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Abstract—Recently non-relativistic boundary conditions based on
the Lorentz force formulas have been introduced. It was shown that to
the first order in the relative velocity v/c the results are in agreement
with the exact relativistic formalism. Specific boundary value problems
have been solved to get concrete results and demonstrate the feasibility
of implementing the formalism. These included examples involving
plane and cylindrical interfaces.

Presently the velocity-dependent Mie problem, viz. scattering of a
plane wave by a moving sphere, is investigated. The sphere is assumed
to move in a material medium without mechanically affecting the
medium. The analysis follows closely the solution for the cylindrical
case, given before. The mathematics here (involving spherical vector
waves and harmonics) is more complicated, and therefore sufficient
detail and references are provided.

The interesting feature emerging from the present analysis is that
the velocity-dependent effects induce higher order multipoles, which
are not present in the classical Mie solution for scattering by a sphere
at rest. The formalism is sufficiently general to deal with arbitrary
moving objects.
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1. INTRODUCTION AND ROADMAP

Recently a new non-relativistic treatment for scattering in velocity-
dependent systems has been proposed [1]. Examples for scattering
by material objects in free space have been analyzed. Subsequently
the question of solving cylindrical problems for velocity-dependent
scattering for objects immersed in material media has been considered
[2]. The proposed formalism [1] is based on boundary conditions
derived from the Lorentz force formulas.

Consider an electric charge g¢ ’ in medium “1”. In this medium
a boundary is in motion at a velocity v~V (r, t), which can be a
function of space coordinates r and time t. Following both classical
and relativistic formalisms, the charge is considered an invariant, i.e.,

(1 _ ()

qe’ = qe ’ is the same for observers in “1” and when co-moving with
the boundary coordinates “b”. The force fgl), acting on a charge on
the boundary, is given by the Lorentz force formula

F = OB + vt x BY) = (OB 1)

e

where Eg%c denotes a new effective field. If on the other side of the

boundary we have another medium “2”, then similarly we have
s 2
1 = 0 (B + 02 x BO) = (OB 2

For a rigid object moving within the medium “1”, we take in (2)
v(®=2) = 0. From (1, 2) and relativistic transformations for fields, it
was suggested [2] that if magnetic sources were existent, we would be
able to measure magnetic Lorentz forces, and corresponding to (1), (2),
we would have

U = gD (HD — 0= x D) = ¢ g ®
FD = gD (H® — o0~ x DO) = (O HE) 4)

Zero net energy is dissipated on the boundary itself, and therefore no
additional forces are created on it. It follows that at the boundary
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(1)—(4) prescribe the equilibrium conditions

Al (F0 - £2) =0 (5)
A® x ( @ _ f,g)) =0 (6)

i.e., the tangential components of f., f,, are continuous across the
boundary.

Thusly (5), (6) provide the necessary boundary conditions for this
class of problems

A x (B + o) x B _ B _ o2 x BY)

Il
@)
—
J
~—

al) s (HY = oD x DIV - HY 4+ 2 x DY) =0 (8)

The Lorentz force and the relativistically exact boundary
conditions [1] agree to the first order in v/c only. This indicates that
one should use (7), (8) only for relatively moderate velocities. Most
practical problems are of this nature. On the other hand, the Lorentz
force formula does not assume a constant velocity, hence in (7), (8)
v(r,t) may be any function of space and time.

The mathematical tools presented in the next section are quite
general, in the sense that they facilitate the analysis of various
complicated geometries, e.g., velocity and incident wave given in
arbitrary directions. However, the aim of the present analysis is
to demonstrate the feasibility of solving such problems in principle,
rather than choose the most general, hence very complicated, cases.
Accordingly, we analyze here the Mie problem of scattering of a plane
electromagnetic wave by a sphere, and choose a case of high symmetry,
where the velocity is along the polar axis, as explained below. This
considerably simplifies the mathematical detail.

From here on we need a roadmap to understand the method
employed for solving the scattering problem: We start with a
mathematical overview which puts at our disposal the tools used later,
and introduce notational conventions, with some of the frequently used
abbreviations collected in a list at a subsequent section.

The analysis leans heavily on the plane wave representations
(essentially Sommerfeld-type integrals in the complex domain) for
the vector spherical waves. The boundary value problem for Mie
scattering by a moving sphere is developed. The manipulation of the
coefficients in the complex integrals requires the application of various
formulas given below, some taken from the literature, others developed
here. The end product of this procedure facilitates representations in
terms of series of vector spherical wave functions, but the associated
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coefficients are still spatially-dependent and therefore require further
manipulation. This leads to series which allow us to exploit the
orthogonality properties of the vector spherical harmonics, and thus
facilitate the solution for the scattering coefficients involved in the
boundary conditions relations.

At this stage we are ready to calculate the scattered field, which
is given as a superposition (integral) of plane waves. Inasmuch as
the frequencies of the scattered plane waves in the integrand are
dependent on the directions of the waves, the complex path integrals
are complicated and cannot be represented in terms of series of
vector spherical waves, as was done for scattering in the absence of
motion. For the near field in the vicinity of the scatterer a first
order approximation is provided, but this is inadequate for larger
distances. Mimicking the approach taken in [2] for scattering by a
moving cylinder, series of inverse-distance powers differential operators
are used, facilitating moderate and far field representations.

Because of the complicated calculations, we have to heap up
new definitions and substitutions for expressions as we move along.
While this has the potential of encumbering the presentation, it should
be easily handled by mathematical numerical packages which allow
continuous nesting of parameters. For the detailed organization of the
subsequent material see also the summary below.

2. MATHEMATICAL OVERVIEW

The mathematical background for the present investigation is given
in some detail. Basic relations are included here for completeness,
because there are some subtle differences in definition and notation
used by various authors. Sources for spherical vector waves and the
related harmonics are Morse and Feshbach [3], and Stratton [4]. We
draw heavily on Twersky [5, 6], and use some of his notation.

Essentially, the present investigation deals with the solution of the
Helmholtz vector wave equation in simple media

OpOp - U — Op X Op X U+ K*u =0, u = u(r,t)
K =wPue, v =r(r,0,9) (9)
in terms of spherical coordinates r = r(r, 0, 1), where for plane waves
the time-dependence of wu(r,t) is harmonic according to e~**. The

solutions are represented in terms of solutions of the associated scalar
wave equation

(02 +K) o) =0, =00 ulrt) =g ™ (10)
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Three independent solutions of (9) are constructed
L=0,p, M=0.xap, N=0.xMJk, M =0.xN/k (11)

where in (11) a@ denotes a unit vector satisfying 0, x @ = 0. Note that
Op-M =0, 0p - N =0, therefore solutions of

(0 % O x k) u(r,t) =0, On-u(r,t) =0 (12)

are prescribed by Maxwell’s equations for fields in sourceless simple
uniform media. The solution L = 0pp nevertheless satisfies (9),
(10), and is needed for completeness. It also features in the velocity-
dependent problem defined below.

The solutions for (10) are given by

Onm = Zn(kT)Ynm(’f“)e_iwt, Ym(7) = p;;l(ce)eimw
Y, = By = g M Py e (13)
PTTLn = 0 for |m‘ >Ny Ynm = (n - m)'/(n+m)', M = (_1)m

where z,(kr) are generically the spherical Bessel functions of order
n, and YY" are the scalar spherical harmonics, defined in terms of
the associated Legendre functions P/* and the azimuthal dependence
e"™¥_ In particular, we shall exploit z, in terms of the nonsingular
spherical Bessel functions j, in bounded sourceless domains, and the
spherical Hankel functions of the first kind hg) = hy, for the external
domain. Together with the time exponential e, h,, are chosen for
representation of outgoing scattered waves. The functions of the second
kind h7(12) usually do not feature in our formulas. For orthogonality
properties of Y in (13), see below (15), which also provides the
orthogonality properties for P} .
Corresponding to (11), (13), vector spherical waves follow

My (kar) = Jig{ C1H(#), Num(kar) = JE5 PRU(#) + Jing By (7)

Lun(kar) = JZ%PW(%) JBrE) Z
JE? = mn(karg),  Jiny” = zn(kars)/ (snkars)
JE5" = Oory lharpzn(kars)] /Kars,  Tos” = Otuny[n(Kars)]
JLs? = n(karg)/ (kar), ki =1/n(n+1) (14)

Cil(7) = =1 x 0, Y,"(#) = —#x By = (00,/Sy — ) Y, (7)
By(#) = 10, Y, (7) = i x C = (0,/Sp + 005 Y, (7)
P (#) = #Y(7), 0,Y™(7) = imY™(#), C¢ = cos(, S = sin¢
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in terms of the vector spherical harmonics P)', B, C". It is noted
that rather than following Stratton [4] who defines L = Or¢ as in
(3), in Twersky [6] Ly, follows the definition L = Ogrp = Orp/k,
and therefore differs by this factor from Stratton (see [4], p.414). Of
course this has no effect on the solutions, except when comparing the
two conventions. The definition of the spherical Bessel functions, e.g.,
ho(kr) = €™ Jikr is identical.

The vector spherical harmonics satisfy spatial and functional
orthogonality relations as follows

Jeim-ctin = [ BimBLiQ = awbubn,

/P;m ’ PﬁdQ = /Yn_mYuudQ = ﬂnménuému
o /(P,T)QdQ — drA,, %m/(PT’L”/Sg)ZdQ —on/m (15)

[ Prprm s =

[T T [0, a#«
/dQ_/_de/o Spdd, 5aa_{1, a:a}

Qpm = MAT /Ny, Bom = Qnmbn, An =1/2n+ 1), py, =20M/m

Plane wave representations for the spherical vector wave functions
will be used below for the implementation of the new boundary
conditions and evaluation of the scattered field. Thus we have,
correspondingly,

{" Mo (kr), " N (k) " L (k) }

= o [EPTCR®), BR ), PRI}, b= p(5.0) (16

27
™ (7/2)—ioco
/ dﬂ/ Sada, zp = hy
-7 0

/ dQdp = i .
/ 43 / Soda, = 2jn
—T 0

for each of the waves and its corresponding harmonic in (16). The
factor 2 for the nonsingular Bessel functions in (16) is due to the fact
that 2j, = hg) + hg). For discussion of the integration limits see
[4,5,7].

In general, arbitrary wave functions can be represented by series
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and their corresponding plane wave integrals

w(r,t) = e “I8mi™ (M (k) cnm — 1N (1) — i Ly (7))
1 . o
_ Tefzwt/ezkp-rG(ﬁ)dQﬁ (17)
e
G(T) = Spm (CT(#)cpm + BT (#)bpm + P (#)Ppm) »

S = >0 S

n=0m=-n

where in (17) ¢um, bpm, Pnm are coefficients, usually constants, but
in any case not involving the integration variables symbolized by p,
and for transversal waves as specified by (9), the longitudinal waves
L, (r) in the series and their corresponding vector harmonics P} in
the integral, are omitted.

For two-dimensional problems Twersky [8] and Twersky et al.
[9] derived the scattered field in terms of a differential operator
representation involving inverse powers of the distance. The two-
dimensional representation has been used for the moving cylinder and
moving cylindrical medium [2]. A corresponding representation for
the scalar three-dimensional case was also given [5] by Twersky, who
also provides [6] the solution to the three-dimensional vector problem
discussed here, in terms of a dyadic differential operator O(kr, D) and
inverse powers of distance

u(r,t) = e “ho(kr)O(kr, D) - G(7)
O =)> pD-(D-12I)-(D-23I)---(D— (v—1)vI)
v=0

= I+pD+pyD-(D-21)+p,D-(D—1.2I)---(D—(n—1)nI)
py = (i/(2kr))" /v! (18)
D = #(D+2)i+72S,"05(S40) +0y1hp+0(D+S, )0
+025,2Cpdyh — 007 + (D + Sy 2)ah — 25, 2Cyd,,0
~928; 10y, D = 5,2 |3 + S (Se00)]

In (18) the application of the differential operator dyadic D first acts
on the vector function G(7), thus separating it to its components,

e.g., 8 - G = Gy, then operating on these component according
to the differential operators as prescribed, and finally attaching the
appropriate antecedent unit vector as prescribed (cf. [6]). This is the
usual scheme used for dyadics.
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Note that unlike Stratton [4], who expresses the vector spherical
waves and harmonics (16) in terms of series involving even and odd
harmonics, with Cy, Sy, and takes the appropriate limits for m,
Twersky [5,6] and others use complex Fourier series with ™% and
the appropriate limits on the sum with respect to m. Let us consider
the relation between the two representations. The surface harmonics
are defined in (13), whence it follows that

Yim = Y =P Smy = (V3" = Y, "M /ynm) /(20) (19)
Vi £ Y0, = Plet™ 9y Y P = {FimY [

{#)r {}n
establishing the connection to the even and odd spherical harmonics
used by Stratton [4] and elsewhere, e.g., [3]. The notation Yz, Y%
indicates that we take the real, imaginary, part of €%, respectively
(assuming real arguments everywhere).

From (14) and (19) follow the relations of the vector

spherical harmonics and waves written in terms of the exponential
representation, to the even and odd ones

Qk. +1QT, = Q, 9,Q) =imQy
811’Q%n = _mQ}nnu 8¢Q7Inn = ngn (20)
Q=P B, C, L, M, N

with the understanding that 51/, acts only on e and its real and
imaginary parts, and does not affect unit vectors and the spherical
Bessel functions and associated derivatives as detailed in (14).

The present section recapitulated the various mathematical tools
needed subsequently for discussing the velocity dependent scattering
problems. Additional formulas will be added as needed.

3. THE BOUNDARY VALUE PROBLEM FOR A
MOVING SPHERE

The center of a sphere of radius R moves according tox =y =0, z =
vt, v = zv, along the direction of propagation of the excitation wave,

k. Accordingly we define a local coordinate system, denoted by index
T, in which the location of the boundary is time-independent

rT = ’I“T'iACT:’I"TSQTCQpTZI‘ZT-i:TSQCw
yr = rr - Yp = 178075y, =Y =T Y =155y (21)
ZT:T’T‘ET:TTCQT:Z—Vt:T"ﬁ—I/t:TCQ—Vt
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This is not a new spatiotemporal frame of reference in the relativistic
sense. In fact, we refer to one and only frame of reference (r,t), in
which the local coordinate system (rp,t) is parametrized by the time
t.

The excitation plane wave in the external medium (indicated by
index “1”) is given by

N . i
E., =zFE.,, H.,= yHe.e Pex

7 7
Eer = Fegoe @em’ H.p = Hegoe Pew

Pex = kexz — Wegt (22)
kex/wex = (M(l)g(l))lm = 1/”;()2)
Bop/Hew = (uM /e1/2 = ¢

propagating in the direction k., = 2z, with E.,, H.; polarized along
the x, y axes, respectively, thus conforming with the geometry used by
Stratton [4] (see p.564 there).

The new boundary conditions (7), (8) are used here for v(*~2) = 0,
yielding at some point referred to by rr, e.g., r7 = 0 a field signal

E..r = (Eeaz + v X Bez)’rT:O = (Eea: +v X@M(l)Hew)’rT:O =BT
Eear = Eore™ T, Eop = Eego(1 — V), (23)
50 = oD, = a0y

and similarly

H. 1 = (Her —v X Dex)|rT:O = (He:v —v X 5(1)Eem)|rq~=0 = @HewT
HemT = HOT€i<p0T = EOTei@OT/C(l), HOT = HeazO(l - B(l)) (24)

In (23), (24) the amplitude is multiplied by a phase factor e¥oT,
providing a reference phase, as explained below. Note that by
considering fields at some fixed point, e.g., at a boundary we are not
dealing any more with a field wave, rather, we are considering a field
signal, which does not satisfy the wave equations (9), (10).

Simple substitution of (21) into @e, in (22), would constitute a
Galilean transformation of the plane wave into a new spatiotemporal
frame of reference. We already know that this technique does not tally
with relativistic results. This point has been discussed in [2] in some
detail. Essentially, what the present model prescribes is to find the
time-dependent field signal at some arbitrary reference point in the
boundary’s local coordinate system (7p,t), and then consider phase
shifts associated with other locations. To do so we have to include the
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Fresnel drag effect [2,10-12]. What this means in the present context
is that we have to use

kO = |1 _ b1, /2 (25)

where instead of the propagation vector of a plane wave k1), given
in the external medium “1” at rest, we consider k® in the boundary
local coordinate system, as prescribed by (25).

Accordingly, in (23), (24) we compute the signal at rp = 0
according to (21), (22). Although this point is not accessible to
the external waves, it provides a convenient reference because of the
symmetry with respect to the spherical boundary surface. Of course
any other reference point can be used.

Thus we get

POT = Pex|rp=0 = —wrl, W = wex(l — W) (26)

It is noted that (26) prescribes a new frequency wp which agrees with
the first order in v/c frequency transformation, and this is the point
where the Galilean and Lorentzian transformations are in agreement,
to the first order in v/c.

At any other location r1 we have to include an appropriate phase
shift as prescribed according to (25), embodying the Fresnel drag effect.
Specifically, at the sphere’s surface r = R we have a time-dependent
signal €'¥T with

2
YT = kTRC@T - th, kT = kex(l - ,8(1).4(1)), A(l) = (V]()}L)/C) (27)

In free space A = 1, and consequently in (27) kp = ke, (1 — 8(0)
reduces to the first order in v/c relativistic Doppler effect in free space
as given in [2]. Observe that (22), (27) imply @7 # ez, unless we
qualify t. This point does not invalidate the following analysis, and
will be picked up again in Section 6.

From (14), (22)-(27) and Stratton [4, p.564], the excitation field
at the boundary is recast in terms of spherical vector functions

Eer = eSul, (ME] —iNgT)
HexT - _Eznljn (M%g; + ZN%%?)
M (krR) = JITC)L(Pr) (28)
N&T(krR) = JiLPL(ir) + Ji5T Bl (ir)
e = EOTe_int, h = H[)Te_int
I, = i"N,, Np=tn/Mn
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In the absence of motion, corresponding to (28), the nonsingular
internal fields for rp < R are represented at the boundary (cf. Stratton
[4], p.565) as

B = ¢Sl (i M, — ibliNE,, )

Hyyr = —hSu b (V3 M3, + i NTL)

" (kinR) = JEnRC) (Pr) (29)
" (kinR) = JinPPL(pr) + JEn" Bl (7r)

bunfir = (uDEOW2 = 1702

In (29) ki characterizes the interior medium. Motion might change
the field signal at the boundary and introduce additional terms to
the internal field. Note that in (29) we have already normalized the
coefficients with respect to Egr, Hor of the incident wave. For the field
signal corresponding to E;,, H;, inside the sphere, we substituted
R =r7 in (29).

The construction of the scattered wave in the exterior embedding
domain must provide for a time dependence e~*7 at the boundary
rr = R, and for outgoing transversal electromagnetic waves in this
medium, so that the scattered wave satisfies (17), (18), which satisfy
(9) too.

Similarly to (22), consider a single plane wave propagating in an
arbitrary direction indicated by I%p

E, = &,E,, E, = Eye'?, H, =k, x &,H,, H, = Hye"r
op = kp -1 —wpt = kpex + kpyy + kpaz — wpt (30)

kp/wp = 1/”;}1)7 E,/H)y = C(l)

similarly to (26) we have
Pp0 = Pplrr=0 = —wprt
wyr = wy(1 = pLC,) (31)
which for @ = 0 reduce to (26). Inasmuch as the boundary conditions
must be satisfied at all times, the scattered wave must be constructed
in such a way that on the sphere’s surface the time dependence is
identical to that of the incident wave, therefore
WpT = Wr
wp = wea(1 = 1) /(1 = BDCy) (32)
= wer (14 BV (Co — 1)) + O(BW)?
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The last line (32) applies to first order in %), which is the first order
approximation used throughout.

At any other location 7 we have to include an appropriate phase
shift as prescribed (25). Similarly to (27) we now have at the sphere’s
surface €T with

epr = kpr - PTR —wrt
= kpr2 RS0, Cyy + kpryRSo, 7Sy, + kpr.RCo, — wrt
kpre = Epa,  Kpry = Kpy (33)
kprs = kp(Co — BHAMY = k. — pﬁ(l)A(l)
oor = ky PR+ YA —wrt, Kep = kepR, A= —Ko, AVCy,

Once Again note that (30), (33) imply ¢pr # ¢p, unless we qualify ¢.
Incorporating (32) into (33) yields

PpT = Kexkp"f'T—WTt‘Fﬁ(l)Kez(Ca_1)12310"’%T_6(1)K650A(1)C9T (34)

Based on (7), (8), (30) and similarly to (23), (24), at the boundary,
we have to consider the signal

E, = E,+vxB,=E,+ Y2 x h,E,
= Ly (ép +8Wz x ke x ép)
Hy = H,—vxD,=H,— Yz xe¢,H,
= Hy (hy + 8V x ky x ) (35)
L )
H,r

- E
1) ~
(1+80z ><k:p><){ 7 }
Clearly, E,, H, constitute transversal plane electromagnetic waves,
but the field signals E,r, H,r at the boundary, due to the operator

(145 Mz x I%px), generally contain longitudinal components. However,
note that E,r, H,r, involved in the solution of the boundary condition
problem, are signals, not waves satisfying the wave equation (9).
Corresponding to (28), (29) Stratton [4] (see p. 564) represents the
scattered field signal in the absence of motion as
EscT = Eem(]e_iwextznlln (ny,cj‘[ ile -1 fzcl ignl)
HscT = - ea:OeilWEthnlIn( fzcl gnl + ZCfLClNﬁill)
M5 (kseR) = J3i"Cy () (36)

fzcl(kscR) = Jflf;LCQRP’}l(”AﬂT) + J:Z%RBqlz(f“T)v kse = kex
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In (36) the coefficients ¢3¢, b3¢ (cf. [4]) are derivable from the boundary
conditions in the absence of motion. Using the relations in (13), the
plane wave representation (16), and (36), the scattered wave for a
sphere at rest is represented as a superposition (integral) of transversal
plane waves

E,.r +Eezo —iWegt 1 / 1K i""‘T 5
_ ext — ex Q
{ HscT } { _Hea:O }6 2 c {E}(p)d
9g = Xnl ( 21Cr, + ds; 1BRn) (37)

9u = X ( QnICRn - 1n1B1n>

1 = Nncpl, dip = Npbpi, T x g{g} = {JF}g{g}

where for the object at rest 77 reduces to 7.
Corresponding to (37), the scattered wave in the presence of the
moving sphere will be constructed as a superposition (integral) of waves

() b feveggymm oo

arbitrarily normalized to Egr, Hor, Eor/Hor = C(l) in order to
simplify subsequent expressions. The contour ¢ in (38) needs to be
determined such that the scattered fields constitute outgoing waves,
and the new velocity dependent scattering amplitudes Gg, G g, must
be computed. Finally the scattered wave outlined in (37) will have to
be converted to forms that can be readily computed. For vanishing
velocity (38) reduces to (37).

4. CALCULATION OF THE VELOCITY-DEPENDENT
TERMS

The statement of the scattering problem for the moving sphere
culminated in having the integral expression (38). We now embark
on the tedious and complicated odyssey of recasting the first order in
B velocity terms in series of vector spherical harmonics. Only in this
form orthogonality considerations can be exploited in the computation

of the scattering coefficients included in G , and Bse , (38).
E» HSC
Assuming R to be sufficiently small to justify the approximation
of an exponential by its leading Taylor expansion terms, i.e., e* ~ 1+a,
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in view of (30), (33)—(35), at the boundary (38) becomes, to the first
order in g

i) = Ui g [5G gy @+ 108 gy 0000
f{ﬁ}(i)) = iKep(Co — 1)(15'f‘T)9{fI} + (Z'g{g})i)
—(2 fo)g{g} +Ag{5}
= iKep(p f“T)h{fI}Jr(% g ﬁ})i)
_QC{EI} + Ag{f[}’ Kex = kez R (39)
h{f,} = g{g} —g{g}, g{g}(P) ZCag{E} = (Z'P)g{ﬁ}
hyg = —pxhg, fp=Dxhg+(2-gg)p
fg = —bpxhg+(2-gy)p

In (39), because of the factor p - #7 in the exponential, and the
time factor involving wp, the spherical vector waves (14) are now
prescribed in terms of these coordinates, and in (39) we choose for
¢ the integral prescribed by (16). The leading term is G, which
will be calculated subsequently according to the boundary conditions
equations, and the next term involving () is multiplied by the zero
order approximation of G, namely the term g. The zero velocity
scattering amplitudes gg, g are considered to be known (e.g., see
Stratton [4], p.565). It therefore remains to show how G is computed
in terms of vector spherical harmonics. Note that unlike (38), in (39)
we have longitudinal terms in direction p, but we are not dealing here
with a wave proper, and in (39) Es., Hg.p are not solutions of the
electromagnetic wave equations. Some of the following mathematical
results were given previously [13].
In (39) Ag { E} simply means (37) is modified by this factor

H

Agg = ¥ (dSnchn + d4nlB}:{n>
AgH = E <d4nlcRn - 3nlBIn) (40)
281,21 = Ad1n1> d4n1 Adzm

Note that according to (33) A involves R, Cy,, but for the time being we
treat them as constants because they are not involved in the integration
n (39).



The MIE problem for a moving sphere 15

Consider the term g¢ = C,g in (39). For convenience the
calculations are expressed in terms of the coordinates 7 instead of p,
which makes it easier to look up pertinent formulas in the literature.
Later on the expressions we derive will be recast in terms of the
pertinent coordinates p or 77, as needed. Accordingly we have to
evaluate CyC' (1), CyB'() which can be recast as

CoC (1) = —Cor x 0,Y,"
= —r X O (CoY,") + Y,"r x 0,Cp
= —1 X 0p(CoY™) — P SpY," (41)
Exploiting identities given by [3] (see p. 1326) and [4] (see p.401)

CoPy' = a1nm Py + a2nm Pty (42)
Apm = M(n—m+1), agpm = An(n+m)

Thus we get for the first term in (41)

—7r X 87-(09Y7:n) = —1r X Op (alnmyﬁl + a2nmynni1)
= alnmcnm+1 + a2nmC:Ln—1 (43)

The second term (41) is recast in a series of vector spherical harmonics
~PSpY;" = Sy (4, Cy + By BY') (44)

where in (44) the bar on ZZL, E;n is used in order not to confuse these
coefficients from A", By" introduced below.

Multiplying (44) by -C ;™ and integrating according to (15) yields
on the right of (44) Z?aqm, while on the left we obtain

- / DSpY™ - O AR = / Y. Sy Y ™ dS) (45)

The differential relations for PJ* functions given by Stratton [4]
(see p.402) can be combined into a new identity

SgagY,{” = agan:zl + a4an,:11 (46)
asnm = —An(n+m)(n+1), agnm = Apn(n+1—m)

Substituting (46) into (45), and using (15), yields
A g = a3g5-m / YV + g / Y
= (a3q;—mﬁnm6n;q—1 + a4q;—mﬂnm6’n;q+1) (47)
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indicating that only the terms for which ¢ = n+1, ¢ = n — 1 are
non-vanishing. We finally find the terms

Zza_l = aspm = —\p(n+1—m)/(n+1) (48)
Z?—l = Ggpm = Mn(n+m)/n

Similarly, by multiplying (44) by -B;™ on both sides and
integrating, using the definition of B, ™ given in (13), (14) and the
orthogonality relations (15) we find for (44)

Em

n = IMky = ia7mm (49)

Thus we derive an expression for CyC}', and from (14) follows a
similar expression for Cy B}
CGCZL = a8nmczl+1 + a9nmcg—1 + 2‘a’anB;n
Canm = agntZ”‘H + agntZ””,1 — z’ammC?

CQCT{YLI}}'” = a8nmCTfI}}n+1 + agnmcr{a}}n_l{:‘:}aﬁszT{n{%}n (50)

CQB?II%}n = a8nt7{llf}n+1 + agntT{n?}nl{ﬂ:}a7nmC7fé}n

A8nm = Qlnm T G5nms  A9nm = G2nm 1 G6nm
where the relation between CyC)' and CyBj' follows from the
definitions in (14). The rules (20) prescribe CyC'?_ , CoB'F_ .
(14) (20) p {?}n {?}n
Applying (50) to (39), yields
(2-#)9p = g% = St (diy (asm1Clupr + a9m Choy + 071 By, )
+ 31 (asm Bhyir + aom1 By + a7u1Cly) )
= Enl (dg(;zlc}n 6n1BRn)

- . c c __ sc 1 sc 1
(2-7)9gg = g =-T X gg =2n (dﬁnlcRn - 5nlBIn> (51)
sc sc sc sc
snm = A2pm@7nm + dl;n—l;ma&”*l;m + dl;n+1;ma9;n+1§m

sc sc sc
dﬁnm = A1pmA7nm + d2;n—1;ma8;’ﬂ—1;m + d2;n+1;ma9;n+1§m

Now the term h in (39) is recast as

he = 95 —9gg=%n ( %Llc}n 8nlBRn>
hg = —r xhg =3, ( $1CRn — SCIB}n) (52)

sc
Tmm — 5nm - dlnm? 8nm - dGnm - d2nm
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The term corresponding to (2 - g)p in (39) leads to longitudinal
vector harmonics of type P;'. At a first glance one is tempted to
discard these terms, because we are interested only in transversal
waves. But on inspection of (14), (17) it is evident that the associated
L,,,, functions still involve the transversal B]". From (14), (19), (20),
(46) we find

2. C™f = -0y Y™ = -0, P™ = —imP™
( n Yin vLn n

(2 B™)i = —#Sy0pY™ = —a3umP™ | — P,
(3-C™ ) )i = —#0,YT = {£}mP™ (53)
{#}n {#}n {R}r

(2- BTR}H)? = —7“59891/%}” = _a?’”mp??}n—l B a4nmP?1}}n+1

(2-9g)" = X (difﬂ’% : C}n 12 - BRn) = Enldgfllp}zn

(2-gu)t = (d2n1z : C}%n —dip 2 BIn) = 10n1PIn
onm = (mdlnm + d%;cn+1;ma3;n+1;m + dg;cn—l;ma4;n*1;m)
i%nm = mdQnm + dl;n+1;ma’3§n+1;m + di(;:nfl;ma@n—l%m

The term (p - #7)h(p) in (39) requires a clear distinction of the
vectors p, 7. Here we have

(B #7)h(D) = S, Sa(CyyrCs + SypSp)h(D) + CopCoh(p)  (54)

The last term involves C,h(p), which temporarily will be expressed in
terms of r coordinates as Cyh(7). Corresponding to (50)—(52) we have
for this term

Cohg = X ( 51CoCl, +d8nICHB}%n)
= Ym ( 11nICIn 12nlBRn)
Cohg = —Cyr x hp = X1 ( i%nlc}{n - llnlBIn) (55)

iﬁnm = d%’bm ((Ig;nfl;m + a9§n+1;m) + dg(rjzmaﬁlm
i%nm - dgfzm <a8§77«—1§m + a9§n+1;m) + d?%maﬁlm
In (54), (55) appears also the factor Cy, which is not affected by the
integration in (39), and will be further discussed below.

To evaluate the remaining terms in (54), it is noticed that they
involve e*3S,,, which in terms of r coordinates is expressed as e Sy.
A little reflection on

eFVS,Cm, etV S BT (56)
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reveals that here the azimuthal dependence must involve m =+ 1.
Exploiting in (14) B =7 x C, C = — X B, in general we have

e{i}iwseczl _ ( {m+1} {m+1 {ZZ*}} {m+ }) (57)
(g, BT — 5 (A {m“}B{mH —iB;{Ztl} {m+ })

where in (57) A7, By are different from A , B n (44), and the
factor 7 is introduced to simplify other express1ons belovv.
As prescribed by (15), orthogonality requires that the two sides

of the equations (57) contain the same factor e{™*}¥  therefore
exponentials with index {4} must be associated with coefficients

{mH} , correspondingly. Consider

m—1
eV SyC = 0, (Ap Oyt 4By BT (58)

Multiplying (58) by -C;(mﬂ), and integrating and exploiting the
orthogonality properties in (15), yields

/ € SpCT - C7 MV = g 1 AT
_ / (6im —S505) P+ (Bi(m +1)S; " +py) Py "D
= / (m(m+1)sgpypg<m+1>+59(5939P7¢)5939Pq—<m+1>) S, 2dS) (59)

We exploit formulas from [4] (see p.401), and [3] (see p.1325)

1 1 — -1 — 1
SGP:ZI = alOnmprsn+ + allnmPg}l—t = alOnmP:Ln—l + allnmpér—zi-l
ai'_(]nm = _)‘n7 aii—lnm = )‘n7 alOnm - )‘n(n + m)(n +m — 1) (60)
A 1pm = —n(n—m+1)(n —m+2)

We choose for (59) the formula in (60) with the upper index needed in
the orthogonality relations (15). Also using (46) we find
O‘q;m+1AZHl = / (aﬁnm@n—l;q + af?men-i—l;q + aﬂann—?;q—l
+a;r5ann§(I*1 + a;rﬁan”Jr?ifI*l + af?an"*ZQ(]Jrl
+ aTSanTL'Q‘H + GTQann‘FQ%‘H‘l) SH_QdQ

A1onm = (m + 1)a10nm’ ai_Snm - m(m + 1)a1~_1nm
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aﬂnm = a3nma—1i_0;n—1;ma3;q;—(m+1) (61)

a’i’:’mm - (a3nmaii_1;nfl;m + a4nmai~_0;n+1;m) a3q;—(m+1)

aELGnm = a4nmaf1;n+l;ma3q;—(m+1)

a’T?nm = a’3nma—1i_0;n—1;ma’4q;*(m+1)

a’i’—Snm = ai’—5nma4q;—(m+1)/a?)q;—(m—i-l)

ai’—9nm = a4nmaii_1;n+1;ma4q;—(m+l)a Qab = Pgn—i_lpb_(m—i_l)
Using the last integral in (15) we finally derive

Azljll = (ai_an + aii_4nm + ai_Bnm) Mm+1/an—1;m+1

Azl—:_ll = (ai_Snm + aii_5nm + ai_gnm) Nm+1/an+1;m+1

Anm—tiil = afﬁnmum+l/an+3;m+l (62)

Amj:sl = @frpmbim+1/On—3m+1, Aptt = Anmﬁl =0

Similarly,

multiplying both sides of (57) by B;(mﬂ) and

exploiting the orthogonality properties in (15), yields similarly to (59)

/ € SpC - BTV AQ = 1 1i BT

_ / (6im —pSpd) P+ (605 — inb(m +1)5; ) Py "+ Va2

= / (mSo P Sp0p Py "V 4 (m + 1)Sy Py ™) 5,05 PI) S22 (63)

Similarly to (61

m+1 __
aq;m—i—qu =

_l’_
A20nm

+
A22nm

+ _
Ao4pm =

a25nm

a26nm

a27nm

/ (a;Oann—lﬂl—l + ag_lann—LQ‘H + a3_2ann+1§q—1

+ + +
+a23ann+1§fI+1 + a24nmUn—1;q—1 + a25nmUn—1;fI+1

+ + —2
+ a26nmUn+1§q—1 + a27nmUn+1§q+1) S@ dQ2

— ot + .+
= MA10pmA3;q;—(m+1)> 21nm = MA10pm P4q;—(m+1)

— ot + o
= MO @3q;—(m+1)s 23nm — TMA11nmA4qg;—(m4-1) (64)

(m + l)agnma;roq (1)
(m + 1)03nma11q —(m+1)
(m + 1)004”“1“1011 —(m+1)
( )

m+1 a4nma11q —(mt1)? Uyp = PénPb—m
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Similarly to (62) we finally find

Bt — ( W30 + @3pm ) Hm+1 + (A34 + azmm)um) /Qnm+1
B = <a21nm#m+1 +a25anm) /0n—2:m+1 (65)
B;nﬁl - (a22nmﬂm+1 + azﬁnmﬂm) /On42;m 1

B = B =0
Consider now (57) with index {—}, associated with {m — 1}, and
modify (58), (59) accordingly. Use (60) with the formula for m — 1,
and consistently replace superscript “+” by “—”. Consistently modify
(61)—(65), including the exchange of the exponent i) by —ity). This
yields the analogs of (62), (65). Finally substituting (62), (65) in (57)
we get

A | et

e{i}iwseczl = Z:1/l>n:|:3( )
. m+1 m+1 m+1 m+1
e{i}ll/)SGBnm — Zypnj:,g( {‘"L 1} {’"L 1 {‘"L 1} {7n 1 ) (66)
where in (66) ¥,5p4+3 denotes summing over v from v = n — 3 to
v=mn+3.

By combining the two equations (66) for e, e~ (again
representing results in terms coordinate system r), the terms involving
Cg, Sg in (54) are recast in vector spherical harmonics

C m 1 m m m— m—
{Z.Si}sgcn = 5 Swens (A,,“CV“{i}AV Lot

+iBy By )BT B ) (67)

+ +1 .
= mﬁﬁ<ﬂm+@ww

C + +1 . nt3
{iSﬁ } SeB,' = Eibgfgm (AUBY —iBJCY), Yipnts = Z

v=n—3

In (67) the compaction effected in the notation Eigfg mEL Sl
contains all the ingredients: it prescribes that we sum over v according
to Xypn+s3, and sum over u for the values m = —1, m = 1, and assign
the sign “4” or “—” between the summands according to the sign in
the superscript.

According to (20), (67) yields

{F1BIB" )

{R}

1etimm
CusiCly = S 4O
I

no 2 R
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Sl = gz;;xi“;ﬂqi}Aﬁc@V BBy )

CszHB?R} — SxpeEmE LB (ELBECY ) (69)
I n

: e A
Sy = ;zugxi’;i%{i}AﬁB*{é}y ~BiCy )

Apply now (68) to h defined in (39), (52), this yields

CySohp = % (di5n Ch, +dii B, )

13vp l4vp
CySohmr = 3 (di{55.Cly, — i3 BY,)
SuSohp = ¥ (—dif};Ch, + dijss,BY,)
SySohm = 3 (dijs Ch, — dijse Bly,) (69)
o 1
diis, = 5 (AL, + BUAG,)
scC 1
diivs = 5 (AuAds, + BLAds,)

In (69) and subsequently, the sign notation in the superscript,
appearing in (67), (68), is delegated to the coefficients so that ¥ =
Yin1 E’j;?f; can be used for adding or subtracting summands. Also note
that A is an operator changing the indices of the immediately following
coefficient, e.g., A{v,u} = {n,1}. Thus the notation A acts similarly
to d,n0,1, but its position antecedent to the immediately following
operand is crucial. Using A means that the relevant term f(v, u) does
not participate in the summation indicated by pu>m £ 1, v>n £ 3,
although the term appears under the summation sign.

By now we have derived explicit expressions for all the terms
multiplying 31 in (39), in terms of spherical vector harmonics.

These will now be combined, once again reverting to the
appropriate original coordinates p, 7

_ w @ c " 7 w
fE - ( 151/uCIy lﬁuuBRy 17V;LCRV 18VuBIy 19uuPRy)
_ I w w I I
fu = E( 150, BT, +d56,,Cr, — 17VuBR1/+d18uuCIu+d201/,uPIV)
_ pu>m=1 sc c +;sc
Y= Enlzubnﬂ:S s Wlbvp — =A ( Svp dBV/L lluu) A+ Edl?ﬂ/u

Yoo = M (dis, — dig, + Ddis,, ) A+ Edfi, (70)
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qu%/,u = Fd13u;u 181/# _Fd14zz;u iguu _Adgl//.LA7 dggyu:AdiguuA
D = lKezCQT, = ZKezSOTCwTy = ZKezSHTS¢T

In (70) the operator A appears preceding and following terms as in
Adg;, A, indicating that we have both Adg;,, and AP, to consider.

Inspecting (16), (39), and noting that 1n (70) Kez, SgT, Cory Sy
Cyr, embodied in D = iK¢,Cy,, E = iKe3S0,Sp,, F = iKezSop Sy,
are not involved in the integration, we get

(Bin — () ferermras o,

Hy¢(Keprr
Ey = éﬁ(l)ziu( S MY, —idsg,, Ng, + s, M),
id35,, N, — i35, L)
= 55(1)211’< 51,,C'ry + d35,,C1, + d33,,B'r,,
QMB?V 3Py + A5, P, (71)
Hy = ~hsW ( 15uuN§i€+d16uuM§§u
+1 17WN%ZH 18yyM§i£ 20uuL§£)
= —hpt Ziy( 570 C'ry + 455, C, + d35,,Bg,,
+ d36,, B, + d35,, PR, + dSQVMPl;V)

where in (71) the coefficients are related to previous ones by

g(iyu = 17uu‘]hul ’ g%uu = f%yu }{ielx

S = —1 ( 16uu=]iw“ + deVMJhV%x)

;iu,u = ZdlSVuJ}{r(/%zv gguu =—i ( 16vp }5/621 + deouir{féf) (72)
5%1/# = Zd181/,qu€1(/e2z7 gguu = leunyfr(/ef? Sguu = d18u,u‘]ffr(/elz
ggu,u = 171/#‘]}{1(/%17 d301/u =1 ( 151/;;‘]}{1(/6?? - 201/u‘]151(/65$)

3(1:1/“ = Zdl?l/u‘]}fie;’ d321/;¢ =1 ( 151/;1,‘]}5/62:6 - QOV}LJ}ILI(;e‘f)

Note that in (71) Ejy, Hy are functions of rr, evaluated at the
boundary rr = R, therefore the vector spherical harmonics are
functions of 7.

With this we have finished the long and arduous task of calculating
the velocity-dependent terms appearing in (39), but the coefficients in
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(72) are still dependent on Sp,., Cg,., Sy, Cy,, and not ready yet for
the calculation of the scattering coefficients. This will be discussed in
the next section.

5. CALCULATION OF THE SCATTERING
COEFFICIENTS

We got now all the ingredients necessary for evaluating the scattering
coefficients. According to (5)—(8), at the boundary only the tangential
components Eg|, Hpg in (71) are considered. Due to the spherical
geometry of our present problem, we have to consider

Ef” = éﬂ(l)ziy ( QluuBlll%u + dQZVMB/;l/ - 231/,uC - 241/,uC )
Hy = —hpYS ( 570 By T do%,, B, — d35,,C'r,, d30uuC/fy>
Ep) =77 x Ef, Hg =77 x Hy (73)

The longitudinal terms P¥ of (71) do not feature.

In order to solve the boundary value problem, orthogonality
properties must used. Hence in (73) the coefficients involving
Sops Cops Sy, Cyp times the involved vector spherical harmonics,
must be recast in terms of vector spherical harmonics once again. All
the necessary formulas have already been developed above, and we
need to tend to the details. This operation will once again branch out
the summation range.

Exploiting results from (50), (68), (70)—(73), Ey| in (73) is recast
as

Ef|| = éﬁ(l)zl( ggu’u’B?:f’ - giu’u/cﬁu’)

dggl/u’ = A5: <d;—5jc,u d;ﬁiic,u ) + A/ [ ‘]}{i&’aiA (d3v ‘u! gi’u’) A} A/
+d§6;1/71;,u’A a8§V'—1§H'A/ + d36'u’+1'u’A a9;V’+12#/A,
_dégu’u’A/a7V/#'A/+Bz/j (d;_Szc,u _d?TSlslcu)

dgill/“/ = (d+5jc# d 5,icu ) + d361/’,u’A a7,/M/A
FA [ T (i — dios, ) A = JiSEAdgs, A N
- g?u’ I'M’A/a&l//—;,u’A - g%;u’—}—l;p/A a9;u’+1;u’A (74)
+A5’/ (d;)FSicp, dI;B,ILj’Cu’ )

{£}sc 1 {£};s¢ 1Kexp
d351/,u - ZgKexA/( d13uu Jhu’l)
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5 = KN [ 1555 (M350 A)| A

A5y = —Keol' [ TS5 (Ad3S, 0 0)] A

gl = %KemA’ (" dblr giss)

In (74) the notation ¥/ = %, %" :D“ £1 denotes that for each value v,
H=v'>r£3 H

we apply once more the scheme prescribed by ¥. Similarly to (69),
in (74) we have A'{v/,i/} = {v,u}. When we have an expression
containing two operators, we start from the outermost operators, and
continue to the inner operators, e.g., A'[q1,/(Agayw NN g5, =
q1vu92n143,1- Also note that if the operator can only be applied once,
hence for example A'A'q1,10 = quup.

Similarly to (74), Hy) in (73) is recast as

_ , ,

Hpy = S (55,0 B, — di6,,Ch)

dgc p= N [iul J,{iﬁ/\ (dfllc/’u’ o dgzc/u’) A— dfﬁ;y’—l;p’A/a&u’—l;u’} A
_dfﬁ;vur1;u’A,a9;V’+1;u’A/ + Aﬁ/I (d;ﬁi,cu, - d;gi,cu,)
+BL (dygerr = dfist,) = AN azyw A’

B = AN ar ' + Bl (335, — digliy)
AL (dfgsr, = dygos, ) + i [ TS (d5, — d3,,0) A
—i T AL | A (75)
+dii;u’—1;u’A/a8;V’fl;#’A, + dii;u’—i—l;u’A/a9;u’+1;u’A/

A5 = iK' [ TS5 (M350 A) | A

Al = igReal! (a5 )

il = SHeN (a3 )

diil’/ﬂl - KezA/ |:ZV/J£1</E’§(A iﬁcll/’u’A):| A

To accommodate to the summation conventions above, we recast (28)
as

— ’ ’ “/
EemT = 62 (digy/wclfy, + d%u’u’Blﬁy' + di?l/u’PRy’

TN er u ex w ex W
HexT — —hz (d45l//H/CR1// + d46V/u/BIV/ + 47V’M/PIV/
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! krR 1 kTR 1
o = NALTIRAN | d5E,, = iN AL JELEAN (76)
G = iN AL T AN

Similarly to (73)-(75), the field components tangential to the
surface are given by

— 7 — >\ [ gex w exr w
EezT” =77 X Eeyp = €X (d45l//p,’BIz// - 461/’u’CRu’)
A / u ex w
HeacT|| =7y X Heyr = —h% ( 450/ ,LL’BRV’ - d46u’u’CIy’> (77)

Similarly to the excitation fields (76), we recast the internal fields
(29) as

=\ mn w imn w in '
EinT = 62 ( 48V’M/CII/’ -+ 49V’M/BR1/ =+ 50V//L/PRV’
Hiyr = —hy ct , +dn, B +dn, P
nl — — 511/ W~ Ry + 520/ P 1v/ + 53v/ 4 1
kinR kinR
igylul = A AI /cm /J 1'71 AA/ d49V/NI = ZAIAI bln /J m AA/

S = —iN AL, TR AN (78)
ST = NALD TR AN = —id§g, N AT A AT
S = INALC Ton AN = id5g,, N ATV A AT mR

S = INALC Trn AN = dgh N AT [N AT ng

In (78) it is shown that the coefficients dfg, ' Dagur s A50, 05
associated with E;,r are related to dgf,, e g3, e ds3,, o associated
with H;,p, respectively. This is a direct result of the fact that the
interior of the sphere is a homogeneous medium at rest.

Similarly to (77), the fields corresponding to (78) that are

tangential to the boundary are given by
EznT” = TA'T X EinT = EE/ (di%V/u’37V’ — ffé,/u/clfb/)
HznT|| =7y X Hyyr = —hy ( 51v/ H’B/;%y’ - égu’u’cl;y’) (79)

and in (79) dg§,, 1o A9, ave related to d5i,, ., d53,,,/, Tespectively.

Turning once more to (39), consider { HG}’ the part of {EISCT}

scT
dependent on G. Similarly to (36) { flg } is recast in terms of spherical
vector wave functions of the argument K., = k¢, R, yielding

Uircticien) § = U Jae [ <0 etn) i
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GE = Z, (d54y MICIV + d55l/ ulB"é,/) (80)
Gu =Y <d55u u’le-'tu' - d54u’u'B/;V’)

gy T T

Except for the time-dependence, the integrals in (37), (80) are identical
in form, although they involve different functions, g\, G { E},
H H

respectively. In the limit of vanishing velocity the two equations
coalesce. Therefore we conclude that (80) formally corresponds to a
homogeneous medium, hence the coefficients are related as indicated

n (80). It is noted that {flg} in (80) is not one of the fields that can
be measured separately. The analogy of (37) , (80) prescribes
EG = EE/iV (dglu’u’M?V’// - id%”’M/N%V/M/)
— G ! G /
= 62/ (d56V’M’CLIL1/ + d57V/M/BM ’ + d581/ M’Pl;{u/)

Hg = _EE/Z.V/ (d55l/ ,LL’M%V’#’ - id5411’,u’NIV’u’> (81)
= —hy <d591/ u’C vt dg’z)l/’u’BlIL/V’ + dGGIV’M’P/;;’)
dgﬁl/ﬂ/ =1 d54u ‘! }f(ye’? d57uu iiyld%u 'u! }ﬁe’g
d?Bu’u’ = —u d551/’,u’ f{fﬁ%? d591/,u = d551/,u f{fjﬂ{
dg)l/’u’ = _iiyldglu/u"]lﬁe’?ﬂv dﬁll/’p/ = —ii” d54l/ M’Jhu’Q

From (81), at the boundary the tangential fields are given by
EG” = 'IA"T X EG’ = 52/ (d5G6V/M/BI;V d57y MICIIJ‘{V/)
HG” = 'I"T X HG = —hz/ (d591j ,U'/B;lell/l - dGOI/’,u/CI_;y’) (82)

Finally, from (74), (75), (77), (79), (82), the equations for the
continuity of the tangential components of the E, H, fields, at
the boundary, is obtained. Inasmuch as all the final coefficients
are independent of 6, v, the series are functionally and spatially
orthogonal, i.e., the terms in the series are independent, and the
first line of (15) applies. Note that Eg, Hy|, Ecur, Hcpr| ave
known functions, derived from the velocity-independent Mie scattering
problem. For a perfectly conducting sphere, or when the dielectric
susceptibility in the exterior domain is negligible in comparison to that
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of the sphere, we have E;,p| =0 at the surface, hence
Eeor) + Eg) + Ep =0
o+ Ay + BV 55, = 0 (83)
o + S0 + B30 = 0
prescribing two equations for the unknowns d56y e d57y e Similarly
for the perfectly magnetic sphere, where the external magnetic

permeability is negligible in comparison with that of the sphere, the
boundary condition is H;,7 = 0 at the boundary, we find

Heor+ He) + Hy) =0
o + Ao + BV 55,0 = 0 (84)
v + Ao + BV A5G0 = 0
prescribing two families of equations for the unknowns d5G9V, e df%y, “,
The general case is prescribed by
Eeor)+ Eg) + Ef| = Eint)
A5,y + S + BV = Aty

exr G 1) ysc _ gin
A0 + dSey + BV = ey

H.,r)+ Hg)+ Hy = Hy,p| (85)
a .
igu’u’ + d591/’,u’ + ﬁ( ) ggu’u’ = ?”HV’N’
igy’u’ + dGGOV’u’ + ﬁ( )digu’u’ = %gu’/ﬂ

providing four families of equations for the eight families of unknowns
G G G G

d56l/ 'pl d571/ 'pl d59u fpl d60u ‘' d481/ ‘u' d491/ ‘' d511/ u” d52u w'e From
(81) we have additional two equations relating d56u, ' dg;oyl o and
d<. e d%y/#,. From (78) we get additional two equations relating
d47§l/ e d’gﬁy,#/, and dfgy/w, dﬁu - Altogether we have eight families
of equations for the eight families of unknowns, hence all coefficients
are accounted for and can be calculated.

The representation of fields in terms of series of spherical
harmonics has been achieved, and with that the problem of evaluating
the scattering coefficients is considered as solved.

6. THE SCATTERED FIELD OF A MOVING SPHERE

With the coefficients of Gg, Gy already provided according to (80),
we now turn back to (38) to discuss the scattered field. The integral
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must be represented in a way which allows the calculation of the
scattered field for arbitrary locations and times (7, ).

The phase ¢,(p) in the integrand (38) corresponds to (30). The
phase used for the computation of the velocity-dependent field in (39)
was defined for a single plane wave in (33). This is used throughout,
culminating in (83)—(85). Both (30) and (33), (34) involve the same

unit vector kj, hence both (39) and (38) refer to the same unit vector

p. To express (38) in the coordinates used for (39) we first need to

remove from (39) the parts of f (E} (p) associated with the application
H

of the boundary condition, as shown in (35). In addition we have to
equate ¢, = @, to the first order in v/c. To achieve this goal, we need
to replace the time ¢ by a new definition ¢’ as shown in (86). This has
no effect on the solution of the boundary value problem. Specifically,
(39) refers to the value at the boundary rr = R, but the analysis
equally applies to any other location rp.

Implementing these steps yields changes in eq. (86): add primes
and last line as indicated below

{ B }:{ j%', };ﬂ / (KLP T (G {5}@)%(”]”’{5}@))&;3
f’{ﬁ}(ﬁ) — K., (- m{ﬁ} —z'ngA%eTg{E}y Kep=kearr (86)

{ j% }:{ iy }e‘w’, t'=t—v-r/c

We end up with a first order velocity-dependent approximation of
the scattered field, expressed in terms of rp, which according to (21)
is, a time-dependent quantity rp = r —vt. Similarly to (39) for points
in the vicinity of the scatterer the approximation (86) is valid.

However, for large distances rp from the scatterer, the exponential
approximation e® ~ 1 + a fails and (86) is rendered inapplicable.
Most cases of interest involve scattered fields at moderate and large
distances. Therefore, for arbitrary distances r7 we must find a different
representation. Twersky’s differential operator representation (18),
involving inverse powers of the distance, can be exploited. To that
end, in (86) we bring back the velocity-dependent terms into the
exponential, resulting in

E, \_ [+ 1 iK! privg AN 1)
{HSC}—{ _E/}%/e G{E}(p)dQP

H
X A\ B0 K =1 (p-rr)—AM)
Gy ) = Gy e 6D
H H
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rxG'E = {$}G’H

{#) {}

The new function G’ in (87) involves r7 which does not participate

in the integration with respect to p, hence the differential operator
representation can be applied in the form

E +e' = ~ .

{ B b = {5 biow. by - e'o)

O =3 pD-(D—121) (D-23D)--(D— (v - 1))
v=0

— T4+ pD+psD-(D—20)+ puD - (D — 1.21)
(D = (n—1)nI) (88)
D = #p(D + 2)ir 4 #7255 00 (Sad) + #7050
+&(D 4 S7H)é + 62552C, 038 — &doir
+B(D + 5,%)B — 325, Cadpéx — 325, gt r,
pv = (i/(2K0,)" /v, D = 37 |03 + SaBa(Sada)|

with |p—7, in (88) indicating that after operating on the terms
involving coordinates p, coordinates p are to be replaced by #r. In
the original expressions (18) this distinction was irrelevant, because
the operand G' depended on coordinates r only.

Once the scattered fields are found, one can substitute from (21)
and (86) to finally obtain the results in terms of the initial (r,t)
coordinates. Depending on the distance from the scatterer at a given
time, one can make a decision as to where to truncate the differential
operator series representation (88), in order to achieve the desired
approximation.

With that the scattering problem in its entirety is considered to
be solved.

7. SUMMARY AND CONCLUDING REMARKS

The Mie scattering problem for a sphere at rest [4] , as shown
in (28), (29), (36), is a quite complicated problem, requiring prior
knowledge of the vector spherical wave theory and the special functions
involved. Therefore a recapitulation of some mathematical results and
the introduction of notation is required.

Presently the first order in v/c velocity-dependent problem of
scattering by a moving sphere is investigated. The velocity-dependent
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boundary conditions based on the Lorentz force formulas (2)—(6) are
incorporated . To the first order in the velocity, these formulas conform
to the corresponding special-relativistic expressions [1,2], and lead to
simple expressions (7), (8).

The formalism is therefore straight-forward, but it turns out
that in comparison to the Mie problem in the absence of motion,
the implementation of the present scheme is much more complicated:
Firstly, one has to investigate the behavior of plane waves under the
present circumstances (22)—(35). Then, exploiting Sommerfeld-type
integrals for the vector spherical waves (16), (17), (37), the scattered
wave is represented as a superposition of plane waves (38), and the first
order approximation for the field signals at the surface are derived (39).

In order to be able to calculate the scattering coefficients, a tedious
process of expressing the fields in series of vector spherical harmonics
is launched. There are two similar but distinct steps: One has to work
under the integral sign in (39) with the first order terms ﬁ(l)f{g} (p),

which are recast in series of spherical harmonics of the argument p.
Thus the field signals {5“?} are derived in terms of series of

vector spherical harmonics as a function of r7, but again, the relevant
coefficients are still dependent on 77, and this dependence must be
eliminated by recasting the series in terms of vector spherical harmonics
with coefficients dependent on R only. When this task is finished,
culminating in the equations (83)—(85), the calculation of the scattering
coefficients is finished.

Finally, expressions for the scattered wave fields must be derived.
A near zone approximation is given by (86), but this is of very limited
usefulness. For moderate to large distances from the scatterer, we
incorporate Twersky’s [6] differential operator formula (18), involving
inverse powers of the distances. The implementation of this formula
for our present case and the necessary modifications are described in
(88).

The present investigation is theoretical, and in the future some
numerical simulations are planned, in order to bring out salient features
of the solution. One important result which could be anticipated from
the cylindrical case and the free-space spherical case [1,2,13] is the
interaction of coefficients and the appearance of new, velocity-induced
multipoles. Essentially, this is the result of the branching out of sums,
both in the polar (n) and the azimuthal (m) indices. According to
(62), for example, the n index spreads to n + 3 while the m index
spreads to m £ 1. Inasmuch as the process of getting coefficients free
of functions is performed twice, in the final summation ¥’ the range of
this spreading is doubled.
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8. LIST OF FREQUENTLY USED ABBREVIATIONS

n=0m=-n
M = (_1)m o EOTe—int
Toni” = #n(kars) o= Hype=iert
st;,e = zn(kars)/(knkarg) I, =i"N,
kn=1/n(n+1) Ny = 6n/
kar .
Jors? = O (kargzn(karg)]/kars A= —ZKEIA(l)CQT
kar
Jzn4ﬁ = aka'rﬁ [Zn(koﬂ‘g)] Kep = ke R
n+3
Js? = zn(kar)/ (Karp) Soonis = 3
v=n—3
C¢ = cos(, S¢ =sin( Eigf;mil see eq. (67)
daa = {1 o 220} A{v, i} = {n, 1} see eq. (69)
apm = MAm /N, D =iK..Cy,
Brm = Qnmkn E= iKezSGTC’l/}T
An=1/(2n +1) F = iK.3S9, Sy,
pm = 2w M [m £ = ST
B = v /) Ej=irx E, Hy=#px H
A ¥ = 0,8
() = (le) fe@) /2 NV, 1} = {v, 1} see eq. (74)
A — (V;}l)/c)Z 7 — EOTe—int/
El = H()Te*int/
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