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Abstract—A full-wave evaluation of the electromagnetic field in
conformal structures with linear loading materials is presented in
this paper. The analysis is performed considering at first conformal
components with conventional isotropic and homogeneous media in
the generalized orthogonal curvilinear reference system. In this first
case, a summary of the possible analytical solutions of the vector
wave equation obtainable through various factorization techniques is
given. Then, the attention is focused on conformal structures involving
non-conventional media (anisotropic, chiral, bianisotropic) and in this
case the field solution is demanded to a new generalization of the
transmission line approach. As an aside, exploiting a contravariant
field formulation, which allows writing Maxwell’s equations in the
generalized reference system as in the Cartesian one, a useful
relationship between the local curvature of the geometry and a suitable
inhomogeneity of a related planar structure is presented. Finally,
some results, obtained simulating the behavior of patch radiators
mounted on curved bodies through the combined application of
an extended Method of Line (MoL) numerical algorithm and the
theoretical approach here derived, are presented.
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1. INTRODUCTION

The popularity and the demand for conformal components in
microwave applications has been growing in the last decades, in parallel
with the interest in employing electromagnetic devices in spacecraft,
satellites, aircraft and land vehicles, for which compactness and drag
reduction are very important issues [1–13]. For this reason, extensive
research efforts have been recently devoted to develop accurate and
efficient analysis tools and design procedures for integrated circuits
and radiative components mounted on curved surfaces, avoiding
expensive and approximate experimental attempts. In the case of
simple geometries (e.g., planar, cylindrical, spherical, etc.) and linear,
isotropic and homogeneous dielectric materials, the full-wave theory
is well established and analytical solutions are already available (see
[14] and references therein). Therefore, nowadays the research in these
cases is mainly devoted to find out new and fast design techniques.

When non-canonical surfaces are involved, instead, the analysis
grows in complexity, due to the local curvature of the structure, and
spending efforts on design procedures becomes a step ahead. The
first aim in this case consists in the development of an accurate
and efficient analysis tool, which may simulate the electromagnetic
behavior of the conformal component varying the electrical and
geometrical parameters to match the given requirements. For this
purpose, a proper theoretical investigation is needed.

The main difficulty encountered when approaching the electro-
magnetic problem in curved structures is the analytical complexity of
the involved equations, which very often cannot be solved in closed
forms. These difficulties grow even more in presence of complex me-
dia, such as materials exhibiting the magneto-electric effect (chiral, bi-
anisotropic, etc.), whose behavior in radiating and circuit components
has been investigated in the past years [15–23] and has shown very
promising features. The actual difficulties in this theoretical research
field, thus, mainly depend on the complexity of the required mathe-
matical background and on the fact that a well established and general
theory on conformal structures has not been already carried out and
published in the open technical literature. This paper is an attempt to
present in a unified theory some new theoretical developments in the
solution of the electromagnetic field in conformal structures. In the
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last part of the paper, then, the theory here presented is applied to an-
alyze numerically some conformal components following an extended
MoL numerical procedure as proposed by the authors in a recent work
[24].

The structure of the present work is given in the following. In
Section 2 a brief description of the generalized orthogonal curvilinear
reference system and a detailed justification for its employment in
the present analysis will be discussed. In Section 3 the solution of
the electromagnetic field in presence of linear, isotropic, homogeneous
media will be summarized and discussed, showing in which reference
systems it is possible to find a closed-form analytical solution and in
which others a numerical solution is unavoidable. In Section 4 the
presence of complex materials will be addressed and a new set of
transmission line equations in the generalized orthogonal curvilinear
reference system will be derived, showing their utility in the analysis
of conformal structures both for analytical and numerical tools. In
Section 5, a useful relationship between the local curvature of the
geometry and a suitable inhomogeneity introduced in an isomorphic
planar structure is presented, which can be employed to simplify the
analysis of electromagnetic components mounted on curved surfaces.
Finally, in Section 6, some numerical results, obtained exploiting
the generalized MoL algorithm described in [24] and based on the
isomorphism proposed in Section 5, are presented.

2. GENERALIZED ORTHOGONAL CURVILINEAR
REFERENCE SYSTEM

In the following we will refer to an integrated conformal structure
mounted on a curved surface, such as the one depicted in Fig. 1.
The related electromagnetic problem consists in a differential system
(Maxwell’s equations) with prescribed boundary conditions on the
interfaces between the conformal slabs that compose the structure,
on the conformal metallic surfaces and at infinity (the radiation
condition).

This problem can be solved either analytically or numerically, but
in both cases a suitable modeling of the curved surfaces is needed.
Very often they are roughly represented by canonical surfaces, such as
portions of spherical or cylindrical surfaces, but this approximation
does not always yield correct results in the simulation process.
The accuracy of the solution, in fact, obviously depends on the
approximation of the real curvature of the structure. When this kind
of solution is viable, however, the electromagnetic analysis is usually
developed in the related reference system (i.e., cylindrical and spherical
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metallic curved surface 

conformal dielectric slab 

conformal metallic trace 

Figure 1. An example of an integrated conformal structure.

for structures approximated by cylinders or spheres, respectively),
where the curved interfaces coincide with coordinate surfaces and the
field components are tangential or orthogonal to the surface at each
point. A direct consequence, in fact, is that the imposition of Dirichlèt
or Neumann boundary conditions becomes straightforward since they
do automatically factorize and refer only to one single field component.

On the other hand, when canonical geometries are not suitable
to describe the interface surfaces, a more extensive theory is needed
and the generalized orthogonal reference system may be successfully
employed for this purpose. A conformal interface, in fact, can be
very often expressed or approximated (generally in a more accurate
way than in the case of the aforementioned canonical geometries) as a
coordinate surface in an orthogonal reference system.

The orthogonal unit vectors q̂1, q̂2, q̂3 generically describing the
reference system are depicted in Fig. 2. If the associated spatial
coordinates are expressed as q1, q2, q3, the volume element (see Fig. 2)
is given by dV = h1h2h3dq1dq2dq3 [25], where h1, h2, h3 are the so
called metric factors (in general functions of the spatial coordinates).
The reference system is univocally determined once the metric factors
are fixed in every point of the space, since they are directly related to
the local curvature of the coordinate lines and surfaces.

The main advantage to adopt this general formulation is in the
direct factorization of the boundary conditions at every interface,
provided that such interfaces can be expressed, in the chosen reference
system, as portions of coordinate surfaces. This assumption is very
often satisfied, considering that the generalized orthogonal reference
system can be referred to an infinite number of geometries, some of
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Figure 2. Unit vectors and volume element in the generalized
orthogonal curvilinear reference system.

which are reported in Table 1.
The number of orthogonal systems for which this formulation can

be applied is not limited to those reported in the table, but suitable
reference systems may be synthesized, depending on necessity, through

Table 1. Some orthogonal reference systems, with related coordinate
variables and metric factors.

Reference System Spatial Variables Metric Factors

q1 q2 q3 h1 h2 h3

Cartesian x y z 1 1 1

Circular Cylindrical ρ φ z 1 ρ 1

Parabolic Cylindrical u v z
√
u2 + v2

√
u2 + v2 1

Elliptic Cylindrical u v z a
√

sin2 v + sinh2 u a
√

sin2 v + sinh2 u 1

Spherical r θ φ 1 r r sin θ

Prolate Spheroidal ξ η φ a
√

sin2 η + sinh2 ξ a
√

sin2 η + sinh2 ξ a sinη + sinh ξ

Oblate Spheroidal ξ η φ a
√

sin2 ξ + sinh2 η a
√

sin2 ξ + sinh2 η a cosξ + cosh η

Parabolic u v φ
√
u2 + v2

√
u2 + v2 uv

Conic µ v 1

√
µ2−v2| |√

µ2−a2
√

b2−µ2

√
µ2−v2| |√

µ2−a2
√

v2−b2

Paraboloidal µ v

√
µ−λ)( v−λ)

2
√

a2−λ
√

b2−λ

√
( −µ)(v−µ)

2
√

a2−µ
√

b2−µ

√
( −v)(µ−v)

2
√

a2−v
√

b2−v

Ellipsoidal µ v

√
µ−λ)( v−

2
√

a2−λ
√

b2−λ
√

c2−λ

√
( −µ)(v−µ)

2
√

a2−µ
√

b2−µ
√

c2−µ

√
(λ −v)(µ−v)

2
√

a2−v
√

b2−v
√

c2−v

Bipolar u v z a
cosh v−cos u

a
cosh v−cos u

1

Bispherical u v φ a
cosh v−cos u

a
cosh v−cos u

a sin u
cosh v−cos u

Cardioid Cylinder u v φ a
cosh u−cos v

a
cosh u−cos v

a sin u
cosh u−cos v

Cardioid Cylinder µ v z (µ2 + v2)−3/2 (µ2 + v2)−3/2 1

Tangent Sphere µ v ψ 1
µ2+v2

1
µ2+v2

µ
µ2+v2

λ

λ

λ

λ λ

λ λ

λ) λ
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the use of conformal transformations in the complex plane, as shown
in [26].

Spatial variables and scale factors associated to each reference
system are also reported in the table. It has to be observed that some
reference systems require a further assignment of some geometrical
parameters.

3. FIELD SOLUTION IN CONFORMAL STRUCTURES
WITH LINEAR, ISOTROPIC AND HOMOGENEOUS
MATERIALS

In this section we briefly show a possible analytical solution of the
electromagnetic field in conformal geometries when linear, isotropic
and homogenous materials are considered. Assuming a time harmonic
dependence ejωt and considering a source free region, the vector wave
equations for the electric (E) and magnetic (H) fields are of the
Helmholtz kind:

∇2E − k2E = 0

∇2H − k2H = 0
(1)

where k2 = ω2µε, being ω the angular frequency and µ, ε the
permittivity and permeability of the medium, respectively.

The main goal is to solve analytically these vector equations, in
order to express in a closed form the electromagnetic field excited in
the conformal structure. To this end, the first problem to be considered
is the reduction of the vector Helmholtz equation to scalar uncoupled
differential equations. Then, these scalar equations should be solved,
preferably in a closed form.

The problem is usually approached by directly projecting each
vector equation on the three coordinate directions. Considering
the generalized reference system, three coupled scalar differential
equations are obtained and there is no way to reduce the system to
scalar equations containing only one unknown each. Specifying the
problem to a given reference system, on the other hand, it can be
shown that uncoupled equations can be obtained in some cases: in
Cartesian coordinates, as well known, the three scalar equations are all
decoupled whereas in circular cylindrical, parabolic cylindrical, elliptic
cylindrical, and bipolar systems only the scalar equation along the
axial direction is decoupled. Provided that we can find an analytical
solution for this equation, however, it can be shown that the whole
spatial electromagnetic field can be related to this solution, and, thus,
expressed analytically as well. In the spherical reference system, which
does not belong to the previous class, it is also possible to reduce the
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vector equation to a scalar one by using in addition the divergence
equations.

In order to extend the family of orthogonal reference systems
where this reduction is possible, we can operate introducing the
Borgnis’ potential functions U and V [27]. In those reference systems
where the following two conditions hold:

h3 = 1 and
∂

∂q3

(
h1

h2

)
= 0 (2)

it can be proved that the overall electromagnetic field can be expressed
as follows [27]:



Eq1(q1, q2, q3) =
1
h1

∂2U(q1, q2, q3)
∂q3∂q1

− jωµ
1
h2

∂V (q1, q2, q3)
∂q2

Eq2(q1, q2, q3) =
1
h2

∂2U(q1, q2, q3)
∂q2∂q3

+ jωµ
1
h1

∂V (q1, q2, q3)
∂q1

Eq3(q1, q2, q3) =
∂2U(q1, q2, q3)

∂q2
3

+ k2U(q1, q2, q3)

(3)




Hq1(q1, q2, q3) =
1
h1

∂2V (q1, q2, q3)
∂q3∂q1

+ jωε
1
h2

∂U(q1, q2, q3)
∂q2

Hq2(q1, q2, q3) =
1
h2

∂2V (q1, q2, q3)
∂q2∂q3

− jωε
1
h1

∂U(q1, q2, q3)
∂q1

Hq3(q1, q2, q3) =
∂2V (q1, q2, q3)

∂q2
3

+ k2V (q1, q2, q3)

(4)

while the Borgnis’ potentials satisfy these two equations of the same
kind:

∇2
tU(q1, q2, q3) +

∂2U(q1, q2, q3)
∂q2

3

+ k2U(q1, q2, q3) = 0 (5)

∇2
tV (q1, q2, q3) +

∂2V (q1, q2, q3)
∂q2

3

+ k2V (q1, q2, q3) = 0 (6)

being

∇2
t =

1
h1h2

[
∂

∂q1

(
h2

h3

∂

∂q1

)
+

∂

∂q2

(
h1

h2

∂

∂q2

)]
.

Referring to Table 1, the reference systems satisfying (2), and for
which, thus, scalar equations like (5), (6) can be derived, are the
following seven: Cartesian, circular cylindrical, parabolic cylindrical,
elliptic cylindrical, spherical, bipolar, and conical. We can observe



8 Bilotti, Alù, and Vegni

that, apart from the conical case, equations (5), (6) are scalar
Helmholtz equations in all these reference systems.

Once scalar uncoupled differential equations are obtained, the
second problem to be considered is to find analytical solutions of
these equations. A simple way to explore the possibility of a
closed form solution for a partial differential equation is to check
whether or not variable factorization can be applied to the scalar
equations. A factorized analytical solution of the scalar Helmholtz
equation can be directly found in eleven reference systems (Cartesian,
circular cylindrical, parabolic cylindrical, elliptic cylindrical, spherical,
prolate spheroidal, oblate spheroidal, parabolic, conical, paraboloidal,
ellipsoidal) and it is expressed in terms of particular sets of orthogonal
functions [26]. On the other hand, Borgnis’ potential theory allows
reducing the vector wave equation to a scalar differential one of the
Helmholtz kind in six reference systems (Cartesian, circular cylindrical,
parabolic cylindrical, elliptic cylindrical, spherical, bipolar), while
equations (5) and (6) with factored analytical solutions can be found
in the conical system. Eventually, we can conclude that among the
orthogonal systems of Table 1, the following admit a scalar equation
and a closed form solution: Cartesian, circular cylindrical, parabolic
cylindrical, elliptic cylindrical, spherical and conical.

In the other reference systems, the solution of the electromagnetic
field should be obtained numerically. For a convenient reference, the
previous discussion is summarized in Table 2.

4. COMPLEX MEDIA AND THE CONTRAVARIANT
APPROACH

In this section we present a different approach to solve the
electromagnetic problem in conformal structures. Such an approach,
based on an extension of the transmission line formulation, is
effective also when “complex media” are involved. Here and in the
following the expression “complex media” refers to materials whose
constitutive relations involve anisotropic behaviors and/or magneto-
electric coupling. As shown in the previous section, the analytical
solution, even in the case of isotropic homogeneous media, is limited
to some reference systems only and it is not possible in the general
case. When considering complex media as substrates for integrated
conformal structures, vector wave equations for E and H fields are no
longer of the Helmholtz kind and the solution becomes more difficult
even in the simplest reference systems. Limiting our study to linear
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Table 2. Analytical solution possibility of the vector wave equation
in linear, isotropic and homogeneous media for the reference systems
reported in Table 1.

Reference System 1st Problem:  
Scalar Equation 

2nd Problem:  
Analytical Solution 

Final 
Result 

 
Direct 

Projection 
Borgnis  
Potentials 

Solution by 
Factorization 

Analytical (A) 
Numerical (N) 

Cartesian  YES YES YES A 
Circular Cylindrical YES YES YES A 
Parabolic Cylindrical YES YES YES A 
Elliptic Cylindrical YES YES YES A 
Spherical  NO YES YES A 
Prolate Spheroidal NO NO YES N 
Oblate Spheroidal NO NO YES N 
Parabolic  NO NO YES N 
Conic  NO YES YES A 
Paraboloidal  NO NO YES N 
Ellipsoidal   NO YES N 
Bipolar  YES YES NO N 
Bispherical  NO NO NO N 
Toroidal  NO NO NO N 
Cardioid Cylinder NO NO NO N 
Tangent Sphere NO YES NO N 

 NO

materials, the constitutive relations can be written as:{
B = µ(q1, q2, q3) · H + β(q1, q2, q3) · E
D = α(q1, q2, q3) · H + ε(q1, q2, q3) · E

(7)

where the previous time-harmonic variation law has been assumed.
ε and µ are the permittivity and permeability tensors, respectively,
while α and β take into account the coupling effect between electric
and magnetic fields (magneto-electric effect). They collapse to scalar
quantities when anisotropic effects are not present. Moreover, their
elements satisfy some physical constraints, as widely discussed in [28].

Since in general the curl expression is quite awkward in reference
systems different from the canonical ones, curl Maxwell’s equations{

∇× E = −jω(µ · H + β · E)

∇× H = jω(α · H + ε · E)
(8)

should be properly manipulated in order to get a more convenient
formulation. Adopting the following change of variables and
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normalizations, in fact:{
E = K · E
H = K · H

, ∇r =
1

jk0
∇,

{
εr = ε−1

0 ε

µ
r

= µ−1
0 µ

,

{
αr = c0α

β
r

= c0β

where k0 = ω
√
ε0µ0, c0 = 1/

√
ε0µ0, and

K =




h1 0 0
0 h2 0
0 0 h3


 ∇ =




0 −∂/∂q3 ∂/∂q2

∂/∂q3 0 −∂/∂q1

−∂/∂q2 ∂/∂q1 0




curl Maxwell’s equations can be rewritten in the following form:


(
∇r + β

r

)
· E = −µ

r
· Z0H

(∇r − αr) · Z0H = εr · E
(9)

where Z0 =
√

µ0/ε0 and v = h1h2h3K
−1 · v · K−1, being v =

εr,µr,αr,βr.
It is worth to underline that, since the obtained equations in

the contravariant fields E and H [29] are formally equivalent to the
vector equations obtainable in the Cartesian geometry, the formalism
here derived allows handling Maxwell equations in every orthogonal
reference system in the same way as in the Cartesian case. This
property leads to important simplifications and may be employed,
as will be shown in the next section, even in a more extensive way
to find out analytical solutions of the electromagnetic field sustained
by conformal structures. Basically, the relation between (9) and
(8) is straightforward: the complexity related to the locally varying
curvature in the geometry (in (8)) has been suitably transferred in a
variation of the medium inhomogeneity with the spatial coordinates
(in (9)), following the transformation v = h1h2h3K

−1 · v · K−1.
Exploiting the formalism introduced by (9), the derivation of a

generalized transmission line system of equations relating the field
components becomes a straightforward task, as in the Cartesian case
[30]. Starting from (9), eliminating the longitudinal components of
the fields (with respect to q̂3 direction), the following telegraphers’
equations for the transverse fields Et and Ht can be derived:



∂Et

∂q3

= A · Et + Z · Ht

∂Ht

∂q3

= Y · Et + B · Ht

(10)
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where qi = jk0qi (i = 1, 2, 3).
The matrices A,Z,Y ,B are operatorial matrices, applied to the

transverse field components. Their elements have, in the general case,
a complicated form and depend on the constitutive parameters, on
the scale factors and on the derivatives with respect to the transverse
variables. The elements of A and Z are reported in the following, while
those ones of the two other matrices Y and B can be easily derived
by using the duality principle:




A11 = −β21 −
(

∂

∂q1

− β23

) (
α33

∆

(
∂

∂q2

− β31

)
+

µ33

∆
ε31

)

−µ23

(
ε33

∆

(
∂

∂q2

− β31

)
+

β33

∆
ε31

)

A12 = −β22 +
(

∂

∂q1

− β23

) (
α33

∆

(
∂

∂q1

+ β32

)
− µ33

∆
ε32

)

+µ23

(
ε33

∆

(
∂

∂q1

+ β32

)
− β33

∆
ε32

)

A21 = β11 −
(

∂

∂q2

+ β13

) (
α33

∆

(
∂

∂q2

− β31

)
+

µ33

∆
ε31

)

+µ13

(
ε33

∆

(
∂

∂q2

− β31

)
+

β33

∆
ε31

)

A22 = β12 +
(

∂

∂q2

+ β13

) (
α33

∆

(
∂

∂q1

+ β32

)
− µ33

∆
ε32

)

−µ13

(
ε33

∆

(
∂

∂q1

+ β32

)
− β33

∆
ε32

)



12 Bilotti, Alù, and Vegni


Z11 = −µ21 −
(

∂

∂q1

− β23

) (
µ33

∆

(
∂

∂q2

+ α31

)
− α33

∆
µ31

)

−µ23

(
β33

∆

(
∂

∂q2

+ α31

)
− ε33

∆
µ31

)

Z12 = −µ22 +
(

∂

∂q1

− β23

) (
µ33

∆

(
∂

∂q1

− α32

)
+

α33

∆
µ32

)

+µ23

(
β33

∆

(
∂

∂q1

− α32

)
+

ε33

∆
µ32

)

Z21 = µ11 −
(

∂

∂q2

+ β13

) (
µ33

∆

(
∂

∂q2

+ α31

)
− α33

∆
µ31

)

+µ13

(
β33

∆

(
∂

∂q2

+ α31

)
− ε33

∆
µ31

)

Z22 = µ12 +
(

∂

∂q2

+ β13

) (
µ33

∆

(
∂

∂q1

− α32

)
+

α33

∆
µ32

)

−µ13

(
β33

∆

(
∂

∂q1

− α32

)
+

ε33

∆
µ32

)

being ∆ = µ33ε33 − α33β33 and vij the elements of tensor v.
The system here found is still analytical and does not contain

any numerical approximation. Its exact solution is very difficult in the
general case, and solutions are not known except for very special cases.
However, the structure of these equations is very suitable for numerical
applications and in particular for a MoL procedure [31–36]. In this
case, as extensively discussed in [24], the four operatorial matrices
in (10) can be made algebraic after a proper 2-D discretization on
the transverse coordinate surface q3=constant and a total-derivative
system can be easily obtained, analytically solvable along the third
direction (q̂3). This procedure, described more thoroughly in [24],
extends the MoL algorithm [31–36] to conformal components involving
complex media and represents an easy and efficient way to study
numerically these structures.

Moreover, (10) are commonly used in electromagnetic theory as
a starting point to derive the spectral dyadic Green’s function of
integrated structures with a prescribed coordinate stratification axis
(in this case q̂3). Applying a suitable 2D spectral transform, the
transverse derivatives appearing in A,Z,Y and B become algebraic as
well and it is possible to look for analytical solutions of the equations in
the remaining spatial variable q3. For canonical reference systems the
proper spectral transform is already known (e.g., Fourier transform,
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Hankel transform, Legendre transform) and the transverse derivatives
are replaced by proper combinations of transverse wave-numbers, as
it can be readily recognized for isotropic materials. In this case, the
Green’s function derivation from (10) is straightforward, while for other
reference systems the preliminary step of finding a proper spectral
transform has to be performed and is out of the scopes of the present
paper.

5. ISOMORPHISM

As already pointed out in the previous section, the formalism presented
above rewrites Maxwell’s equations in the generalized reference system
in the same form as in the Cartesian case. In the following, we will
show that this implies the possibility of associating a suitable planar
structure to the conformal one under analysis or, in other words, to
find out an isomorphism between the sets of conformal and planar
components.

Let’s consider a stratified conformal component as the one
depicted in Fig. 3a. The interfaces between two adjacent conformal
slabs are assumed to be properly represented in a given reference
system (in this case the cylindrical one) as coordinate surfaces
qi=constant. In addition, each i-th slab is characterized by the
constitutive tensors εi, µ

i
, αi, β

i
, in general depending on the spatial

coordinates. Let us assume that E and Hare the electromagnetic
field solutions of Maxwell’s equations in every conformal slab and
that the proper boundary conditions are satisfied. As stated before,
an isomorphic planar structure (Fig. 3b) can be synthesized in the
Cartesian reference system (x̃, ỹ, z̃), whose interface surfaces are
obtained through the simple transformations:

q1 = constant1 → x̃ = constant1
q2 = constant2 → ỹ = constant2
q3 = constant3 → z̃ = constant3

and whose planar slabs are filled up by materials with transformed
constitutive tensors expressed in the form:

ṽ(x̃, ỹ, z̃) = h1(x̃, ỹ, z̃)h2(x̃, ỹ, z̃)h3(x̃, ỹ, z̃)K−1(x̃, ỹ, z̃) · v(x̃, ỹ, z̃)
·K−1(x̃, ỹ, z̃)
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ε0, µ0

q3 = ρ = c

ε2,µ2
,α2,β2

q2 = ϕ = γ q2 = ϕ = δ

ε̃0, µ̃0

ε̃2, µ̃2
, α̃2, β̃2

ε1,µ1
,α1,β1

w

L

ỹ = γ + 2π ỹ = δ + 2π

z̃ = c

ỹ = γ ỹ = δ

q3 = ρ = b

q3 = ρ = a

ε̃1, µ̃1
, α̃1, β̃1

w

L

L

w

ε̃0, µ̃0

z̃ = b

z̃ = a

(a)

(b)

Figure 3. (a) Conformal metallic patch mounted on a cylindrical
support and (b) its isomorphic geometry. The associated reference
systems are: q̂1 = ẑ, q̂2 = ϕ̂, q̂3 = ρ̂; h1 = h3 = 1, h2 = ρ for Fig.
3a and q̂1 = ˆ̃x, q̂2 = ˆ̃y, q̂3 = ˆ̃z for Fig. 3b.

=




h2h3

h1
v11 h3v12 h2v13

h3v21
h1h3

h2
v22 h1v23

h2v31 h1v32
h1h2

h3
v33




(11)

Following (9), the electromagnetic field Ẽ, H̃ excited in this isomorphic
planar structure is contravariant with respect to the one excited in the
conformal structure, i.e.,{

Ẽ = K(x̃, ỹ, z̃) · E
H̃ = K(x̃, ỹ, z̃) · H

(12)

and therefore solving one of the two electromagnetic problems implies
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solution of the second one. The equivalence of the two differential
problems satisfied respectively by E,H and Ẽ, H̃ is granted, following
[28], by:

• the same system of equations: Maxwell’s equations are invariant
with respect to the transformation here introduced, as shown in
the previous section;

• the same set of boundary conditions on the interfaces separating
the stratified slabs: on coordinate surfaces the boundary
conditions are factorized and refer to the tangential components
of the field;

• the same radiation condition at infinity.
In the case of closed structures, the equivalence is straightforward and
can be easily employed to model conformal waveguides. In the general
case, however, particular attention should be paid to:

• special values of the spatial variables for which the coordinate
surfaces are singular (i.e., they reduce to lines or points, as it
happens for instance for the coordinate surface ρ = 0 in the
circular cylindrical system of Fig. 3): in this case, the isomorphic
planar equivalent remains a plane, but on this surface some
constitutive elements go to infinity, as visible from (11). These
singularities in the constitutive tensors, though not physical,
ensure the right behavior of the field on the planes isomorphic
to the singular surfaces, as discussed later.

• open structures: the empty space (i.e., air surrounding the
conformal component) is transformed into an inhomogeneous
medium, whose constitutive tensors are:

ε̃0 =




h2h3

h1
ε0 0 0

0
h1h3

h2
ε0 0

0 0
h1h2

h3
ε0




µ̃
0

=




h2h3

h1
µ0 0 0

0
h1h3

h2
µ0 0

0 0
h1h2

h3
µ0




.

• geometries with periodic coordinates: the planar equivalent
structure will follow the same periodicity and, since also the
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excitation will have a periodic nature, the whole electromagnetic
field maintains for symmetry the same periodicity and may be
studied only in one spatial period.

As an example involving also the particular cases now cited, Fig. 3a
represents a conformal cylindrical patch with a homogeneous substrate
and a superstrate. Its planar equivalent is shown in Fig. 3b, which
depicts an infinite array of rectangular patches, periodical along ỹ,
loaded by inhomogeneous media. The equations satisfied by the field
E,H in the cylindrical structure are the same satisfied in the planar
structure by Ẽ, H̃ and the two fields are linked by relation (12). At
the interfaces the boundary conditions are of the same form and are
related to the same field components in the two isomorphic reference
systems. Also the radiation condition is expressed in an equivalent
form: the fields decay for q3 = ρ → +∞, z̃ → +∞ in both the
structures. Referring to singular surfaces, when q3 = ρ → 0+, the
coordinate surface becomes a line. In the equivalent planar structure
on the plane z̃ → 0+ the constitutive tensors become singular:

ṽ0 →

 0 0 0

0 ∞ 0
0 0 0


 ,

where

ṽ0 = v0


 ρ 0 0

0 1/ρ 0
0 0 ρ




with v0 = ε0, µ0, ṽ0 = ε̃0, µ̃
0
.

Notice that, though not physical, such an expression for the
constitutive tensors avoids radiation of power towards the region z̃ < 0,
whose points are not mapped in the cylindrical structure (for which
q3 = ρ ≥ 0). Examples like the previous one, or even more complex,
can be analyzed in more detail, showing the complete correspondence
of the two field solutions.

As already pointed out, it is worth mentioning that the proposed
isomorphism essentially transfers the complexity related to the local
curvature of the conformal geometry into a proper inhomogeneity
of the media characterizing the equivalent planar component. As a
consequence of this property, the analysis of a conformal component
can be equivalently performed by studying its isomorphic planar
structure and then obtaining the electromagnetic field of interest
through (12). It has to be noted, however, that the planar analysis
maintains the same mathematical difficulties if one is interested in
a rigorous analytical solution of the field equations (which is obvious
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since the resulting equations in the two reference systems are the same).
Nevertheless, the introduction of the isomorphic planar structure
makes the numerical analysis of conformal components viable through
Finite Difference Time Domain (FDTD), Finite Element (FE), MoL
and other well established numerical methods that can take into
account possible medium inhomogeneities in planar structures. In this
direction, the numerical results presented in [24], based on a proper
extension of the MoL to study conformal components, may be revised
as a straightforward application of the theoretical approach developed
in this paper. Some details about this concept will be addressed in the
following section.

As a final remark concerning the isomorphism here presented, it is
worth to notice that the complete mathematical equivalence between
the conformal problem and the related planar one retains also the
related physical phenomena. For instance, creepy waves or mutual
coupling are still present in the equivalent planar mapping and their
contribution to the radiation process may still be considered and
weighted. This is due to the fact that the dispersion relation associated
to the transformed inhomogeneous planar structure remains unchanged
and the solutions corresponding to the curved structure are indeed fully
preserved.

6. NUMERICAL RESULTS

As previously remarked, the generalized transmission line formulation
derived in section IV can be applied to develop a full-wave numerical
tool based on the MoL to simulate the behavior of conformal structures.
As shown by the authors in [24], the application of the MoL
when complex media and conformal structures are involved is not a
straightforward matter and a proper extension of the method is needed.

The details of the extended method may be found in [24] where
some numerical results, showing the capabilities of the numerical tool
developed following the MoL approach, are also presented. Those
numerical results already validate the theoretical formulation presented
in this paper. In addition, in this section we propose a revised reading
of some of them, based on the application of the approach presented
in Section 5.

The first example we consider here is related to the simple test
structure reported in Fig. 4a. Such a structure has been already
analyzed through the extended MoL approach in the cylindrical
reference system [24] and the numerical results there obtained agree
very well with the ones reported in the literature [37]. In this case
we have performed a new simulation of the wraparound cylindrical
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Figure 4. (a) Wrap-around cylindrical patch antenna. The
geometrical and electrical parameters are: L = 80 mm, h = 1.6 mm,
a = 20 mm, zp = upper patch edge position, ϕp = 0, εr = 4.2 + j0.02.
(b) Isomorphic planar structure.
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pattern on the ϕ = 0 plane at the resonance frequency.
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tan  

L/(a+h) 

δ
ε

Figure 6. Geometry of an array of four patches on a cylindrical
substrate with a cylindrical ground plane. The geometrical and
electrical parameters of the structure are: L = 0.155 m; a = 0.05 m;
h = 0.0016; εr = 1.15; tan δ = 0.001.

antenna applying the approach developed in Section 5.
The isomorphic planar structure is depicted in Fig. 4b and consists

of an infinitely long microstrip line loaded by inhomogeneous media
and fed periodically by in-phase excitation probes.

The excited field in the isomorphic structure is periodical as well
and can be obtained through a MoL procedure which takes into account
both the inhomogeneities of the media and the structure periodicity.

The structure has been discretized in two dimensions with 8× 20
lines, adopting periodical boundary conditions [38] in the y direction
and absorbing boundary conditions and a perfect magnetic plane
(placed at the center of the metallic strip to exploit the structure
symmetry) in the x direction. The antenna input impedance is plotted
as a function of frequency in Fig. 5a and compared with the cavity
model reported in [37]. Fig. 5b, instead, plots the radiation pattern on
the principal plane at the resonant frequency.

The results agree very well with those obtained through a standard
MoL algorithm developed in the cylindrical coordinates [24].

A similar analysis, closer to a real application, has also been
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Figure 7. Radiation patterns of the array of Fig. 6, (a) horizontal
plane, (b) vertical plane.

performed considering the more complicated cylindrical structure
depicted in Fig. 6. In this case the antenna consists of four metallic
patches located on a cylindrical substrate and the structure has
been tested again exploiting the isomorphic planar structure obtained
applying the transformation rules presented in Section 5.

The patches have been designed to resonate at 900 MHz and to
work with a double linear polarization. Their position should grant
an omni-directional radiation pattern for a whole array, for a typical
radiobase station for mobile communications.

In Fig. 7, the radiation patterns on the horizontal (Fig. 7a) and
vertical (Fig. 7b) planes are depicted, as obtained from our simulation.
The directivity is around 3.8 dB.

7. CONCLUSIONS

This paper has the aim to present an extensive formulation for
the treatment of Maxwell’s equations in the generalized orthogonal
reference system. The theoretical approach starts with an overview
of the possible analytical solutions of the field wave equations in the
case of isotropic and homogeneous media, showing the limited number
of reference systems in which a complete solution is viable. Then, a
general formulation valid for any orthogonal reference system and any
linear material has been presented, showing its advantage of handling
Maxwell’s equations formally as in the Cartesian reference system. A
first result is the generalization of the transmission line equations,
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relating the transverse components of the electromagnetic field with
respect to a generic coordinate reference direction. This system of
equations is suitably written both for the application of a numerical
MoL procedure, which have been already developed by the authors
[24], and for an analytical approach in the spectral domain.

Moreover, by exploiting the same mathematical formalism an
interesting relation between conformal components and equivalent
planar structures has been presented. This result essentially transfers
the complexities related to the varying local curvature of the
component into a suitable variation of the medium inhomogeneities
and may be successfully employed to simplify the numerical analysis
of closed and open microwave conformal components. Some numerical
examples, based on the application of the MoL, have been finally
presented to show the potential impact of the proposed isomorphism
in the simulation of complex conformal structures.
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24. Alú, F. Bilotti, and L. Vegni, “Method of lines numerical analysis
of conformal antennas,” IEEE Trans. Antennas Propagat., Vol.
AP-52, No. 6, June 2004. (to be published)

25. Byerly, W. E., “Orthogonal curvilinear coordinates,” An Elemen-
tary Treatise on Fourier’s Series, and Spherical, Cylindrical, and
Ellipsoidal Harmonics, with Applications to Problems in Mathe-
matical Physics, Dover, New York, 238–239, 1959.

26. Moon, P. and D. E. Spencer, Field Theory Handbook, Springer-
Verlag Editions, Berlin, 1963.

27. Zhang, K. and D. Li, Electromagnetic Theory for Microwave and
Optical Devices, Springler-Verlag, Berlin Heidelberg, 1998.

28. Ishimaru, A., Electromagnetic Wave Propagation Radiation and
Scattering, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

29. Collin, R. E., Filed Theory of Guided Waves, Wiley-IEEE Press,
New York, 1990.

30. Schelkunoff, S. A., “Generalised telegraphist’s equation for
waveguide,” Bell Syst. Tech. J., 784–801, July 1952.

31. Pregla, R. and W. Pascher, “The method of lines,” Numerical
Techniques for Microwave and Millimeter Wave Passive Struc-
tures, T. Itoh (ed.), 381–346, J. Wiley Publ., New York, 1989.

32. Pregla, R., “New concepts in the method of lines,” Proc. of PIERS
2000, 358, Boston, MA, July 2000.

33. Pregla, R., “Efficient analysis of conformal antennas with
anisotropic material,” Proc. of AP2000, Davos, Switzerland, CD
version, Apr. 2000.

34. Kremer, D. and R. Pregla, “The method of lines for the hybrid
analysis of multilayered cylindrical resonator structures,” IEEE
Trans. Microwave Theory Tech., Vol. MTT-45, 2152–2155, Dec.
1997.

35. Yang, W. D. and R. Pregla, “The method of lines for the analysis
of integrated optical waveguide structures with arbitrary curved
interfaces,” J. Lightwave Tech., Vol. 14, 879–884, May 1996.

36. Pregla, R., “General formulas for the method of lines in cylindrical
coordinates,” IEEE Trans. Microwave Theory Tech., Vol. MTT-
43, 1617–1620, July 1995.



EM field solution in conformal structures 25

37. Chen, H. T., H. D. Chen, and K. L. Wong, “Analysis of spherical-
circular microstrip antennas on a uniaxial substrate,” 1994 IEEE
Antennas Propagat. Inter. Symp., Vol. 1, 186–189, 1994.

38. Dreher, A. and R. Pregla, “Analysis of planar waveguides with
the method of lines and absorbing boundary conditions,” IEEE
Microw. Guided Wave Lett., MGWL-1, No. 6, 138–140, June 1991.

Filiberto Bilotti was born in Rome, Italy, on April 25, 1974. He
received the Laurea degree (summa cum laude) and the Ph.D. degree
both in Electronic Engineering from the University of Roma Tre,
Rome, Italy, in 1998 and 2002, respectively. Since 2002 he has joined
the Department of Applied Electronics of the University of Roma
Tre, Rome, Italy as an Assistant Professor in Electromagnetic Field
Theory. His interest areas are in microwave and millimeter-wave
planar and conformal structures, in complex materials for circuits and
for radiation components, in numerical methods for a fast solution
of electromagnetic problems, and in artificial engineered surfaces.
Dr. F. Bilotti is a member of IEEE.
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