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Abstract—Achieving a high stability of the phase centre position in
horn antennas with respect to frequency is a very desirable aim in
reflector antenna design; a highly stable phase centre reduces efficiency
dropping for defocusing at the frequency band extremes. By using
an appropriate profile for the horn antenna it is possible to obtain
horns both compact and with a stable phase centre. In this paper an
automatic design procedure, based on Genetic Algorithms, to obtain
such horns is described. The algorithm operates on many horn profile
parameters, including corrugations, and is based on an accurate full-
wave mode matching/combined field integral equation analysis code.
To keep computing time down a full parallel algorithm over a 12 CPU
parallel virtual machine is described.
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1. INTRODUCTION

Profiled or dual profiled corrugated circular horns (PCCH or DPCCH)
are among the best feeds used in modern antenna manufacture for their
polarization purity and small size [1]. Furthermore, by appropriately
designing the profile, very compact horns with very stable phase centre
with respect to frequency, can be obtained. This is a highly desirable
property since, especially in spaceborne applications, having compact
horns with a phase centre which is stable over a broad frequency band
can greatly simplify the cluster illuminating each single reflector [2, 3].

Horn characterization by using full-wave software simulators,
based on mode matching and on combined field integral equation
(CFIE) techniques, is accurate and can nowadays be performed on
a conventional personal computer [4,5]. Automatic design, on the
other hand, requiring many different analyses, is much more time
consuming. Although some interesting results were recently obtained
for PCCH design by exploiting artificial neural networks (ANN) [6]
this has the flaw that it cannot be easily generalized when design
constraints change. An automatic optimization technique directly
exploiting the full wave simulator is hence often preferable. Hence in
this paper a different approach for optimizing the horn phase centre,
size, pattern and return loss is presented, based on a Genetic Algorithm
(GA) scheme. Other approaches to GA horn antennas optimization
exist, but they concern planar [7] or disk structures [8], not PCCH or
DPCCH, and are limited to simple objectives, not comprising a full
set of electromagnetic characteristics. Furthermore, in this paper, a
different kind of profiling, based on Non-Uniform Rational B-Splines
(NURBS) [9] is presented. Profile optimization is indeed a topic of
relevant practical interest, analysed in very recent papers [10-12],
none of which dealing with the very versatile NURBS curves. This
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latter kind of horn will be addressed to as NPCCH (NURBS profiled
corrugated circular horns).

The paper has the following organization: in Sections 2 and 3 the
key points of optimization parameters and cost function are introduced;
in Section 4 the parallel GA implementation and its characteristics are
described; then in Section 5 some horn designs are presented. Finally
Section 6 contains the conclusions.

2. DESIGN PARAMETERS

The key issues in any optimization procedure are: first the selection of
the parameters of the optimization and of their allowable ranges; then
the choice of an appropriate cost function. For what concerns PCCH
many geometrical design parameters may be considered.

The horn profile r as a function of the axial co-ordinate z can obey
to a square sine law next to the throat and to an exponential function
at the aperture (DPCCH):

Rit (Ro—Ry) | (1-4) =+ Asin? (2”; )] 0<z<L,

Ry + e(z=Ls) Ly <z<Ls+ L,

(1)

Parameter A € [0,1] modulates the first region profile from linear

to pure square sine, while the exponential profile is governed by

a = [In(l + R, — Rs)]/Le [2,3] and the other terms are related

to the horn geometry as shown in Fig. 1. Hence, for the square

sine plus exponential profile, 5 design parameters can be recognized:

Ls, Rs, Lo, R, and A, being R; fixed to the radius of the feeding
circular waveguide.

NURBS curves are alternative functions for the shaping of the
profile: they are extremely versatile mathematical objects used mainly
in computer graphics to model curves and surfaces. As conventional
splines they are defined by an ordered set of points {P;}, i =0,...,n,
or control polygon. But, differently than for splines, NURBS curves are
vector valued piecewise rational polynomial functions of a parameter
u € [0,1]:

r(z)=

Z szzNz,p(u)
P(u) = =5 (2)
Z ’LUiNLp(u)
=1

w; is an assigned set of weights and N; ,(u) are the normalized B-Spline
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Figure 1. Dual profiled corrugated circular horn section with relevant
geometrical parameters governing profile and corrugations. (i) zone of
corrugations transition; (ii) zone of uniform corrugations; (iii) square
sine region; (iv) exponential region.

basis functions of degree p:

1 ifu <u < g
Nio(u) = =
wo(u) { 0 otherwise 3)
U — U Uitprl — U
N (v) = ———> N _1(u +LNI 101 (u
1) = N 1)+ N )
being
U = {uog,ut,...,unt; withuy <up <...<upy (4)

the so-called knot vector and m = n + p + 1. To obtain a NURBS
curve starting from point Py and ending in point P, the knot
vector must have the first and last p + 1 elements coincident, that
is U = {0,...0,up41,- . Um—p—1,1,...,1}.  The function N;,(u)
determines the influence of control point P; on the position of the curve
at u, whereas the presence of w;, weighting each control point, gives
additional degrees of freedom to the curve shape. When all the control
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Figure 2. NURBS-profiled circular horn geometrical parameters; (i)
transition region; (ii) uniform corrugations region.

points carry a weight of 1.0, the NURBS reverts to a conventional B-
Spline, while, by adjusting the weights, one can precisely follow given
geometries with very few control points. The set of n control points
is chosen so that the first point defines the throat radius, while the
last defines the radius of the aperture. The remaining control points
are equally spaced along the axis (z direction) of the structure and
positioned at a given distance, r;, from it (Fig. 2). Hence the design
parameters to define a NURBS profile are: the overall length of the
structure, L, the number of control points n, their radial distance from
the axis r; and the relative weights, w;.

As far as corrugations are concerned, for large horns it is often
convenient to consider them uniform over a large part of the horn
and characterized by a depth s and an overall width w, this latter
split into a tooth width ¢ and a slot width b. In the throat region
there is a transition in which the corrugations start from a given
geometry s;, wy, by and end to the desired s, w, b values. This transition
can obey to a linear or polynomial law, or, as an alternative, each
corrugation parameter can assume an arbitrary independent value.
The transition of each parameter occurs over a given number of
corrugations M, which may indeed be different for each parameter
{Ms, My, M,,} (Fig. 3). Hence the design parameters for corrugations
may be as few as 9, {s¢, wy, by, s, w, b, Mg, My, M, } for linear variation,
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Figure 3. Transition corrugation regions and relative parameters: (a)
w transition; (b) b transition; (c) s transition.

or as much as (Ms + M, + M,,) for independent variation. From
these design parameters a subset is then selected and ordered into an
optimization parameter vector p on which the optimization procedure
will operate.

3. COST FUNCTION

For the key issue of the cost function for the optimization process
several objectives are defined for the electromagnetic characteristics of
the horn. The quantities relevant for a horn which is to be used as
a feed for a reflector antenna are: the phase centre C location — in
terms of its distance d from the horn aperture — the side lobe level
SLL, the edge taper ET on the reflector equivalent edge, O from
the horn broadside direction (ET @@ g for short), the cross-polar level
XL and the return loss RL (see Fig. 4 for a graphical sketch of some
of these parameters and [1] for a full definition of all).

In this paper, an optimization procedure based on a quasi-Newton
method is exploited for the computation of the phase centre C.

C' is placed on the horn axis for symmetry reasons and its position
is hence determined by its distance d from the horn mouth O. The
optimization technique minimizes the function

£(d) Zzzwz‘j

o *(d) - 60” (d) (5)

where C is a generic point at a distance d from O and ¢g9’¢) is the phase

of the far field in the direction (¢, ¢) computed with C as reference
point. Cost function (5) is computed over a discrete set of points
(¥4, ¢i) in the ranges 9¥; € [0,Y9] and ¢; € [0,27] and exploiting a
suitable set of weights w;;.

This optimization is indeed very fast since, once the phases of the

field ¢89’¢) are computed with respect to point O, the phases in the



GA optimization of corrugated circular horns 133

Reflector

Figure 4. Some of the fundamental electromagnetic characteristics
for a horn used as a reflector antenna feed.

generic point C' are given by [13]

6" (d) = 5" — kd cos v (6)

where k is the wavenumber.

For the sake of simplicity the five electromagnetic characteristics
mentioned above will be referred to as a single vector ¢ =
[d,SLL, ETQ0gr, X L, RL]. Hence in the following ¢; will be the phase
centre position, co the side lobe level, etc.

For the desired characteristics both a nominal value (¢) and two
acceptable tolerance vectors (67 and §7) are given as the design
objective. The objective is reached if ¢, — 6, < ¢, < ¢, + 4, Vn
over the specified set of frequencies and pattern cuts. Tolerances

can be symmetric (% = ¢7) for characteristics which must be
within an interval of the nominal value (like d and ET@fgr) or an
asymmetric threshold (6= = +oo, §* = 0) for characteristics which

must stay below a nominal level (like SLL, XL and RL). The
cost function is hence computed as a summation of the weighted
distances D(cp(p),Cn, 9, ,0,7) between each EM characteristic for the
given parameters ¢, (p) and its nominal value and tolerance:

5
Clp) = Y waD(ca(p), s by, 6F) (7)
n=1
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being w the weights vector.

The distance is itself defined as a weighted summation over the
selected characteristic obtained via the full wave simulation [5] over a
suitable set of discrete frequency values f;, ¢ = 1,..., N; and over a
discrete set of ¢ cuts ¢;, 7 =1,..., Ng.

Ny N

D(cn(p), Cnv‘sn’ n) ZZ {Cn )Yijs Ty 0r s n)‘cn( )Yij — @l

i=1j5=1

(8)
having indicated with {c,(p)}:; the value of the n-th characteristic at
frequency f; and on cut ¢;. It is worth noticing that for n = 3, that is
the edge taper, specifications are usually given only for the centre-band
frequency, hence no summation over 7 is necessary, while for n = 5, that
is the return loss, the identification of a ¢ cut loses significance, hence
no summation over j is performed.

The weight w({c,(p)}ij, €n,0,,,9;) is a non-linear function which
assures that the value of the cost function does not vary if a
characteristic is already within the acceptable tolerance from the
nominal value and that characteristics very distant from the nominal
value have a higher penalty. Its analytical expression is:

u({cn(p)}ij Cnidy 0 ) =41 if {en(p)}ij—Cn € [_An , =0, 1U(G, AT

100 if {cn(p) }ij—Cn € (—00,— AL ] U(A,+00)

(9)

where A, is an additional set of tolerance levels introduced to speed

up convergence. Its value is to be tuned on the problem at hand, but
experience has showed that AF = 35 leads to good results.

4. PARALLEL GA

Any automatic optimization procedure relies on some appropriate
deterministic or stochastic algorithm for the minimization of the
problem cost function. It is well known that deterministic algorithms
are accurate but may get trapped in local minima, whereas stochastic
algorithms, although more CPU intensive, perform a global search,
hence avoiding that shortcoming. Among the stochastic techniques
genetic algorithms (GA) are very interesting [14].

The hybrid MM /CFIE full wave package described in [5] and used
both in [6] for neural network learning and in [2, 3] for human-driven
design is very accurate but somewhat CPU intensive, requiring few
minutes for each frequency point on fast modern PC (Pentium III,
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733MHz clock). The GA operates over a population of some tens
of possible designs, for hundreds of generations. For each design at
each generation one simulation over the desired frequency points is
necessary; it is easy to understand how the number of analyses required
can grow up to several thousands.

Among the characteristics of the GA is that the analyses relative
to different members of the population at a given generation are
independent and can hence be computed in parallel. The GA has then
been implemented over a 6-node Beowulf cluster [15], by exploiting the
PVM libraries [16], each comprising a dual Pentium III system. The
optimization procedure has been built in a master/slave paradigm; the
GA master process, residing on a node, sends parameter vectors p to a
set of slave processes scattered all over the cluster, which perform the
full wave analysis and return the cost function value. This is highly
efficient inasmuch the bottleneck of a Beowulf cluster consists in the
relative slowness of the network interconnection between the nodes.
In the proposed master/slave architecture only the extremely concise
information contained in the vector parameters and the value of the
cost function are actually passed among processes.

5. OPTIMIZATION RESULTS

Two horn designs are shown here.

The first example concerns a horn that works at 100 GHz,
with a 20% band, with a complete set of design specifications.
The horn has a square sine plus exponential profile. The total
length of the horn was fixed to 61.5mm, which corresponds to
20.5A. The set of optimization parameters comprises My, s¢, s, by,
and b, defining the throat corrugation geometry, L, A, Rs, and Ry,
which define the dual profile. Parameters My, M,,, w; and w were
fixed to have full control on the overall length of the structure.
The overall width of corrugations, w, varies following a linear law
from w; to w. All useful data relevant to each parameter are
shown in Tab. 1. Optimization goals were represented by the

three vectors ¢ = [—~2.5mm,—35dB, —25dB@20°, -30,30], §* =
[6mm,0,0,0,00], §~ = [6mm,0c0,0,00,0]. The two auxiliary tole-
rances were AT = [18 mm, 0,0,0,00], A~ = [18 mm, o0, 0, 00, 0].

The constraints were sampled and added to the total cost at
90 GHz, 100GHz and 110GHz (N; = 3), and all constraints were
checked and considered in the cost on the horn pattern main cuts (FE-
plane, H-plane and the ¢ = 45° in between, Ny, = 3). From the
GA point of view, a simple GA [14] was run over 15 generations with
populations of 55 specimens. The crossover probability was 0.8, the
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Table 1. First design example: design parameter values.

Variation range | Optimized | A priori
Min Max GA value [fixed value

s\l | 039 | 0518 | 0495 -
s spA] | 018 | 0308 | 0,234 -

DESIGN PARAMETER

% Mo | 14 | 30 27 i
2 wil |- i : 0,4
<

o | w | wn | - i i 03
@

& My : : : 20
3 by | 002 | 0276 [ 0,002 i

b bA] 0,15 | 0,278 0,238 -

M, - - - 20
. L.\ 88 | 184 | 118 -
= A 0338 | 09 | 0647 -
2 Rs[\] 0445 | 2,493 | 1,987 -
* R.[\] 1976 | 3 2,72 -

mutation probability was 0.1, and the running time 5 hours. Fig. 5
and Fig. 6 show the results obtained. It is important to notice the
excellent stability achieved for the phase centre in the given band.
The second example concerns a NPCCH that works at 100 GHz
but with a 30% band. The overall length was fixed to 57 mm which
corresponds to 19.056A. The length of the horn was fixed. This
was obtained by fixing the total number of corrugations and, in the
transition region, by fixing parameters wy,w, M,, and M. So for
what concerns the corrugations geometry, 5 optimization parameters
have been used: Mg, s, s,b:,b. For the NURBS profile shaping a
control polygon with 5 control points, P;(i = 0,...,n; n = 4),
has been defined. The points are equally spaced along the axis of
the horn. Then, the five weights, w;, as well as the five radial
coordinates, 1;, were the profile optimization parameters. As in
the first example all useful data relevant to design parameters are
shown in Tab. 2. Optimization goals were represented by the
three vectors ¢ = [-3.6mm,—35dB, —22dB@19°,-30.30], §* =
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Figure 5. First design: synthesized geometry and phase centre
position vs frequency on the three pattern main cuts.
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Figure 6. First design: maximum cross-polar level and reflection
coefficient (top-left) and co-polar pattern at centerband and band
limits.
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Table 2. Second design example: design parameter values.

DESIGN PARAMETER |-t L0 | Pl B e
Min Max

si[A] 0,39 | 0,518 0,393 -
S s[A] 0,18 | 0,308 0,248 -
% Ms 14 30 18 -
= w, [A] - - - 0,4
§ Wl wlA] - - - 0,3
% My - - - 33
O b | 002 [ 0276 0,071 -
b b[A] 0,15 | 0,278 0,261 -
My - - - 33

L [A] - - - 19,05
n - - - 5
Zo [M] - - - 0
Po | ro[A] | 0445 | 0,573 0,466 -
Wo 0,5 15 0,8125 -

z; [M - - - 4,7625
Pr | rn[A] | 097 | 1,089 1,066 -
w W, 0,5 15 0,75 -

=

o z; [A] - - - 9,525
& Po | oA | 1494 | 1,75 1,721 -
W, 0,5 15 0,5625 -

23 [A] - - - 14,2875
Ps | rs[A] | 2,083 | 2,339 2,107 -
W; 0,5 15 0,6875 -

za [A] - - - 19,05
Pa | r,[A] | 2544 | 3,056 2,626 -
W, 0,5 15 0,8125 -
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Figure 7. Second design: comparison between the optimized NPCCH
and the nearest linear horn patterns at 100 GHz (top-left) and phase
centre positions (top-right) on the ¢ = 0, ¢ = 45° and ¢ = 90° planes;
comparison between cross-polar and return loss levels (bottom-left);
NPCCH profile and control polygon (bottom-right).

[6 mm,0,0,0,00], §~ = [6mm,00,0,00,0]. The two auxiliary tole-
rances were AT = [18 mm, 0,0, 0, 00], A~ = [18 mm, o0, 0, 00, 0]. From
the GA point of view the population encompassed 90 specimens over 40
generations with a crossover probability equal to 0.8 and a mutation
probability equal to 0.1. Elitism was also exploited. The running
time was about 21 hours. Fig. 7 shows the obtained results: the
electromagnetic characteristics are compared with those obtained by
a linear horn of comparable dimensions. In Fig. 7 is also shown the
obtained NPCCH profile.
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6. CONCLUSIONS

In this paper a GA approach to the design of DPCCH and NPCCH has
been presented. Two relevant cases of design attained with the method
were shown. In both cases the horn length was fixed a priori, as it is
often the case in satellite applications, and the design main goal was
to attain the highest phase centre stability over the prescribed band,
together with the other standard electromagnetic requirements. In
the second example a rather complex optimization problem has been
presented: the horn was requested to work in a 30% band and the
design was performed exploiting NPCCH. A comparison between the
optimized NPCCH and the nearest linear horn has been shown as well.
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