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Abstract—In this paper we study the electromagnetic (EM) wave
propagation in a perfect magnetic medium with continuously varying
magnetic permeability m(z) in one direction. We consider the
inhomogeneity to be arbitrary and described by an infinite power series
of z and use the Frobenious method to solve the governing differential
equation of the problem in the frequency domain. We also give special
attention to the first cut-off frequency of the main mode TM11 and
we propose a good estimation for it by means of the mean value of
the magnetic permeability profile. The results from the mathematical
analysis are applied to solve the direct problem of wave propagation in
a system of three waveguides having two homogeneous filling materials
and one that exhibits such inhomogeneous characteristics. We finally
confront the inverse problem of magnetic permeability reconstruction
by handling simulation data and a genetic optimization algorithm.
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1. INTRODUCTION

The knowledge of the magnetic susceptibility and its spatial variations
are of great importance in several applied scientific areas. For instance,
in modeling electromagnetic fields in geophysical explorations, there
are many practical situations when a conductive object has significant
magnetic properties. For example, a magnetite-containing ore body
and drilling mud with heavy material ingredients are characterized by
both a strong anomalous conductivity and a magnetic susceptibility,
which can produce significant effects on the electromagnetic tool
response. In geoelectrical exploration, the magnetic properties of rocks
and especially their anomalous behavior are of crucial interest as well.
Magnetic susceptibility information is also important in many areas of
bioengineering, medical applications and telecommunications.

Various methods have been applied so far for the determination
or simply the estimation of the unknown varying magnetic properties
of media of interest. For example, in geoelectrical exploration the so-
called Sµ method [1–3] add the possibility to recover the magnetic
properties of geological bodies and to reconstruct both anomalous
conductivity and magnetic permeability characteristics from the same
time domain magnetic field data. Cheryauka and Zhdanov [4] extend
linear and nonlinear approximations for electromagnetic fields in
a medium with inhomogeneous distribution of both electrical and
magnetic material properties. These approximations form a basis
for fast EM modeling and imaging in multi-dimensional environments
where joint electrical and magnetic inhomogeneity is an essential
feature of the model. In metallic thin films technology the
determination of the composition of thin films with high resolution
in the nanometer region is necessary. For this purpose, the so
called mixing-roughness-information depth (MRI)-model is developed
for profile reconstruction and quantification. Also, in bioengineering
various theories have been developed for true 3D susceptibility
mapping in general situations of arbitrary susceptibility distributions.

Realistic computational models of inhomogeneous dielectric
and/or magnetic media considered in applications, such as wave
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scattering by arbitrary shaped inhomogeneous obstacles and wave
propagation in stratified media in telecommunications, engineering and
in geological exploration, are based most on approximate numerical
methods; i.e., finite elements, finite differences, boundary integral
equations and spectral methods. Analytical methods, of course, cannot
handle such demanding applications, but are good candidates to apply
in certain cases where the geometries of the applications are similar
to coordinate surfaces (e.g., rectangular, cylindrical or spherical),
the domains occupied by the inhomogeneities have also characteristic
shapes and the varying material properties are piecewise smooth.
In literature, analytical treatments of piecewise constant, linear and
quadrature inhomogeneities can easily be found; especially, in elastic
and dielectric inhomogeneous media. The luck of similar studies in
magnetic media is a surprising fact since various scientific disciplines
meet such materials and the reciprocal theorems encountered in many
applied fields (e.g., in Maxwell’s equations) provide a straightforward
way to apply in inhomogeneous magnetic materials.

Having in mind the statement above, we suggest, in this paper,
a simplified theoretical model for a non-destructive testing setup,
consisted of three rectangular waveguides, which can be applied to
estimate the unknown magnetic permeability profile of a material.
The present analysis follows the methodology in [5] and [6] and can
be applied to all inhomogeneous magnetic profiles of the form µ(z) =
µ∗µr(z), where µ∗ is the magnetic permeability in free space and µr(z)
denotes the relative magnetic permeability. The only requirement for
µr(z) is to be continuous so as expansion in power series of z is valid.

Briefly, we study Maxwell’s equations for such media by applying
separation of variables in rectangular coordinates. Taking advantage
of the polynomial form of µr(z) we use the Frobenius method and
we conclude for the z-dependent part of the electric field, in an
ODE with nonconstant coefficients. Then, the recursive equations
for the expansion coefficients of the electric field, that arise, can
be solved symbolically or numerically. The results taken from this
mathematical analysis are used to solve the direct problem for the
wave propagation in the system of waveguides. The central one has an
inhomogeneous magnetic filling and the two lateral ones are filled up
with homogeneous materials. Then we proceed in the magnetic profile
reconstruction which constitutes the inverse problem. We utilize an
error function minimization approach which makes use of a genetic
algorithm and seeks for the unknown coefficients µ0, µ1, µ2... in the
µr(z) expansion. Note, that we solve the inverse problem for the case
of cubic inhomogeneity, which is quite sufficient for many real-world
applications. Finally, we give some representative numerical results
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that verify the applicability of our reconstruction approach.

2. MAXWELL’S EQUATIONS IN INHOMOGENEOUS
MEDIA

Considering a longitudinally inhomogeneous, magnetic material with
magnetic permeability µ(z) = µ∗µr(z), Maxwell’s equations yield the
following equations, which characterize the phasor H(r) of the time
harmonic magnetic field

∇ · (µr(z)H) = 0 (1)
∇(∇ · H) −∇2H = k2µr(z)H (2)

where k = ω
√
µ∗ε∗ is the wavenumber, while ω = 2πf is the angular

frequency and µ∗ , ε∗ are the magnetic permeability and the electric
permittivity in free space, correspondingly.

We are interested in TM modes which are expressed in rectangular
coordinates x, y, z by the form

H(r, φ, z) = Hx(x, y, z)x̂ +Hy(x, y, z)ŷ (3)

where x̂, ŷ are the unit vectors. Applying separation of variables, the
components of the electric field become

Hx(x, y, z) = Xx(x)Yx(y)Zx(z) , Hy(x, y, z) = Xy(x)Yy(y)Zy(z) .

Inserting these expressions in Eq. (1), we obtain

X ′
x

Xx
+
Xy

Xx

Y ′
y

Yx

Zy

Zx
= 0

or equivalently

Zy = κZx , (4)
Y ′

y = λYx , (5)

X ′
x = −κλXy , (6)

where κ, λ are constant coefficients.
Moreover Eq. (2), in accordance with Eq. (4) and after submission

to separation of variables treatment gives birth to the following scalar
differential equations

X ′′
x

Xx
+
Y ′′

x

Yx
+
Z ′′

x

Zx
+ k2µr(z) = 0 , (7)
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X ′′
y

Xy
+
Y ′′

y

Yy
+
Z ′′

y

Zy
+ k2µr(z) = 0 . (8)

Handling Eq. (7) first, we apply standard separation of variable
arguments leading to the relations

X ′′
x

Xx
= −p2 , (p constant) (9)

Y ′′
x

Yx
= −q2 , (q constant) (10)

Z ′′
x +

[
k2µr (z) − ξ2

]
Zx = 0 , (11)

where ξ2 = p2 + q2. The general solutions of Eqs. (9), (10) are

Xx(x) = A1 cos(px) +A2 sin(px) (12)

and
Yx(y) = B1 cos(qy) +B2 sin(qy) (13)

when p, q �= 0 and A1, A2, B1, B2 are arbitrary constants. The case
p = 0 or/and q = 0 will be analyzed later.

Special treatment is needed for Eq. (11) to obtain its general
solution. The relative magnetic permeability has a power series
expansion of the form

µr(z) =
∞∑
i=0

µiz
i = µ0 + µ1z + µ2z

2 + ... . (14)

We use Frobenius method for solving Eq. (11) and assume that Zx(z),
the solution to this equation, can be expressed as

Zx(z) =
∞∑
i=0

ciz
i = c0 + c1z + c2z2 + ... (15)

given that the center of expansion 0 is a regular point for the ODE
(11). Hence Zx(z) is determined by the coefficients ci, i = 0, 1, 2, ... .
From now on our analysis will focus on determining these coefficients.

Substituting the expressions (14), (15) in Eq. (11) and equating
the coefficients of the powers of coordinate z, we produce the following
recursive scheme

(i+ 2)(i+ 1)ci+2 − ξ2ci + k2
i∑

j=0

ci−jµj = 0 , i = 0, 1, 2, ... .
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Equivalently, setting H2 = k2µ0 − ξ2 we have

c2 = −H
2

2
c0 and (i+2)(i+1)ci+2+H2ci+k2

i∑
j=1

ci−jµj = 0, i = 1, 2, ... .

(16)
From this scheme we infer that ci (i ≥ 2) are functions of c0, c1, H, k
and the permittivity coefficients µj , j = 0, .., i − 2, i.e., ci =
ci(c0, c1, H, k, µ0, .., µi−2). More accurately, ci can be written as:

ci = c0ui(H, k, µ0, .., µi−2) + c1wi(H, k, µ0, .., µi−2)

where ui, wi are smooth functions of their arguments. For example,
for i = 1 in Eq. (16), we obtain c3 = −H2

6 c1 − k2

6 µ1c0, where
u3(·) = −H2

6 and w3(·) = −k2

6 µ1. Also, for i = 2 we obtain
c4 = (H4

2 − k2µ2)C0
12 − k2µ1

12 c1, where u4(·) = (H4

2 − k2µ2) 1
12 and

w4(·) = −k2µ1

12 .
Combining the expressions (12), (13) and (15) we obtain the

general form of the x-component of the magnetic field:

Hx(x, y, z) = [A1 cos(px) +A2 sin(px)] · [B1 cos(qy) +B2 sin(qy)]

·
( ∞∑

i=0

ciz
i

)
(17)

Handling now Eq. (8) with the same manner we obtain an
analogous expression for the y-component of the magnetic field:

Hy(x, y, z) = [C1 cos(px) + C2 sin(px)] · [D1 cos(qy) +D2 sin(qy)]

·k
( ∞∑

i=0

ciz
i

)
(18)

where p, q, ci are the same coefficients as in the Eq. (17) (this
can be explained through consideration of Eqs. (4), (5), (6))
and C1, C2, D1, D2 are arbitrary constants. Remark that the
multiplicative scalar k has been added in order for Eq. (4) to be
satisfied.

Once the recursive Equations (16) are solved, the sought “axial”
parts Zx (z) , Zy (z) of the magnetic fields are determined through their
power series coefficients. All the other components of the fields have
been already determined and so the solution of the Equations (16) leads
immediately to the solution of Maxwell’s equations for the specific
structure under consideration. The behavior of c2, c3, .., cL can be
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studied analytically for small values of L; larger values of L require the
use of a symbolic algebra package, e.g. Maple.

Full consideration of Eqs. (4), (5), (6), or equivalently satisfaction
of Eq. (1) demand that the mixture coefficients do not be independent,
but satisfy the following equations

C1 = −A2p

κλ
, C2 =

A1p

κλ
, (19)

D1 = −λB2

q
, D2 = λ

B1

q
(20)

Consequently, the final solutions are

Hx(x, y, z) = [A1 cos(px) +A2 sin(px)]

·[B1 cos(qy) +B2 sin(qy)] ·
( ∞∑

i=0

ciz
i

)
, (21)

Hy(x, y, z) =
p

q
[A1 sin(px) −A2 cos(px)]

·[B1 sin(qy) −B2 cos(qy)] ·
( ∞∑

i=0

ciz
i

)
. (22)

Any arbitrary coefficients appearing in the above solutions will be
specified by boundary independent conditions pertaining to a specific
problem.

Before proceeding further, let us mention that there exist three
special cases concerning the values of the separation of variables
constants p and q not discussed before.

1. When p = 0 and q �= 0, the x-components Xx, Xy becomes:
Xx(x)A1x + A2 and Xy(x) = C1x + C2. Insertion of these
expressions in Eq. (6) and the combination of the results of
Eqs. (4), (5) leads to the elimination of the C1 coefficient and
to the general solutions which are

Hx = (A1x+A2) · [B1 cos(qy) +B2 sin(qy)] ·
( ∞∑

i=0

ciz
i

)
, (23)

Hy =
A1

q
· [B2 cos(qy) −B1 sin(qy)] ·

( ∞∑
i=0

ciz
i

)
, (24)

2. When q = 0 and p �= 0, analogous treatment leads to the following
general solutions

Hx =
D1

p
· [C2 cos(px) − C1 sin(px)] ·

( ∞∑
i=0

ciz
i

)
, (25)
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Hy = [C1 cos(px) + C2 sin(px)] · (D1y +D2) ·
( ∞∑

i=0

ciz
i

)
.(26)

3. When p = 0 and q = 0, the general solutions are

Hx = (A1x+A2) ·
( ∞∑

i=0

ciz
i

)
, (27)

Hy = (−A1y +D2) ·
( ∞∑

i=0

ciz
i

)
. (28)

3. WAVE PROPAGATION IN A RECTANGULAR
WAVEGUIDE

We now exploit the appropriate boundary conditions regarding the
field solutions in the previous section.

The remarks and expressions presented below apply to the case of
µ(x, y, z) = µ∗µr(z), as well as to the special case of constant magnetic
permeability. The following conditions must be satisfied by the TM
magnetic field.

Condition 1: The magnetic field components must have bounded
values inside the waveguide.

Condition 2: The normal component must vanish on the surface of
the waveguide (i.e., at x = 0, a and y = 0, b, where a is the width and
b is the height of the cross-section of the waveguide).

Let us examine the general solution for all the cases of p, q in light
of the above conditions.

Condition 1 is immediately satisfied for all values of p, q.
Condition 2 leads to the above cases.

Case 1: p, q �= 0: Condition 2 implies that A1 = B2 = 0 and leads to
the discretization of p, q; i.e., p = pm = mπ

a and q = qn = nπ
b , where

w, n = 1, 2, .... So, the expressions of the TMmn modes are

Hx(x, y, z) = H0 sin(pmx) cos(qny) · (
∞∑
i=0

ciz
i) , (29)

Hy(x, y, z) = −pm
qn
H0 cos(pmx) sin(qny) · (

∞∑
i=0

ciz
i) , (30)

where H0 is an arbitrary amplitude.
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Case 2: p �= 0, q = 0: Condition 2 implies that D1 = D2 = 0 and
TMm0 modes are vanished.

Case 3: p = 0 , q �= 0: Condition 2 implies that E0 = 0 and TM0n

modes are vanished too.

Case 4: p = q = 0: Condition 2 implies that TM00 are vanished.
It is clear that only TMmn (m, n �= 0) modes propagate along

a rectangular waveguide fulfilled with an inhomogeneous magnetic
material.

4. THE DIRECT PROBLEM FOR A SYSTEM OF
RECTANGULAR WAVEGUIDES

In order to solve the direct problem we utilize a measurement device
consisted of three rectangular waveguides interconnected as Figure 1
illustrates.

Figure 1. The measurement device.

The left and the right waveguide have fillings with constant
relative magnetic permeability µc. The middle one contains an
inhomogeneous magnetic filling. This will be the target of our
investigation of the inverse problem. The waveguides are being excited
by appropriate TM electric modes generated by the signal source. We
consider perfect interconnections among the waveguides and a load
adapted to the end of the right waveguide. These assumptions result
in non-dissipative wave propagation and perfect/ideal absorption of
the incident wave at the load.

We study the propagation of the TM11 mode, which is the
main mode for rectangular waveguides, and we assume a third order
polynomial expansion for the permeability µr (z) i.e.,

µr(z) = µ0 + µ1z + µ2z
2 + µ3z

3 .

4.1. Computation of the Field Components

We handle first the frequencies at which field propagation occurs.
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The cut-off frequencies for the two lateral waveguides, which have
relative permeability µr = µc, are the following [7]

fc,mn =
1
2π

√√√√√
(
mπ

a

)2

+
(
nπ

b

)2

µ∗ε∗µc
, m, n = 0, 1, 2, ... . (31)

This implies that the excitation frequency f must be greater than
the first cut-off frequency fc,11 which is

fc,11 =
1
2

√√√√√
(

1
a

)2

+
(

1
b

)2

µ∗ε∗µc
. (32)

So, the use of excitation frequency f > fc,11 is a prerequisite for
the transmission of a wave along the system of waveguides. In what
follows µc is the constant relative permeability of the filling either in
the left or the right waveguide, β =

√
k2µc − (π

a )2 − (π
b )2, k = ω

√
µ∗ε∗.

Waveguide no.1: The field expression is

Hx(x, y, z) = H0 sin
(
πx

a

)
cos

(
πy

b

) (
e−jβz +Gejβz

)
(33)

Hy(x, y, z) = − b
a
H0 cos

(
πx

a

)
sin

(
πy

b

) (
e−jβz +Gejβz

)
(34)

where H0 is an arbitrary amplitude constant and G is the reflection
coefficient.

Waveguide no.2: The field expression is

Hx(x, y, z) = H0 sin
(
πx

a

)
cos

(
πy

b

) ∞∑
i=0

ciz
i . (35)

Hy(x, y, z) = − b
a
H0 cos

(
πx

a

)
sin

(
πy

b

) ∞∑
i=0

ciz
i . (36)

Waveguide no.3: The field expression is

Hx(x, y, z) = D sin(
πx

a
) cos

(
πy

b

)
e−jβz , (37)

Hy(x, y, z) = − b
a
D cos

(
πx

a

)
sin

(
πy

b

)
e−jβz , (38)
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where D is the transmission coefficient.
We now set µ = [µ0 µ1 µ2 µ3]. Recall that in the framework of the

inverse problem the quantities obtained by the measurement device will
be D = D(µ, f, a, b, d), G = G(µ, f, a, b, d), where f, a, b, d will be
known for a particular experiment, while µ will be the quantity we want
to determine. In fact D, G can be measured; we will now determine
their functional dependence on µ0, µ1, µ2, µ3 (and f, a, b, d); our
final task will be to determine appropriate values for µ0, µ1, µ2, µ3

such that the theoretically computed D,G measurements agree with
the ones obtained from field measurements.

Hence our next task is to obtain concrete functional expressions
for D(µ, f, a, b, d) and G(µ, f, a, b, d). To this end we use the
impedance conditions for the three waveguides.

At the interface z = 0, from the continuity of the components and
their derivatives, we have that

c0 = 1 +G (39)
c1 = −jβ · (1 −G) . (40)

Similarly, at the interface z = d the continuity of the components and
their derivatives leads to

c0Z1(d) + c1Z2(d) =
D

H0
e−jβd (41)

c0Z
′
1(d) + c1Z ′

2(d) = −jβ D
H0
e−jβd (42)

where Z1(d) = 1 +u2d
2 +u3d

3 + ... and Z2(d) = d+w2d
2 +w3d

3 + ... .
Eqs.(39-42) can be written as a 4 × 4 linear system: AX = B , where

A =


1 0 −1 0
0 1 −jβ 0

Z1(d) Z2(d) 0 −e−jβd/H0

Z ′
1(d) Z ′

2(d) 0 jβe−jβd/H0

 ,

X =


c0
c1
G
D

 , B =


1

−jβ
0
0

 .
Hence A and B are completely specified in terms of known parameters,
X contains the unknowns of the direct problem and AX = B is a linear
matrix equation which can be solved analytically by matrix inversion.
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4.2. Agreement with Existing Solutions

We will now test the agreement of our solution with already existing
analytical solutions for two simple magnetic profiles.

Case 1: µr(z) ≡ µm= constant. In this case the field expressions
inside the medium waveguide become

Hx(x, y, z) = H0 sin
(
πx

a

)
cos

(
πy

b

) (
Cme

−jβmz +Gme
jβmz

)
,

where m denotes the medium waveguide, Cm is the propagation coeffi-
cient, Gm is the reflection coefficient and βm =

√
k2µw −

(
π
a

)2 −
(

π
b

)2
.

Applying the same boundary conditions between the waveguides we
obtain the corresponding 4 × 4 linear system AX = B, where

A =


1 1 −1 0
βm −βm β 0
e−jβmd ejβmd 0 −e−jβd/H0

βme
−jβmd −βme

jβmd 0 −βe−jβd/H0

 ,

X =


Cm

Gm

G
D

 , B =


1
β
0
0

 .
We solve this system for various profiles µm, in an efficient range of
frequencies in which our method converges, obtaining values for G, D
which are in excellent agreement with our Frobenius approximations.

We would like herein to mention that the necessary condition for
convergence: limi→∞ |cizi| = 0 is satisfied for every z ∈ [0, d] and for
an adequate range of frequencies, as will be explained next. As an
example, for µm = 50 and for z = 0.1 : |cizi| ≤ 10−16 for i ≥ 60
at the frequency of 1.2 GHz. In addition, the rate of convergence
is controlled by comparing the influence of additional terms in the
partial Frobenius sum in every step; i.e., if Si =

∑i
n=0 cnz

n, then∣∣∣Si−Si+j

Si

∣∣∣ ≤ 10−16 for i ≥ 60. The rate of convergence varies as
frequency changes. As the latter increases the rate decreases. For
example, when f = 1.5 GHz then

∣∣∣Si−Si+j

Si

∣∣∣ ≤ 10−16 for i ≥ 77 and
every j ≥ 1. Also, for the case of an arbitrary cubic inhomogeneous
profile, say µ = [3000 185.47 200.24 − 2946.92], we obtain∣∣∣Si−Si+j

Si

∣∣∣ ≤ 10−16 for i ≥ 57 at the frequency of 150 MHz and i ≥ 116
at the frequency of 300 MHz.
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Generally speaking, in all cases of inhomogeneous profiles we have
examined, 120 terms of cizi in the Frobenius series were quite sufficient
to represent the solution accurately and in a stable manner.

Case 2: µr(z) = a+ bz. In the case of linear inhomogeneity Eq. (11)
becomes

Z ′′
y + [k2(a+ bz) − ξ2] · Zy = 0 ⇔ Z ′′

y + (k2a− ξ2 + k2bz) · Zy

= 0 ⇔ Z ′′
y + (A+Bz) · Zy = 0,

where A = k2a− ξ2 and B = k2b. Applying the change of independent
variable: n(z) = −B1/3 · (z + A

B ), we obtain
..
Zy= nZy (43)

where
..
Zy denotes the second derivative with respect to n. The general

solution of (43) is a linear combination of the Airy’s functions Ai(n),
Bi(n), of the first and second kind, respectively. Consequently, the
z-dependent part of the field component has the expression

Zy(z) = a1Ai(n(z)) + a2Bi(n(z)) ,

where a1, a2 are arbitrary coefficients. Therefore, the field inside the
medium waveguide can be explicitly written as

Hx(x, y, z) = H0 sin
(
πx

a

)
cos

(
πy

b

)
· [a1Ai(n(z)) + a2Bi(n(z))] .

Applying the same boundary conditions at the points z = 0 ⇔ n0 ≡
n(0) = − A

B2/3 and z = d ⇔ nd ≡ n(d) = −B−1/3 · (d + A
B ) we obtain

the corresponding 4 × 4 linear system AX = B, where

A =


Ai(n0) Bi(n0) −1 0

−B1/3Ai′(n0) −B1/3Bi′(n0) −jβ 0
Ai(nd) Bi(nd) 0 −e−jβd/H0

−B1/3Ai′(nd) −B1/3Bi′(nd) 0 jβe−jβd/H0

 ,

X =


a1
a2
G
D

 , B =


1

−jβ
0
0

 .
We solve this system numerically for various linear profiles µr(z) =

a+bz and we obtain values for G and D which are also in an extremely
close agreement with our Frobenius approximation. For example, in
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Error Evolution of |D|
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Figure 2. Error of the absolute value of D as a function of f , for the
linearly varying magnetic profile µr(z) = 428 + 520, 5z. (Computed as
the logarithm of the relative difference between our solution and the
one involving Airy’s functions.)

Error Evolution of |G|
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Figure 3. Error of the absolute value of G as a function of f , for the
linearly varying magnetic profile µr(z) = 428 + 520, 5z. (Computed as
the logarithm of the relative difference between our solution and the
one involving Airy’s functions.)

the case of an arbitrary linear profile, this agreement is verified in
Figures 2 and 3 given below.

Hence our solutions (obtained using Frobenius method) are in
agreement with independently obtained and well known solutions for
the two types of profiles discussed above.

4.3. Cut-Off Frequencies

In the previous papers [5] and [6] we established relations concerning
the first cut-off frequency of the main propagating mode and the mean
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value of the inhomogeneous dielectric profiles. According to what
follows a similar relation holds for the inhomogeneous magnetic profiles
as well.

Namely, a very good approximation for fc,11, can be given by
utilizing a formula analogous to the one applying in the case of constant
magnetic permeability; i.e.,

[f ]c,11 =
1
2

√√√√√√
(

1
a

)2

+
(

1
b

)2

µ∗ε∗[µ]
(44)

(where [µ] = 1
d

d∫
0
µr(z)dz is the mean value of the magnetic profile).

Hence, combining Eq. (44) with an experimental value of fc,11 we obtain
an estimation for the mean value of an unknown inhomogeneity.

The next table presents the values of fc,11 and [f ]c,11 for some
representative magnetic profiles.

Table 1. A list of inhomogeneous profiles, their mean value [µ] and
the corresponding real fc,11 and approximate [f ]c,11 cut-off frequency.

µr(z) [µ] fc,11 (GHz) [f]c,11 (GHz)
40 + 5.47z 40.547 1.05 1.08
290 — 185.7z 271.43 0.407 0.419
850 + 155.3z 865.53 0.228 0.278
1500 + 510.5z 1551.05 0.168 0.171
3000 + 300.3z 3030.03 0.127 0.122
5000 + 330.2z 5033.02 94.49(MHz) 94.425(MHz)
10000 — 590z 9941 67.23(MHz) 67.05(MHz)
40 + 5.47z — 90.24z2 39.34 1.068 1.096
290 — 85.47z + 150.24 z2 283.46 0.398 0.4
850 + 55.3z — 520.24 z2 848.6 0.230 0.231
1500 + 210.5z — 840.24 z2 1509.8 0.173 0.173
3000 + 100.3z — 1200.4 z2 2994 0.123 0.122
5000 + 130.2z — 1350 z2 4995 94.85(MHz) 94.95(MHz)
10000 — 250z — 1170.4 z2 9959.4 67.17(MHz) 67(MHz)
30 — 4.7z + 8.24 z2 — 130.92z3 29.38 1.248 1.242
290 — 30.47z + 290.24 z2 — 130.92 z3 290.63 0.393 0.396
850 — 13.47z + 290.24 z2 — 96.92 z3 852.33 0.23 0.231
1500 — 200.47z + 150.24 z2 — 2300.92 z3 1477.35 0.174 0.175
3000 + 185.47z + 200.24 z2 — 2946.92 z3 3015.32 0.122 0.123
5000 — 280.47z + 1200 z2 — 8946.92 z3 4970 95.1(MHz) 95.25(MHz)
10000 — 250.47z + 1180.24 z2 — 12300.92 z3 9966.1 67.15(MHz) 67.05(MHz)
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The figure below provides a better inspection of Table 1’s data.
Note that for only one of twenty one profiles the error approaches

20%; for the rest ones remains strictly less than 3%. This means that
[f ]c,11 is very possible to be a quite accurate approximation.

Relative Error (%)  Evolution of Cut-off Frequencies
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Figure 4. Relative error (%) between fc,11 (real) and [f ]c,11
corresponding to twenty one (21) arbitrary chosen inhomogeneous
magnetic profiles.

5. SOLVING THE INVERSE PROBLEM

We follow exactly the same approach as in [5]. Briefly, handling
the simulation’s experiment data we form a function minimization
procedure using a genetic Differential Evolution (DE) optimization
algorithm [8].

6. NUMERICAL RESULTS

We now present the results of our simulated experiments. We postulate
a three-waveguide measurement system of the form presented in
Section 4.1 with d = 20 cm, a = 2.5 cm, b = 5 cm and specific
µi =

[
µi

0 µ
i
1 µ

i
2 µ

i
3

]
and µc values, where i represents the i profile

under consideration. Then we obtain numerical values for the field
in the system by utilizing the analysis presented in Section 4.1. These
numerical values are our “virtual measurements”. Then, we assume the
µi values to be unknown and we utilize the error function minimization
formulation and the inverse problem solution of Section 5 to obtain
“good” estimates µ̂i for the real µi values (i.e., estimates µ̂i which
yield a near zero value for the error function).

We also give arbitrary values for the permittivity µc; i.e., µ1
c =

5000 and µ2
c = 10000, so that f1

c,11 ≈ 95 MHz and f2
c,11 ≈ 67 MHz.
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6.1. Experiment Setup

In our virtual experiments we handle the following representative
magnetic profiles:

Table 2. Two arbitrary profiles, in the case of µ1
c = 5000, considered

“unknown” in the inverse problem (see Figures 5–6).

µi
r  ( µ1

c = 5000 )

2850 - 4775.13z + 10241.65z
2 + 20007.53z3

547.5 + 1700.47z - 4350.24z
2 — 2300.92z3

Table 3. Three arbitrary profiles, in the case of µ1
c = 10000,

considered “unknown” in the inverse problem (see Figures 7–9).

= 10000 )
47.5 + 1700.11z - 4350.24z2 - 3000.82z3

350.3 + 3341.27z - 6150.4z2 - 8400.92z3

187.5 - 200.47z + 1750.24z2 + 7000.2z3

µi
r  ( µ1

c 

For the genetic algorithm parameters the choices listed in Table 3
yield sufficiently accurate profile estimates.

Also, from various numerical tests we performed, we conclude that
δ =10−2 (three important digits) is a good value for the stopping
criterion threshold. This is verified from the figures in Section 6.2
which present the estimated profiles µ̂i (z) in comparison with the
real profiles µi

r (z) . We obtain these results by using measurements
of amplitudes and phases (or real and imaginary parts) of Di and Gi.

Table 4. G.A.s parameters used in error minimization.

Parameter Significance

N = 150 Number of trial vectors per generation.

Iterations = 120 Maximum number of generations.

F = 0.5 Diff. Variation amplification.

P = 0.8 Crossover probability.
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Figure 5. Comparative diagram corresponding to error function
value: 0,084. Max(|µr(real) − µr(guess)|) = 29, 1.
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Figure 6. Comparative diagram corresponding to error function
value: 0,0313. Max(|µr(real) − µr(guess)|) = 9, 81.
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Figure 7. Comparative diagram corresponding to error function
value: 0,0313. Max(|µr(real) − µr(guess)|) = 11, 12.
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Figure 8. Comparative diagram corresponding to error function
value: 0,051. Max(|µr(real) − µr(guess)|) = 64, 37.
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Figure 9. Comparative diagram corresponding to error function
value: 0,042. Max(|µr(real) − µr(guess)|) = 3, 60.

6.2. Amplitude & Phase Parts Measurement

The estimates obtained, with respect to the error function value and
the threshold δ, give very good approximations for the corresponding
magnetic profiles, as can be seen in Figures 5–6

(
µ1

c = 5000
)

and 7–9(
µ2

c = 10000
)
.
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7. CONCLUSIONS

In this paper we based on an analytical solution platform to study the
wave propagation in an inhomogeneous material in the longitudinal
direction. We assumed a simplified theoretical model for an experiment
setup and we formulated a direct and an inverse problem as well.
The results taken from both were very good and, therefore, this fact
adds the strong possibility to reconstruct any unknown inhomogeneous
profile expressed as a polynomial of third order. In addition, we used
the proposed in [5] technique to estimate the first cut-off frequency of
the main propagating mode TM11 and we obtained satisfactory results.
Thus, it is of question if this technique sustains for waveguides with
arbitrary cross section.
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