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Abstract—The finite element hybridized with the boundary integral
method is a powerful technique to solve the scattering problem,
especially when the fast multipole method is employed to accelerate
the matrix-vector multiplication in the boundary integral method. In
this paper, the multifrontal method is used to calculate the triangular
factorization of the ill conditioned finite element matrix in this hybrid
method. This improves the spectral property of the whole matrix
and makes the hybrid method converge very fast. Through some
numerical examples including the scattering from a real-life aircraft
with an engine, the accuracy and efficiency of this improved hybrid
method are demonstrated.
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1. INTRODUCTION

The accurate and efficient evaluation of the scattering from a large
and complex object, such as an aircraft with the engine and coating,
is of great interest in engineering. The finite element hybridized
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with the boundary integral equation method is approved to be a
powerful numerical method for such complex problem simulation [1].
Meanwhile, the finite element method is very suitable to deal with the
complex inhomogeneous materials, and the boundary integral equation
is employed to truncate the computational region of the finite element
method for the open region problem such as the scattering. Then, the
matrices generated from the finite element method and the boundary
integral equation are combined together and solved using an iterative
solver such as the biconjugate gradient method (BiCG). This hybrid
method is more accurate than the finite element method using the
absorbing boundary condition (ABC), because the boundary integral
equation is exact, and the truncation surface can be placed on the
surface of the scatterer to reduce the whole computational domain.

The boundary integral equation is discretized using the moment
methods, which leads to a dense and large coefficient matrix. Some
approaches had been employed to solve this matrix efficiently, such
as the wavelet transform [2, 3] and the impedance matrix localization
method (IML) [4, 5]. Recently, the fast multipole method (FMM) [6]
(or its multilevel version MLFMA [7]) is applied to accelerate the
computation of the boundary integral equation. The computational
complexity of the matrix-vector multiplication and the memory
requirement of the boundary integral equation are reduced from
the original o(N2) to o(N1.5) using the fast multipole method (or
o(N log N) using its multilevel version), where N denotes the number
of unknowns in the boundary integral equation. So the performance of
the hybrid method is greatly improved in solving the large scattering
problems.

Unfortunately, this FEM-FMM hybrid method still suffers from
a very slow convergence rate, especially for the complex media. This
is due to the badly conditioned matrix arising from the finite element
method, which pollutes the spectral property of the whole FEM-FMM
matrix equation. So far, several methods are proposed to improve the
convergence behavior of this FEM-FMM method. In [8], the variant
of the conventional biconjugate gradient method, named BICGSTAB
(l), combined with the preconditioner are employed to solve the whole
equations quickly. And in [9], the finite element matrix is solved
directly using a package named SuperLU, after that, it is implemented
into the FEM-FMM method in order to make the whole matrix
equation better conditioned. In [10], a ABC-based preconditioner is
proposed, where, the preconditioner is constructed using the absorbing
boundary condition placed on the truncation surface. In this paper,
the multifrontal method [11] is applied to perform the triangular
(LU) factorization of the finite element matrix. Here, the efficient
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Figure 1. The scatterer.

package from the Harwell Subroutine Library (HSL) is implemented
into the conventional FEM-FMM method. This package makes a
full use of the sparsity and symmetry pattern of the finite element
matrix, and the factorization is performed by calls to the Basic Linear
Algebra Subprograms (BLAS). So the iteration number and computing
time of this improved FEM-FMM method are greatly reduced, while
the additional computing time and store requirement due to the
LU factorization are kept small. The accuracy and efficiency of
this improved FEM-FMM method are verified using some numerical
examples. Through the evaluation of a real-life aircraft with the engine,
this enhanced FEM-FMM method is proved to be efficient for the
practical engineering application.

In the following, Section 2 discusses the formulation of the
improved FEM-FMM method and the implementation of the LU
factorization. Section 3 illustrates some numerical examples and
Section 4 is the conclusions.

2. FORMULA OF THE IMPROVED HYBRID METHOD

As shown in Fig. 1, let us consider the problem of the electromagnetic
scattering by an arbitrarily shaped scatterer characterized by the
relative permittivity and permeability (εr, µr). In this paper, without
loss of the general sense, this scatterer can be partially covered by the
perfect electric conducting (PEC) sheets, so the whole surface S of the
scatterer is divided into the non-PEC surface S1 and the PEC surface
S2.

The electric fields satisfy the variational equation with the



52 Wei, Li, and Zhang

function given by [1]

F (E) =
1
2

∫∫∫
V

[
1
µr

(∇× EV ) · (∇× EV ) − k2
0εrEV · EV

]
dV

+jk0η0

∫∫
S

(ES × HS) · n̂dS (1)

Where, the total unknown electric field E is divided into ES and EV ,
which denote the electric field on the surface S and inside the volume
V respectively. HS represents the magnetic field on S. k0 is the free
space wave number, η0 = 120π is the free space intrinsic impedance,
and n̂ denotes the outside unit vector normal to S. It should be noted
that the surface integral in Equation (1) is zero on the PEC surface
S2.

Equation (1) is discretized into the linear equations using the finite
element method. Where, ES and EV are expanded using the edge-
based functions defined on the tetrahedron. These linear equations
cannot be solved, since HS in Equation (1) is still unknown. So a
boundary condition (Here it is the HS) should be placed on S to solve
these finite element linear equations. The following boundary integral
equations are employed as the required boundary condition
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(2b)

Where, as shown in Fig. 1, Einc and H inc denote the incident electric
and magnetic fields on S respectively. JS and MS denote the
unknown equivalent electric and magnetic currents on S respectively.
G = e−jk0|r−r′|

4π|r−r′| is the free space Green’s function. t denotes the
compoment tangential to S.

Equation (2a) is the electric field integral equation and
Equation (2b) is the magnetic field integral equation. In order to
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avoid the interior resonance for a closed scatterer, they are combined
to form the combined field integral equation. Here, the triangular basis
function f i is used to expand JS and MS . Equation (2a) is tested
using f i and Equation (2b) is tested using n̂ × f i. Meanwhile, the
self-singularity and near-singularity in these integrals are calculated
analytically [12] to insure the accuracy of these integrals.

Equations (1), (2a) and (2b) can be combined together using the
following relations

JS(r) = n̂ × HS(r), MS(r) = ES(r) × n̂ r ∈ S (3)

So, the final matrices equation can be obtained as


 [A]

[
C 0
0 0

]
[Y 0] [Z]







[
ES

EV

]
[

JS1

JS2

]

 =

[
[0]
[e]

]
(4)

Where, matrices A and C are finite element matrices generated from
Equation (1), and matrices Y and Z are boundary integral matrices
generated from the combination of Equations (2a) and (2b). JS

is divided into JS1 and JS2 , which denote the equivalent electric
currents on S1 and S2 respectively. e denotes the excitation vector
due to Einc and H inc. It should be noted that using the relations
in Equation (3), MS and HS are represented by ES and JS1 in
Equation (4) respectively. For a large scattering problem, Equaiton (4)
is usaully solved using an iterative solver. Matrices A and C are
sparse, and A is symmetric. Matrices Y and Z are full. The matrix-
vector multiplication and store requirement of matrices Y and Z are
expensive, which can be reduced using the fast multipole method [6, 7].

Equation (4) still has a bottleneck, which is the low convergence
rate. This is because that the matrix A is ill conditioned, which
pollutes the spectral property of the whole coefficient matrix in
Equation (4). To eliminate this difficult, in this paper, the multifrontal
method [7] is employed to do the LU factorization of A as following

[A] = [L][D][L]T (5)

Where, [L] is the unit lower triangular matrix and [D] is the diagonal
matrix. T in Equation (5) denotes the transpose. Substituting
Equation (5) into Equation (4), the improved matrices equation can
be obtained as(

[Z] − [Y 0] · [L]−T · [D]−1 · [L]−1 ·
[

C 0
0 0

]) [
JS1

JS2

]
= [e] (6)
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This matrix equation is better conditioned than the original FEM-
FMM Equation (4), so it can be quickly solved using the biconjugate
gradient method.

Two additional costs should be considered for this improved FEM-
FMM method, which are the computing time and store requirement
for the LU factorization. In this paper, the efficient package from
the Harwell Subroutine Library is employed to perform the LU
factorization. This package makes a full use of the sparsity and
symmetry pattern of the matrix A. Where, only half of the elements
in the matrix A are required to be stored. And, before performing
the numerical factorization, it performs the symbolic factorization
to minimize the amount of “fill-in” in the factor matrix L. This
reduces the additional memory requirement. On the other hand,
this LU package uses the Basic Linear Algebra Subprograms to
do the factorization. Basic Linear Algebra Subprograms provide
the vector/matrix operations that can be optimized for different
computer architectures to achieve high efficiency. So the calculation
of the LU factorization is very fast. In the following examples, this
additional computing time even can be ignored compared with the
total computing time.

3. NUMERICAL EXAMPLES

In this section, the performance of the improved FEM-FMM method
is verified using some numerical examples.

The first scatterer is a two-layer coated sphere [13], which is
used here to verify our code. Where, the conducting sphere has
a radius of 0.75λ, and λ denotes the wavelength. The thickness
of each layer is 0.05λ. The outer layer has a relative permittivity
εr1 = 2 − j1 and a relative permeability µr1 = 3 − j2. The inner layer
has a relative permittivity εr2 = 3 − j2 and a relative permeability
µr2 = 2 − j1. Fig. 2 shows the bistatic radar cross section (RCS)
obtained using the improved FEM-FMM method (denote by FEM-
FMM-LU), the conventional FEM-FMM method (denoted by FEM-
FMM), and the Mie series. The iteration numbers of these methods
are listed in Table 1. From Fig. 2 we can see that there is a good
agreement between the improved FEM-FMM method and the Mie
series. While the result of the conventional FEM-FMM method is not
accurate for 0◦ ≤ θ ≤ 90◦. The reason is that the media of these
two layers are high contrast, which leads to a very ill conditioned
finite element matrix. This matrix not only greatly pulls down the
convergence of the conventional FEM-FMM method, but also results
in an inaccurate solution. While, with the help of the multifrontal
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Table 1. Unknowns number, memory requirement, iteration number
and computing time for three scatterers.

Memory (GB) Iteration Number Total Computing
Time (Min.)

Scatters Unknowns
Number

FEM-FMM-
LU

FEM-
FMM

FEM-
FMM-LU

FEM-
FMM

FEM-
FMM-LU

FEM-
FMM

LU
Factorization
Time (Min.)

Coated
Sphere

34 482(FEM)
15 876(FMM)

0.85 0.7 76 10 166 20 925 0.27

Microstrip
Array

48 346(FEM)
24 722(FMM)

1.31 1.22 551 2 268 86 321 0.23

Aircraft
with the
Engine

28 663(FEM)
25 320(FMM)

1.91 1186 935 0.21
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Figure 2. The bistatic RCS of the two-layer coated sphere using the
improved FEM-FMM method, the conventional FEM-FMM method,
and the Mie series.

method, the improved FEM-FMM method can provide an accurate
result, and with the same error tolerance its iteration is only about 1%
of that of the conventional FEM-FMM method.

The second scatterer is a finite three by three microstrip array
mounted on a two-layer substitute as shown in Fig. 3. The upper
layer in which the patches are embedded has the thickness of 0.03048λ,
and is filled using G10 with εr1 = 3.8 − j0.01482 and µr1 = 1. The
lower layer on the top of the finite ground plane has the thickness of
0.015748λ, and is filled using Duroid 5880 with εr2 = 2.22− j0.001998
and µr2 = 1. The size of each patch is 0.732λ × 0.52λ. The size of the
finite ground plane is 3.396λ×2.76λ. The distance between each patch
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Figure 3. The three by three microstrip array.
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Figure 4. The bistatic RCS of the three by three microstrip array
in y-z plane using the improved FEM-FMM method, the conventional
FEM-FMM method, and Ansoft HFSS software.

is 0.3λ. Fig. 4 shows the bistatic RCS of this array in the y-z plane for
a plane wave incident along −z-axis with the y-polarized electric field.
The result using the Ansoft HFSS software is also shown in Fig. 4 for
the verification. The agreement between these three results is good.

The last scatterer is an aircraft with an engine as shown in Fig. 5.
Where, the engine is modeled as an open and deep cavity. This aircraft
has a length of 10.9λ and a wingspan of 6.9λ. The length of the engine
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Figure 5. The aircraft with an engine. (a) y-z plane. (b) x-z plane.
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Figure 6. The bistatic RCS of the aircraft with the engine and without
the engine in x-z plane.

is 7.3λ. Fig. 6 shows the bistatic RCS of this aircraft in x-z plane using
the improved FEM-FMM method. Where, the incident wave is along
−x-axis with the z-polarized electric field as shown in Fig. 5(b). In
Fig. 6, the bistatic RCS of the aircraft without the engine using only
the fast multipole method is also shown for the comparison, where,
the ports of the engine are closed and the whole aircraft is treated as
a closed PEC scatterer. The maximum RCS difference between these
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two models occurs at the tail, where θ = 90◦. While for other angles
far away from 90◦, these two models present the similar scattering
pattern. This reveals that the engine plays an important role on the
scattering, when the incident wave is toward the import/export of the
engine. For such incident directions, the engine should be considered
together with the aircraft to give an accurate result. For this aircraft
with the engine, there are totally 54 K unknowns. With the help of
the fast multipole method, this large problem can be solved on a single
computer with a 1.3 GHz CPU and 2 GB memory.

Table 1 lists the number of unknowns, the memory requirement,
the iteration number and computing time for above three scatterers.
From this table we can see that with the help of the LU factorization,
the iteration numbers and the total computing time of the improved
FEM-FMM method are dramatically reduced compared with those
of the conventional FEM-FMM method. The additional store
requirement due to the LU factorization is less than 3% of that of the
conventional FEM-FMM method, although the unknowns of the finite
element method are more than those of the boundary integral. This
is because that the finite element matrix is symmetric and sparse, and
usually the boundary integral equation occupies the largest memory in
the FEM-FMM method. At the same time, the additional computing
time due to the LU factorization only takes less than 1% of the
total computing time of the improved FEM-FMM method, so that
this additional cost can be ignored. From the iteration numbers in
Table 1 we can see that the more complicated the scatterer, the more
the iteration. According to our experiences, for the complex real-life
scatterer such as the aircraft, not only the finite element matrix but
also the boundary integral matrix is very badly conditioned, because
there are many reflections and diffractions between different structures
of the scatterer. In such cases, the conventional FEM-FMM method
will take too long to converge, so it is not employed for the aircraft in
Table 1.

4. CONCLUSIONS

The finite element hybridized with the fast multipole method is
employed to solve the scattering problems. Where, the multifrontal
method is used to calculate the LU factorization of the finite element
matrix. The computing time of this improved hybrid method is greatly
reduce compared with that of the conventional hybrid method. Some
numerical examples are presented to show the accuracy and efficiency
of this improved hybrid method.
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