean
propagator of equation (198)

(201)〈G〉B = + 〈G〉B

As there are only two modes, it is more convenient to have scalar
operator instead of matrix one. The unperturbed propagator being
a diagonal matrix, it is sufficient to introduce over the solid line a
superscript indicating the wave mode. Using this convention we write
(201) as

(202a)〈G 〉B = + 〈G 〉B21
1111

1

(202b)〈G 〉B = + 〈G 〉B12
2222

2

As there are no self-coupling terms, 〈G12〉B and 〈G21〉B vanish. The
consequence of the absence of self coupling is thus the absence of
coupling between the mean propagators (this is due to the fact that
any Bourret diagram has an even number of vertices). But this will not
prevent energy transfer between the wave modes, because the energy
densities are calculated from the mean double propagator.

Let us find the behaviour of 〈G11〉B for t � tint. It is determined
by the scalar terms of the Bourret series and thus by

lim
z=−ω1(k)+i0

= iβ1(k) (203)2

In explicit from equation (202a) becomes

[−iz − iω1(k) − iβ1(k)] 〈G11〉B = 1 (204)

To derive this equation we have replaced by iβ1(k). Solving this
equation we obtain

〈G11(k; t)〉 = exp {i[ω1(k) + β1(k)]t} (205)

The frequency ω1(k) has thus been renormalized. For the second wave
mode from (202b) we find a similar result with β2(k) = −β∗

1(k). Let
us calculate β1(k). Writing〈

B12(k, k′)B21(k′, k′′)
〉

= Γ(k − k′)δ(k − k′′) (206)
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we obtain

β1(k) = lim
η→0, η>0

ε

∫ Γ(k, k′)
ω1(k) − ω2(k) − iη

d3k′ (207a)

Γ(k, k′) is a positive measure (F. T. of a covariance function),
accordingly the imaginary part of β1(k) is positive and 〈G11(k; t)〉 is
damped. It is possible to evaluate this imaginary part by a dimensional
analysis of (207a) ∣∣∣∣ Imβ1(k)

ω1(k)

∣∣∣∣ ∼ ε2K2�3 � 1 (208)

We turn now to the mean double propagator and calculate the mean
spectral energy densities〈

|Q1(k; t)|2
〉
,

〈
|Q2(k; t)|2

〉
They do not satisfy any propagation equation but are deducible
from

〈
Q̃1(k; z)Q̃∗

1(k; z′)
〉

and
〈
Q̃2(k; z)Q̃∗

2(k; z′)
〉
, which satisfy the

following equations of the Bourret approximation〈
Q̃1(k;z)Q̃∗

1(k;z′)
〉
= Q̃1(k; 0)Q̃1(k; 0)+

〈
Q̃2(k;z)Q̃∗

2(k;z′)
〉

(209a)〈
Q̃2(k;z)Q̃∗

2(k;z′)
〉
= Q̃2(k; 0)Q̃2(k; 0)+

〈
Q̃1(k;z)Q̃∗

1(k; z′)
〉

(209b)

2

2

2

2

1

1

1

1
∗

∗

〈
Q̃1(k; z)Q̃∗

1(k; z′)
〉

is the F. T. of
〈
Q̃1(k; z)Q̃∗

1(k; z′)
〉

with respect to
t and t′. It is interesting to solve (209a) with the following initial
conditions

Q̃1(k; 0)Q̃∗
1(k; 0) = E0δ(k − k0)

Q̃2(k; 0)Q̃∗
2(k; 0) = 0

(210)

for which the total initial energy of the wave is concentrated in the first
wave mode with a single spectral line. Eliminating

〈
Q̃1(k; z)Q̃∗

1(k; z′)
〉

between (209a) and (209b) we obtain〈
Q̃2(k;z)Q̃∗

2(k;z′)
〉
= E0δ(k ′−k0)+

〈
Q̃2(k′;z)Q̃∗

2(k
′;z′)

〉
(211)

2 1

2 1

2 1

2 1

This integral equation can be solved by successive approximations.
This method does not give secular terms because they have already
been taken into account in the mean (single) propagators
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1 =
i

z + ω1(k) + β1(k)
, 2 =

i

z + ω2(k) + β2(k)
(212)

Let us calculate the lowest order approximation for
〈
Q̃2(k; z)Q̃∗

2(k; z′)
〉

k k
E0δ(k′ − k0) =

i

[z + ν2(k)]
−i

[z′∗ + ν∗2(k)]
ε2E0Γ(k, k0)

× i

[z + ν1(k0)]
−i

[z′∗ + ν∗1(k0)]
(213)

2k 1k′
2 1 ′

We denote ν1(k) and ν2(k) the renormalized frequencies

ν1(k) = ω1(k) + β1(k)

ν2(k) = ω2(k) + β2(k) = ω2(k) − β∗
1(k)

(214)

Taking the inverse L. T. of (213) we obtain the following expression for
the spectral energy density of the second mode as a function of time

E2(k; t) = ε2Γ(k − k0)
∣∣∣∣exp(iν2(k)t) − exp(iν1(k0)t

ν2(k) − ν1(k0)

∣∣∣∣2 (215)

The Born approximation would give the same result with the
frequencies ω1 and ω2 instead of renormalized frequencies ν1 and ν2.
Accordingly it would be secular for any wave vector such that

ω2(k) = ω1(k0) (216)

This is now prevented by the imaginary part of ν(k). Let us assume
that the real part of β1 and β2 have been incorporated into ω1 and ω2,
and recall that the imaginary part of β1 and β2 are small compared to
ω1 and ω2. It is then easily found that E2(k; t) can only be important
for wave vectors which satisfy the coupling conditions:

|ω2(k) − ω1(k0)| < |β1(k0)| (217)

and that the maximum of E2(k; t) occurs for t ∼ 1/|β1(k0)| ≡ td, which
is the damping time of the mean propagator. The maximum of E2(k; t)

E2(k; td) =
ε2Γ(k, k0)∣∣β2

1(k0)
∣∣ (218)

If we want to obtain the total energy transfer from the first wave
mode to the second one, we must integrate (218) over all wave vectors
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satisfying the coupling condition (217). As β1 is proportional to ε2,
the total energy transfer is found to be independent of the strength
of random fluctuations. A dimensional analysis of the total energy
transfer shows that it is of order unity (i.e., independent of ε2, c,K, �,
etc.) for t ∼ td. As td is proportional to ε−2, the energy transfer may
take a very long time for small random fluctuations.

b) We turn now to the other limiting approximation of short
wavelengths satisfying εK� � 1. As we have seen in Section 6, we may
treat the random parameters as mere random variables. The coupled
wave equations (198) become now ordinary differential equations with
a random parameter

∂Q1(t)
∂t

= iω1Q1(t) + iεbQ2(t) (219a)

∂Q2(t)
∂t

= iω2Q2(t) + iεbQ1(t) (219b)

We have dropped the wave vector dependence because there is no
more coupling between different wave vectors. We shall assume that b
is a real centered random variable. Equations (219) describe a set of
two randomly coupled oscillators.

We solve (219) with initial conditions such that the initial energy
of the wave is concentrated in the first mode, that is, Q1(0) = 1 and
Q2(0) = 1. Using the L. T. we get the following solutions

Q1(t) =
q1 + ω1√

∆
exp{−iq1t} −

q2 + ω2√
∆

exp{−iq2t} (220a)

Q2(t) =
−ib√

∆
[exp{−iq1t} − exp{−iq2t}] (220b)

with

∆ = (ω1 − ω2)2 + 4b2ε2

q1,2 =
−(ω1 − ω2) ±

√
∆

2

The mean energy of the second wave mode at time t is thus

E2(t) =
〈
|Q2(t)|2

〉
=

〈
2εb2

(ω1 − ω2)2 + 4b2ε2

(
1 − cos

(
t
√

(ω1 − ω2)2 + 4b2ε2

))〉

(221)
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or in terms of the probability density P (b) of the random variable (r. v.)
b

E2(t) =
∞∫

−∞
|Q2(t)|2P (b)db (222)

Let us first assume that ω1 = ω2, then

E2(t) =
1
2

∞∫
−∞

(1 − cos 2bt)P (b)db (223)

as t → ∞ and E2(t) → 1
2 . The asymptotic energy distribution is

thus equipartition. In the more general case ω1 
= ω2, we take the
probability density as

P (b) =
σ

π

1
(b2 + σ2)

(224)

The asymptotic energy distribution is easily calculated by means of a
L. T.

lim
t→∞

〈E2(t)〉 =
1
2

2εσ
[2εσ + |ω2 − ω1|]

≤ 1
2

(225)

The condition of effective energy transfer is thus

|ω2 − ω1| ≤ 2εσ (226)

It is found that the time required to reach the equilibrium energy
distribution is of the order of magnitude of (εσ)−1. The situation
is the same as in the long wavelength approximation: we can have
an important energy transfer in a medium with very small random
fluctuations, but this requires a very long time.

We conclude that if one is interested in the long time behaviour of
a random medium, energy transfer is always important between waves
whose frequencies are not too different (see condition (217) at long
wavelengths, and (226) at short wavelengths).
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