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Abstract—Spectral decomposition in 2-D kz-m space is used to
develop transfer functions that relate modal electromagnetic fields
on concentric cylindrical surfaces. It is shown that all time-average
radiated power is generated by superluminal modes (phase velocity
vz > c) which are confined to the baseband |kz| < k0. Subluminal
modes, with kz outside of the radiated band, are radially evanescent
but permit recovery of imaging resolution that exceeds the usual
diffraction limit provided by the radiated fields. Outward translation
between cylinder surfaces is found to have a stable low-pass 2-D
transfer characteristic in kz-m space, where spatial resolution decreases
with increased radius. The inverse transfer functions for inward
translation of field components (termed backpropagation) employ a
high-pass process that amplifies subluminal evanescent modes, thus
potentially enhancing resolution while also amplifying measurement
noise. A 2-D filter with flat elliptical passband and Gaussian roll-off is
used to mitigate noise amplification with backpropagation. Outward
translation and backpropagation are tested using sampled data on
finite-length cylinders for various noise levels.
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1. INTRODUCTION

In the design of efficient radiators or reduced cross-section platforms
it is often necessary to perform measurements to spatially localize
the radiated power sources on the test object. Although probes may
be placed as close as desired to sample the field or current near to
or on the object’s surface, such invasive interrogation can perturb
the surface fields or currents being sought. An alternative is to
estimate near-surface quantities by back-propagating fields measured
on a more distant surface where probe interaction with the test object
is reduced. Such a procedure was applied by Ransom and Mittra
[1] using plane wave expansions on parallel planes to locate defective
elements in large phased arrays. Recent planar backpropagation to
provide unobtrusive measurement of thin-films was reported by Harms,
et al. [2]. Joy, et al. [3–5] developed microwave holography to estimate
fields on a minimal spherical surface enclosing an antenna or radome
by estimating spherical harmonics on a larger surface through sampled
measurement of the tangential electric field. Medgyesi-Mitschang, et
al. [6, 7] have investigated ultra near-fields for bodies of translation
using ω-k representations. A finite-element solution was used by
Wawrzyniak [8] to perform near-field holography of currents on metal
surfaces of revolution.

Developments in acoustic imaging and radiation by Williams,
et al. [9–12], uncovered the supersonic nature of cylindrical surface
acoustic modes that provide outbound radiation. This mechanism can
be exploited to enhance the backpropagation of field measurements
by selectively mitigating effects of noise that accompany subsonic
evanescent contributions. Use of near-field data provides the potential
for enhanced resolution in imaging that exceeds the usual λ/2
diffraction limit associated with use of far-fields.

The k-space concept developed for acoustics has been reformulated
for application to the vector electromagnetic field [13, 14]. This will be
considered in the next section. After investigating the properties of
superluminal and subluminal modes in Section 3, the transformations
for cylindrical translation of the field components will be derived,
displayed and discussed in Section 4. Results of computational
tests will then be considered for both outward translation and
backpropagation, with and without additive noise.

Figure 1 depicts the example source to be considered: an array
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Figure 1. (a) |Etan| and (b) |Htan| on concentric cylinder surfaces
due to wire source conformal to ρ = 0.90 m cylinder.
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composed of three thin-wire elements roughly in the shape of N, P and
S. These wire elements conform to the surface of a geometrical cylinder
having radius ρ = 0.9 m and are each 1 m high with 0.5 m vertical
spacing and subtend an azimuth angle of 45◦. The wires are driven by a
uniformly distributed 1A current with zero phase at f = 300 MHz (with
convenient λ0 = 1 m). Using ultra-fine wire segmentation (segment
length < λ/500) and exact integration formulas [15], highly accurate
fields were computed on a suite of concentric cylinders of length 20 m.
Figure 1 shows examples of computed |Etan| and |Htan| on cylinders
of increasing radii. Log-intensity plots are used, each with a local scale
factor, to provide enhanced dynamic range.

The fields display the expected spatial “smearing” with increasing
radius due to the R−n weighted contributions in the Green’s function
integration. Fields very close to the source cylinder are most strongly
produced by the nearby source segments while fields at larger radii
embody a more global mixing of phased contributions from all
wire segments. The resultant field smearing as radius increases is
accompanied by a reduction of modal bandwidth in kz-m space —
essentially low-pass filtering. Outward translation should thus provide
some degree of noise-tolerance. This behavior will be demonstrated.

Backpropagation to smaller radii produces an inverse effect, where
inward translated fields (and any additive noise) are high-pass filtered
in kz-m space. Without compensation by low-pass filtering, the
broadband noise or other inaccuracies in sampled fields are amplified
enormously in attempting even a small (e.g., λ/10) inward translation.
With proper 2-D low-pass filtering, as employed in the performance
tests, it is possible to backpropagate the smeared field distributions
on the largest cylinder in Figure 1 (adding noise) to produce more
highly resolved fields akin to those on the smaller radius cylinders.
The accuracy of such holographic resolution enhancement is dependent
upon the relative 2-D kz-m space bandwidths of the fields at the two
radii involved and the signal to noise ratio (SNR) of the measured field.
Sampled data with SNR as low as 20 dB and translations as great as
0.46λ will be considered in Section 4.

2. MODAL FIELD FORMULATION

Circular cylindrical coordinates (ρ, φ, z) as depicted in Figure 2 are
employed with phasor fields using suppressed time-harmonic behavior
eωt. Fields will be represented outside of a cylindrical surface which
encloses a finite size radiating source, such as an antenna or a scatterer.
Material in the unbounded region external to the cylinder is assumed
lossless, homogeneous and isotropic, with material constants ε(ω) and
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Figure 2. Cylindrical coordinates and unit vectors.

µ(ω).
Radial translation will utilized fields decomposed into cylindrical

modes. As with enclosed waveguides [16], modal fields can be
categorized as transverse magnetic (TM) “E-waves” having Hz = 0
and transverse electric (TE) “H-waves” having Ez = 0.

Maxwell’s source-free equations, ∇ × E = −ωµH and ∇ ×
H = ωεE, with assumed e−kzz traveling wave variation, can be
manipulated to generate transverse fields, Et = E

TM
t + E

TE
t and

Ht = H
TM
t +H

TE
t , using either Ez or Hz

E
TM
t =

−kz
k2
ρ

∇2 Ez (1a)

H
TM
t =

−ωε
k2
ρ

ẑ ×∇2 Ez =
ωε

kz
ẑ × ETM

t (1b)

H
TE
t =

−kz
k2
ρ

∇2 Hz (2a)

E
TE
t =

ωµ

k2
ρ

ẑ ×∇2 Hz =
ωµ

kz
H

TE
t × ẑ (2b)

where ∇2 = ∂
∂ρ ρ̂ + 1

ρ
∂
∂φ φ̂ is the 2-D Laplacian operator defined in the

transverse plane. The radial wavenumber is given by kρ =
√
k2 − k2

z ,
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with k = ω
√
µε = ω

vp
, where vp is the phase velocity of plane-wave

propagation in the medium. Equations (1b) and (2b) imply that
ZTM = kz

ωε and ZTE = ωµ
kz

are transverse field wave impedances.
Longitudinal fields satisfy the Helmholtz equation,

(∇2 + k2) Ez(ρ, φ, z) = 0 (3a)

(∇2 + k2) Hz(ρ, φ, z) = 0 (3b)

whose separation of variables product solution in cylindrical
coordinates has the modal form H

(2)
m (kρρ) emφ e−kzz. The Hankel

function of the second kind, H(2)
m , provides outbound radiation when

using eωt time-convention.
Substituting modal Ez and Hz solutions having emφ e−kzz

functional form into (1) and (2) yields transverse modal fields having
the same (φ, z) behavior. Such separable modes each satisfy Maxwell’s
equations and form a Fourier basis for assembly of complete vector
fields using

E(ρ, φ, z) =
∞∑

m=−∞
em(ρ, z) emφ (4a)

H(ρ, φ, z) =
∞∑

m=−∞
hm(ρ, z) emφ (4b)

with azimuthal Fourier modes

em(ρ, z) =
1
2π

∫ ∞
−∞
Em(ρ, kz) e−kzz dkz (5a)

hm(ρ, z) =
1
2π

∫ ∞
−∞
Hm(ρ, kz) e−kzz dkz (5b)

The spectral vector functions, Em(ρ, kz) or Hm(ρ, kz), are evaluated at
a specific ρ using 2-D Fourier transforms of the phasor fields,

Em(ρ, kz) =
1
2π

∫ 2π

0

∫ ∞
−∞

E(ρ, φ, z) e−mφ ekzz dz dφ (6a)

Hm(ρ, kz) =
1
2π

∫ 2π

0

∫ ∞
−∞

H(ρ, φ, z) e−mφ ekzz dz dφ (6b)

The form for the longitudinal spectral components is found using the
separation of variables product solution to (3),

Ez,m(ρ, kz) = am(kz) H(2)
m (kρρ) TM Case (7a)

Hz,m(ρ, kz) = bm(kz) H(2)
m (kρρ) TE Case (7b)
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Note the radial invariance of am(kz) and bm(kz). This forms the basis
for translating fields between cylindrical surfaces.

Substituting (4) and (5) into (1) and (2) with use of (7), provides
explicit generating equations for the TM and TE portions of the
transverse field, resulting in,

Eρ,m(ρ, kz) =
−kz
k2
ρ

∂

∂ρ
Ez,m(ρ, kz) +

mωµ

k2
ρ ρ
Hz,m(ρ, kz)

= −kz Gm(ρ, kz) am(kz) + ωµ Fm(ρ, kz) bm(kz) (8a)

Eφ,m(ρ, kz) =
m kz
k2
ρ ρ
Ez,m(ρ, kz) +

ωµ

k2
ρ

∂

∂ρ
Hz,m(ρ, kz)

= kzFm(ρ, kz) am(kz) + ωµ Gm(ρ, kz) bm(kz) (8b)

Hρ,m(ρ, kz) =
−mωε
k2
ρ ρ

Ez,m(ρ, kz)−
kz
k2
ρ

∂

∂ρ
Hz,m(ρ, kz)

= −ωε Fm(ρ, kz) am(kz)− kz Gm(ρ, kz) bm(kz) (8c)

Hφ,m(ρ, kz) =
−ωε
k2
ρ

∂

∂ρ
Ez,m(ρ, kz) +

m kz
k2
ρ ρ
Hz,m(ρ, kz)

= −ωε Gm(ρ, kz) am(kz) + kz Fm(ρ, kz) bm(kz) (8d)

where

Fm(ρ, kz) =
m

k2
ρ ρ

H(2)
m (kρρ) (9a)

Gm(ρ, kz) =


kρ
H(2) ′
m (kρρ) (9b)

3. RADIATION AND EVANESCENCE

As a prelude to development of the field translation procedure, it
is important to understand the spectral behavior of Fourier modes
relative to cylindrical radius in the context of radiation, evanescence
and power flow. Consider first the case of a lossless circular metallic
waveguide, where TM and TE modal fields are represented using
a positive real kρ spectrum. Enforcement of Ez = Eφ = 0 at
the conductor radius constrains kρ to discrete, quantized modal
indices. Propagating field modes that convey time-average power in
the waveguide have real kz =

√
k2 − k2

ρ only for kρ < k. Power is thus
conveyed with real kz between ±k. Cutoff modes have kρ > k, with
associated imaginary kz. These correspond to evanescent fields that
attenuate with ±z and carry no time-average power.
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In contrast, the modal fields in the unbounded region being
considered will have a continuous real kz spectrum. Fields propagate
and convey power in the ±z direction for all real kz. When kz < k,
the associated real kρ provides radial field propagation and outward
power flow. The kρ becomes imaginary for kz > k, resulting in
radial evanescence and cutoff of outbound power flow. This will be
demonstrated.

As in the case of waveguides, longitudinal phase and group
velocities can be defined respectively as vz = ω

kz
and vg = dω

dkz
for

modes in the unbounded external region [17]. The phase velocity can
exceed that of a plane wave in the medium,

|vz| =
ω

|kz|
>
ω

k
= vp when |kz| < k (10)

The corresponding spectral region |kz| < k is termed “superluminal.”
Likewise, |kz| > k is denoted as the “subluminal” portion of the
spectrum since vz < vp. In an air-filled waveguide, for example, only
superluminal modes propagate, each with phase velocity exceeding
that of light. This does not violate Einstein’s postulate that
transport velocities never exceed c since modal energy and modulated
information travel down the guide at the group velocity [17], where
vg < c.

Radial evanescence of subluminal fields can be observed for Ez,m
and Hz,m as they appear in (7) by denoting kρ =

√
k2 − k2

z =
−

√
k2
z − k2 = −α and expressing the Hankel functions [18] as

H(2)
m (−αρ) =

2
π
m+1 Km(αρ) (11)

for imaginary argument when |kz| > k. The modified Bessel functions
of the second kind, Km(αρ), provide accelerated radial decay with large
argument amplitude proportional to e−αρ/

√
αρ.

Within the |kz| < k superluminal band, kρ remains real and
H

(2)
m (kρρ) has slowly decaying outward traveling wave behavior, with

large argument amplitude proportional to 1/
√
kρρ. As will now

be shown, all outbound time-average power is generated by the
superluminal portion of the spectrum.

Power passing through an infinite length cylindrical surface of
radius ρ can be expressed by surface integration of the radially directed
time-average Poynting vector, Pρ = 1

2Re{(E×H∗)·ρ̂} where ∗ indicates
conjugation. Expressing Pρ in terms of field components tangential to
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the cylindrical integration surface gives

W=
∫ ∞
−∞

∫ 2π

0

1
2
Re{−Ez(ρ, φ, z)H∗φ(ρ, φ, z)+Eφ(ρ, φ, z)H∗z (ρ, φ, z)}ρdφdz

(12)

Power conservation requires that W is independent of ρ for lossless
media.

Substitution of (4) into (12), with integration of exponential cross
terms on φ gives

W =
∞∑

m=−∞

∫ ∞
−∞

pm(ρ, z) dz =
∞∑

m=−∞

∫ ∞
−∞
Pm(kz) dkz (13)

with modal radiated power density per unit length,

pm(ρ, z) = πρ Re{−ez,m(ρ, z) h∗φ,m(ρ, z) + eφ,m(ρ, z) h∗z,m(ρ, z)} (14)

Noting the definitions in (5), the generalized Parseval’s formula [19]
equating integral products of functions and their Fourier transforms,
is used to define the power spectral density (PSD) in kz on the right-
hand side of (13),

Pm(kz) =
ρ

2
Re{−Ez,m(ρ, kz) H∗φ,m(ρ, kz) + Eφ,m(ρ, kz) H∗z,m(ρ, kz)}

(15)

Note the explicit omission of radial dependence in the PSD. This can
be demonstrated by substituting field components in (7), (8) and (9)
into (15). The term involving products of am(kz) and bm(kz) is found
to be zero, leaving distinct TM and TE contributions,

Pm(kz) = PTM
m (kz) + PTE

m (kz) (16a)

where

PTM
m (kz) =

ωερ |am(kz)|2
2

Re{−H(2)
m (kρρ) [H(2) ′

m (kρρ)]∗/kρ} (16b)

PTE
m (kz) =

ωµρ |bm(kz)|2
2

Re{H(2) ′
m (kρρ) [H(2)

m (kρρ)]∗/kρ} (16c)

Consider specializing (16) to superluminal and subluminal cases.
For superluminal modes, having real kρ, first substitute H(2)

m (kρρ) =
Jm(kρρ) − Nm(kρρ) into (16), where Jm and Nm are respective
Bessel and Neumann functions. Use of the Wronskian [18],
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Jm(kρρ) N
′
m(kρρ) − J

′
m(kρρ) Nm(kρρ) =

2
πkρρ

, yields the simplified

result,

Pm(kz) =
ω

π (k2 − k2
z)

[
ε |am(kz)|2 + µ |bm(kz)|2

]
(17)

valid for the superluminal range |kz| < k. As expected, the result is
not a function of ρ.

Now consider the subluminal region, where kρ = −α =
−

√
k2
z − k2. Substituting (11) into (16) gives

Pm(kz) =
2ωρ
απ2

[
ε |am(kz)|2 + µ|bm(kz)|2

]
Re{−Km(αρ)K

′
m(αρ)} = 0

(18)

thus showing that outbound time-average power is generated only by
field modes in the |kz| < k superluminal band.

4. RADIAL TRANSLATION OF FIELDS

Field translation is seemingly straightforward using the radial
invariance of am(kz) and bm(kz) as defined in (7). These coefficients
may be theoretically computed from the Fourier transforms in (6) using
Ez(ρ1, φ, z) and Hz(ρ1, φ, z) on an infinite length cylindrical surface
of radius, ρ1. Field components of the kz-m spectra can then be
constructed, in principle, at any radius, ρ2, by use of equations (7)
and (8). Inverting these spectra via (4) and (5) yields the radially
translated components of E(ρ2, φ, z) and H(ρ2, φ, z).

Implementation of this technique to sampled data on finite-
length cylinders requires replacement of continuous function Fourier
transforms and series with discrete transforms computed using FFT’s
in z and φ. Errors will result even with perfect noise-free sampled field
data due to aliasing of spectral contributions having spatial frequencies
that exceed one-half of the sampling rates in z or the metrical distance
(ρ φ). Use of discrete Fourier series in kz with the truncated cylinder
introduces a virtual periodic extension of the truncated cylinder source
fields at ρ1.

Even with aliasing and truncation errors in am(kz) and bm(kz), it
is possible to recover outward translated fields at ρ2 > ρ1 using (7) and
(8) since the process tends to de-emphasize higher order coefficients
through low-pass filtering. As shown in the previous section, for
sufficiently large ρ (typically greater than about λ from the source)
only radiation fields remain, with spectal content |kz| < k.
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Backpropagation using am(kz) and bm(kz) was found to be viable
for estimating Ez and Hz, via (7), if proper low-pass filtering is
used to compensate for high-pass amplification of errors in higher
order computed coefficients. The other field components could not
be successfully reconstructed using this approach when ρ2 < ρ1, even
in the noise-free case. The reason for this failure appears to be the
additional error provided by the derivatives required in (8).

A better route is to define operators that directly translate like
pairs of spectral field components between ρ1 and ρ2. For example,
the use of am and bm radial invariance in (7) gives[

Ez,m(ρ2, kz)

Hz,m(ρ2, kz)

]
= Tm(ρ1, ρ2, kz)

[
Ez,m(ρ1, kz)

Hz,m(ρ1, kz)

]
(19a)

with scalar translation operator

Tm(ρ1, ρ2, kz) =
H

(2)
m (kρρ2)

H
(2)
m (kρρ1)

(19b)

Translation of transverse field spectra involves pairwise solutions
of equations in (8) with assumed ρ-independent am(kz) and bm(kz).
For example, (8b) and (8d) can be combined to yield[

Eφ,m(ρ, kz)

Hφ,m(ρ, kz)

]
= [Vm(ρ2, kz)] ·

[
am(kz)

bm(kz)

]
(20a)

with array operator constructed from functions defined in (9),

[Vm(ρ, kz)] =

[
kz Fm(ρ, kz) ωµ Gm(ρ, kz)

−ωε Gm(ρ, kz) kz Fm(ρ, kz)

]
(20b)

Inverting (20a) at ρ1 then using the resulting am and bm to drive (20a)
at ρ2 provides azimuthal component translation via[
Eφ,m(ρ2, kz)

Hφ,m(ρ2, kz)

]
= [Vm(ρ2, kz)] · [Vm(ρ1, kz)]

−1 ·
[
Eφ,m(ρ1, kz)

Hφ,m(ρ1, kz)

]
(20c)

Translation of radial field components is formulated by a similar
procedure using (8a) and (8c),[
Eρ,m(ρ2, kz)

Hρ,m(ρ2, kz)

]
= [Um(ρ2, kz)] · [Um(ρ1, kz)]

−1 ·
[
Eρ,m(ρ1, kz)

Hρ,m(ρ1, kz)

]
(21a)
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where,

[Um(ρ, kz)] =

[
−kz Gm(ρ, kz) ωµ Fm(ρ, kz)

−ωε Fm(ρ, kz) −kz Gm(ρ, kz)

]
(21b)

The matrix product in (20c) can be evaluated to give[
Eφ,m(ρ2, kz)

Hφ,m(ρ2, kz)

]
=

[
S1m(ρ1, ρ2, kz) ωµS2m(ρ1, ρ2, kz)

−ωεS2m(ρ1, ρ2, kz) S1m(ρ1, ρ2, kz)

]
[
Eφ,m(ρ1, kz)

Hφ,m(ρ1, kz)

]
(22a)

where

S1m(ρ1, ρ2, kz) =
m2 k2

z(
ρ1

ρ2
)H(2)

m (kρρ2)− k2k2
ρρ

2
1H

(2)′
m (kρρ2)Dm(kρρ1)

m2k2
zH

(2)
m (kρρ1)− k2k2

ρρ
2
1H

(2)′
m (kρρ1)Dm(kρρ1)

(22b)

and

S2m(ρ1, ρ2, kz) =
mkzkρρ1

{
H

(2)′
m (kρρ2)− (

ρ1

ρ2
)H(2)

m (kρρ2)Dm(kρρ1)
}

m2k2
zH

(2)
m (kρρ1)− k2k2

ρρ
2
1H

(2)′
m (kρρ1)Dm(kρρ1)

(22c)

with

Dm(kρρ1) =
H

(2)′
m (kρρ1)

H
(2)
m (kρρ1)

(22d)

These translation operators provide low-pass filtering for robust
outward translation with ρ2 > ρ1. On the other hand, when ρ2 < ρ1,
they generate high-pass filtering and unacceptable error amplification
even without additive noise. This dual behavior can be explained
by recalling that in outbound propagation the PSD for time-average
radiated power, Pm(kz), is confined to the superluminal band |kz| < k
and is independent of ρ, per (17). Close to the source, superluminal
modal fields exhibit slow radial decay, phase rotation and dispersive
mixing associated with near-field radiation. In the subluminal region
|kz| > k, where Pm(kz) = 0, modal fields are strictly evanescent. This
is expressed as the rapid radial decay of modified Bessel functions,
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m=0

m=5

(a)

(b)

ρ

ρ

Figure 3. |Tm(ρ1, ρ2, kz)|: Outward translation from ρ1 = 0.90 m
→ ρ2 = 0.91 m to 1.4 m. (a) m = 0 and (b) m = 5.

Km(αρ). The effective kz bandwidth for the modal fields thus collapses
rapidly with increasing ρ about the superluminal radiation passband
between ±k.

The low-pass filtering effect for outward translation is illustrated
in Figure 3 for Tm(ρ1, ρ2, kz) with m = 0 and m = 5. Fixing ρ1 =
0.9λ, the kz spectrum magnitude is plotted for ρ2 ranging from 0.91λ
to 1.4λ. Figure 4 displays backpropagation induced high-pass filtering
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m=0

m=5

(a)

(b)

ρ

ρ

Figure 4. |Tm(ρ1, ρ2, kz)|: Backpropagation from ρ1 = 1.0 m → ρ2 =
0.90 m to 1.0 m. (a) m = 0 and (b) m = 5.

for the same Tm(ρ1, ρ2, kz), also with m = 0 and m = 5. Fixing ρ1

= 1.0λ, the kz spectrum is shown for ρ2 ranging from 1.0λ to 0.9λ.
Note that the maximum inward distance is only 0.1λ for this example.
Much more radical high-pass filtering is found for larger distances. For
example, had ρ1 been 1.4λ the peak values at ρ2 = 0.9λ for the m =
0 case would be 1.5× 108.

The outbound low-pass and inbound high-pass nature of the
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translation operators also appears in the azimuthal frequency index, m.
Examples of this behavior are shown in Figure 5, where kz-m spectra
of |Tm(ρ1, ρ2, kz)|, |S1m(ρ1, ρ2, kz)| and |S2m(ρ1, ρ2, kz)| are arrayed
vertically in two columns. Outbound operators with ρ1 = 0.94 m and ρ2

= 1.24 m appear in the left column while the same operators appear in
the right column for the inverse backpropagation case ρ1 = 1.24 m and
ρ2 = 0.94 m. Operator magnitudes display mirror symmetry in both kz
and m. Self-term operators, Tm and S1m, have even-symmetry. This
is expected since change in the polarity of kz or m merely indicates
a reversal of modal propagation direction in z or φ on the cylinder
surface. The cross-term operator, S2m, has odd-symmetry in kz and
m, and is zero for kz = 0 and for m = 0, as is apparent from (22c).
With m = 0, S1m simplifies to the ratio H(2)′

0 (kρρ2)/H
(2)
0 (kρρ1).

Note that S1m and S2m in (22) share the same denominator.
This term is proportional to the determinant of [Vm(ρ1, kz)] and
results from the array inverse appearing in (20c). At any specified
ρ1 the denominator of S1m and S2m will have local minima in kz-m
corresponding to reduced conditioning of the [Vm] array. These minima
change with ρ1 and induce localized spikes in the transfer functions, as
can be seen in the bottom two rows of Figure 5.

Backpropagation is accompanied by extreme high-pass filtering as
depicted in the right column of Figure 5. Low-pass filtering is essential
to compensate for the resultant amplification of noise and numerical
errors. A simple single-parameter Wiener filter [13, 19] was used for
short backpropagation distances (< 0.1λ) in the early phases of this
research. Later, a linear 2-D low-pass filter was developed which offers
improved performance over longer backpropagation distances. This
filter provides unit transfer function over an elliptically shaped low-pass
kz-m region, with Gaussian roll-off beyond the boundary. Defining a
normalized elliptical spectral radius,

R(kz,m) =

√(
kz
kB

)2

+
(
m

mB

)2

(23)

with bandwidths of kB and mB, the 2-D filter has the form,

Qm(kz) = 1 for R < 1 (24a)

Qm(kz) = exp
{
− (R− 1)2

2σ2
R

}
for R > 1 (24b)

where σR is the normalized standard deviation for filter rolloff.
An example of Qm(kz) is shown in Figure 6(a) for σR = 0.2

with kB = 36 and mB = 16. Multiplication of the high-pass |Tm|
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(a) (b)

(c) (d)

(e) (f)

Figure 5. |Tm(ρ1, ρ2, kz)| for (a) Outward translation ρ1 = 0.94 m
→ ρ2 = 1.24 m and (b) Inward translation (backpropagation) ρ1 =
1.24 m → ρ2 = 0.94 m; |S1m(ρ1, ρ2, kz)| for (c) Outward translation
ρ1 = 0.94 m → ρ2 = 1.24 m and (d) Inward Translation ρ1 = 1.24 m
→ ρ2 = 0.94 m; |S2m(ρ1, ρ2, kz)| for (e) Outward translation ρ1 =
0.94 m → ρ2 = 1.24 m and (f) Inward translation ρ1 = 1.24 m → ρ2 =
0.94 m.
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(a) (b)

(c) (d)

Figure 6. (a) Example |Qm(kz)| for backpropagation: ρ1 = 1.24 m→
ρ2 = 0.94 m; (b) |Qm(kz) Tm(ρ1, ρ2, kz)|; (c) |Qm(kz) S1m(ρ1, ρ2, kz)|;
(d) |Qm(kz) S2m(ρ1, ρ2, kz)|.

shown in Figure 5(b) gives the filtered operator in Figure 6(b) for
backpropagation from ρ1 = 1.24 m to ρ2 = 0.94 m. Multiplying the
corresponding high-pass |S1m| and |S1m| in Figure 5 by Qm(kz) (also
having σR = 0.2 but with kB = 8 and mB = 32) gives the filtered
|Qm S1m| and |Qm S2m| in Figures 6(c-d).

5. PERFORMANCE TESTS

Extensive tests were performed for outward and inward radial
translation of both noise-free and additive noise fields at f = 300 MHz
generated by the previously described three-element N P S wire array.
This array is conformal to a cylinder of radius ρ = 0.90 m, as shown in
Figure 1. Tangential field components were computed at grid points
on 24 geometric cylinders, each of length 20 m and with ρ = 0.94 m,
0.96 m, . . . , 1.38 m, 1.40 m. The cylindrical grid has 512 equispaced
points in z and 128 equispaced points in φ, a total of 65,536 points
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on each cylinder. Source segmentation was increased until computed
fields converged to at least four decimal places at all grid points. These
reference fields will be referred to as “exact” in the discussion to follow.

Complex noise having independent Gaussian densities for real and
imaginary parts was added to the exact field components at the grid
points on the various cylinders to give signal-to-noise ratios (SNR) of
40 dB, 30 dB and 20 dB. The SNR is computed using ratios of sums of
squared magnitudes for exact field phasors at the grid points to those
of complex noise that is being added. For example, SNR for the Ez
field is

Ez SNR = 10 log10




∑
All (φ,z)

|Exact Ez|2

∑
All (φ,z)

|Noise Nz|2


 (dB) (25)

The first test series to be considered involves outward translation
of Etan = Ez ẑ+Eφφ̂ and Htan = Hz ẑ+Hφφ̂ with and without additive
noise on the ρ1 = 0.94 m cylinder. Translation is made to the remaining
23 conformal cylinders with RMS error evaluated by comparison with
the exact fields at the cylinder surface grid points. For instance,

Etan RMS Error = 100 %

√√√√√√√√
∑

All (φ,z)

|(Exact Etan)− (Translated Etan)|2

∑
All (φ,z)

|Exact Etan|2

(26)

The left column of Figure 7 depicts log-intensity magnitudes of
tangential field components for the worst-case 20 dB SNR on the
unwrapped cylinder at ρ1 = 0.94 m with spatial coordinates ρφ and
z. Corresponding kz-m log-intensity spectral magnitudes appear in
the right column. The H-field components in the left column have a
higher spatial resolution than the E-field, with intensities proportional
to ρ̂× I of the nearby N P S current segments. This higher resolution
generates the wider spectral bandwidth of the H-field shown in the
right column plots.

Outward translation of these noisy fields to ρ2 = 1.24 m without
filtering by Qm(kz) gives the tangential field magnitudes in the right
column of Figure 8, with comparison to the exact fields in the left
column. RMS error for Etan is about 6.6% while that for Htan is
about 4.7%. Apparent errors are amplified by the log-intensity of the
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(a)

(b)

Figure 7. Tangential field components with additive noise (SNR
= 20 dB) on ρ1 = 0.94 m cylinder with associated 2-D spectra. (a)
log10{|Ez(ρ1, φ, z)|}, log10{|Ez,m(ρ1, kz)|}, log10{|Eφ(ρ1, φ, z)|}, and
log10{|Eφ,m(ρ1, kz)|}; (b) log10{|Hz(ρ1, φ, z)|}, log10{|Hz,m(ρ1, kz)|},
log10{|Hφ(ρ1, φ, z)|}, and log10{|Hφ,m(ρ1, kz)|}.
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(a)

(b)

Figure 8. Comparing exact and computed tangential field
components on ρ2 = 1.24 m cylinder translated ∆ρ = 0.3λ from ρ1

= 0.94 m using data with SNR = 20 dB: (a) log10{|Etan(ρ2, φ, z)|}; (b)
log10{|Htan(ρ2, φ, z)|}.
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plots in regions most distant from the source where the tangential
fields are smallest. This appears most strongly in ripples nearest to
the cylinder ends caused by interference of fields produced by the real
truncated source cylinder at ρ1 and the adjacent virtual replicas of
this truncated cylinder. These virtual source replicas form part of an
infinite periodic array in z that results from use of the Fourier series
(and associated FFT) in lieu of the continuous kz transform for the
infinite length cylinder.

Summary of RMS errors in Etan and Htan for outward translation
cases from ρ1 = 0.94 m is shown in Figure 9. Notice that for ρ2 greater
than about 1 m (distances > 0.1 λ from the source) errors increase
almost linearly with distance and are nearly equal for the four levels of
additive noise. The noise insensitivity results from the extensive low-
pass filtering being performed by the outbound translation operators.
Increase of error with increasing ρ2 is caused by progressively larger
regions of interference from the adjacent virtual replicas of the ρ1

source cylinder. Field contributions at a point on the ρ2 cylinder are
generated by tangential fields on the ρ1 cylinder with contributions
weighted by powers of inverse electrical distance: (λ/R)n with n = 1, 2
for E and H and n = 3 for E. If ρ2 is electrically close to ρ1, source
contributions are strongly weighted in the closest small patch region
on the ρ1 cylinder. Points near to the ends of the truncated ρ2 cylinder
will suffer the largest relative error from this effect since more of their
strongly weighted source contributions are supplied by the adjacent
virtual source cylinder. The region being affected near to the ends
increases in size as ρ2 grows. At the other extreme, as ρ2 → ρ1 the
error increases and becomes sensitive to SNR. This is due to FFT
aliasing for the spatial sampling used on the cylindrical grid. Errors
shown include use of Qm(kz) filtering to reduce error for the 30 dB and
20 dB additive noise cases when ρ2 < 1.1 m. Otherwise, no filtering
was used in these outward translation tests.

Backpropagation was investigated for fixed ρ2 = 0.94 m and 23
values of ρ1, ranging from 0.96 m to 1.40 m with the four levels of
additive noise. For example, field component magnitudes with 20 dB
SNR are arrayed on the left of Figure 10 for the ρ1 = 1.04 m cylinder,
with associated spectra on the right. These narrow spectra are to be
translated just 0.1λ back to the ρ4 = 0.94 m cylinder, whose fields
have the much wider spectra shown in Figure 7. The operators in
(19) and (22) accomplish this high-pass filtering task in the theoretical
sense but require practical augmentation by low-pass filtering for even
electrically small backpropagation distances. Quasi-optimal elliptical
filters, Qm(kz), were found in each case by rough search on the
bandwidth parameters kB and mB (with increments of 4). One set
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(a)

(b)

Figure 9. Tangential field RMS errors on ρ2 for outward translation
from ρ1 = 0.94 m using data with specified SNR: (a) Errors in
Etan(ρ2, φ, z); (b) Errors in Htan(ρ2, φ, z).
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(a)

(b)

Figure 10. Tangential field components with additive noise (SNR
= 20 dB) on ρ1 = 1.04 m cylinder with associated 2-D spectra. (a)
log10{|Ez(ρ1, φ, z)|}, log10{|Ez,m(ρ1, kz)|}, log10{|Eφ(ρ1, φ, z)|}, and
log10{|Eφ,m(ρ1, kz)|}; (b) log10{|Hz(ρ1, φ, z)|}, log10{|Hz,m(ρ1, kz)|},
log10{|Hφ(ρ1, φ, z)|}, and log10{|Hφ,m(ρ1, kz)|}.
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of parameters was used with the filter to compensate Tm (translating
both Ez and Hz) while another set was used to define a common filter
for S1m and S2m to translate Eφ and Hφ. Using only two different
filters for each case, with step increments of 4 in searches over the kB-
mB space, reduced the iteration time for all cases to about 12 hours
on a 2 GHz Pentium-4 computer.

Figure 11 compares exact fields on the ρ2 = 0.94 m cylinder to
those backpropagated from noiseless fields on ρ1 = 1.04 m. Errors for
Etan and Htan are 9.7% and 12.5%, respectively using filter parameters
kB = 72, mB = 48 for Ez-Hz and kB = 40, mB = 64 for Eφ-Hφ.
Comparisons are shown in Figure 12 for the same cylinder but for
backpropagation of noisy fields with SNR = 20 dB at ρ1 = 1.04 m.
Intensity scales are slightly different from those of Figure 11 due to
automatic settings that accommodate the full dynamic range in the
pairs of field components being compared. Errors for this worst case
SNR are about 17.5% for Etan and 26.5% for Htan using kB = 24,
mB = 16 for Ez-Hz and kB = 16, mB = 20 for Eφ-Hφ. Generally, the
filter bandwidth parameters kB and mB are reduced both for increased
backpropagation distance and for lower SNR.

Increasing ρ1 to 1.24 m (0.34λ from the source cylinder) the
tangential fields with SNR = 20 dB are shown in Figure 13. Note the
collapsed bandwidth with only faint energy outside of the radiation
region |kz| < k0 = 2π (for f = 300 MHz). Again, the task of the
translation operators is to resurrect the broad spectral content of the
fields at ρ2 = 0.94 m as depicted in Figure 7. Figure 14 shows the result
for the noise-free case, with Etan and Htan errors of 18.7% and 17.9%
using kB = 36, mB = 16 for Ez-Hz and kB = 8, mB = 32 for Eφ-
Hφ. Fields comparison for the corresponding 20 dB case is displayed
in Figure 15. Errors are 20.9% for Etan and 45.8% for Htan with kB
= 8, mB = 12 used for Ez-Hz backpropagation and kB = 8, mB = 8
used for Eφ-Hφ.

RMS errors in backpropagation from all 23 values of ρ1 for the
various noise levels are summarized in Figure 16. As expected, errors
generally increase with both larger ρ1 and lower SNR. Further, Htan

usually suffers larger error than does Etan since the high resolution
of Htan at ρ2 = 0.94 m (see Figure 7) has a wide bandwidth which
is difficult to accurately construct using the filtered backpropagation
process.

It should be noted that these results are obtained by compensating
the high-pass Tm for both Ez and Hz using a common Qm(kz) that
minimizes the sum of their RMS errors. This quasi-optimal filter is
found through search over kB-mB space using a step size of four for
each parameter. A common Qm(kz) is also used to compensate both
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(a)

(b)

Figure 11. Comparing exact and computed tangential field
components on ρ2 = 0.94 m cylinder backpropagated ∆ρ = λ/10
from ρ1 = 1.04 m using noise-free data: (a) log10{|Etan(ρ2, φ, z)|}; (b)
log10{|Htan(ρ2, φ, z)|}.
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(a)

(b)

Figure 12. Comparing exact and computed tangential field
components on ρ2 = 0.94 m cylinder backpropagated ∆ρ = λ/10 from
ρ1 = 1.04 m using data with SNR = 20 dB: (a) log10{|Etan(ρ2, φ, z)|};
(b) log10{|Htan(ρ2, φ, z)|}.
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(a)

(b)

Figure 13. Tangential field components with additive noise (SNR
= 20 dB) on ρ1 = 1.24 m cylinder with associated 2-D spectra. (a)
log10{|Ez(ρ1, φ, z)|}, log10{|Ez,m(ρ1, kz)|}, log10{|Eφ(ρ1, φ, z)|}, and
log10{|Eφ,m(ρ1, kz)|}; (b) log10{|Hz(ρ1, φ, z)|}, log10{|Hz,m(ρ1, kz)|},
log10{|Hφ(ρ1, φ, z)|}, and log10{|Hφ,m(ρ1, kz)|}.
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(a)

(b)

Figure 14. Comparing exact and computed tangential field
components on ρ2 = 0.94 m cylinder backpropagated ∆ρ = 0.3λ
from ρ1 = 1.04 m using noise-free data: (a) log10{|Etan(ρ2, φ, z)|}; (b)
log10{|Htan(ρ2, φ, z)|}.
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(a)

(b)

Figure 15. Comparing exact and computed tangential field
components on ρ2 = 0.94 m cylinder backpropagated ∆ρ = 0.3λ from
ρ1 = 1.04 m using data with SNR = 20 dB: (a) log10{|Etan(ρ2, φ, z)|};
(b) log10{|Htan(ρ2, φ, z)|}.
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(a)

(b)

Figure 16. Tangential field RMS errors on ρ2 = 0.94 m for
backpropagation using data with specified SNR on ρ1 > ρ2: (a) Errors
in Etan(ρ2, φ, z); (b) Errors in Htan(ρ2, φ, z).
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(a)

(b)

Figure 17. Tangential field RMS errors on ρ2 = 1.04 m for
backpropagation using data with specified SNR on ρ1 > ρ2: (a) Errors
in Etan(ρ2, φ, z); (b) Errors in Htan(ρ2, φ, z).
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S1m and S2m by seeking to minimize the sum of errors for Eφ and Hφ

with the same large-step kB-mB search procedure.
Another set of tests was performed by backpropagating to ρ2 =

1.04 m using tangential fields on the 19 larger cylinders. A summary
of RMS errors is shown in Figure 17. Errors here show the expected
increase with larger ρ1 and with lower SNR but are all somewhat
lower than those found in Figure 16, especially for Htan. The reason
for this improvement is the less demanding spectral conversion being
attempted for this larger target radius. This can be seen by comparing
the spectra for ρ2 = 0.94 m in Figure 7 to those for ρ2 = 1.04 m in
Figure 10. At ρ2 = 1.04 m the spectral widths of Etan and Htan are
both narrower and more comparable than at ρ2 = 0.94 m.

6. CONCLUSIONS

A theoretical formulation for field translation between concentric
cylindrical surfaces has been derived using spectral decomposition in
kz-m space. The theory is applied to spatially sampled fields on
finite cylinders with various noise levels and tested extensively for a
specific source example. The translation procedure forms the basis for
microwave holography by backpropagating fields measured on a finite
cylinder of radius ρ1 onto cylinders having radii ρ2 < ρ1 that more
tightly enclose the source.

As shown, time-average radiated power is exclusively generated
by superluminal modes (vz > c) with |kz| < k0. Subluminal modes,
with |kz| > k0, provide essential resolution beyond the diffraction
limited radiation. These high-resolution modes are, however, radially
evanescent and decay rapidly with distance from the source. This
evanescence is manifested by low-pass filtering of subluminal spectral
components in both kz and m that accompanies outward translation
of fields.

Backpropagation is demonstrated to involve a high-pass filtering
process which greatly amplifies noise or measurement error. Com-
pensation by adjustable low-pass filtering is essential to mitigate this
noise amplification. A 2-D filter with unit value elliptical passband
and Gaussian roll-off was used to provide this required compensation.
Quasi-optimal filters for each tested case were found by a search in a
kz-m parameter space using RMS error sums for field component pairs
(Ez, Hz) and (Eφ, Hφ) as cost functions.

Example tests involve spatially sampled fields from a cylindrically
conformal wire array source with four levels of additive noise ranging
from noise-free to 20 dB SNR. These tests consider both outward
and inward translation. Outward translation provides innate low-pass
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filtering. Errors for outward translations beyond about 0.1λ from the
source are caused primarily by the use of truncated cylinders. This
error increases almost linearly with translation distance for the example
cases. For translation distances less than 0.1λ, limitations on spatial
sampling produces aliasing of broadband noise. Moderate low-pass
filtering is employed to reduce this error for the two lowest SNR cases.

Backpropagation tests were conducted for two ρ2 target radii.
As expected, errors generally increase with larger ρ1 radius and with
reduced SNR. Errors were also somewhat larger for the noisy H-field
cases compared to those for the E-field when backpropagating to the
smaller ρ2. This resulted from the need to create a very wide 2-D
spectrum that was observed for the H-field so close to the wire source.
Accuracy was improved for backpropagation to the larger ρ2 since the
spectral widths of the target fields were much narrower and thus less
demanding on the reconstruction process. The spectral widths were
also more similar for the E-field and H-field which resulted in more
comparable errors.

As noted, the backpropagation filtering employed in the tests
was not fully optimized. Even with these limitations the results
of this initial effort demonstrate backpropagation of relatively noisy
fields from distances as great as 0.46λ to create enhanced resolution
images on cylinder surfaces much closer to the source. Improvement
in accuracy and the extension of useful backpropagation distance can
be expected with further refinements such as non-uniform spatial
sampling, systematic cylinder truncation, and perhaps the creation
of self-adaptive application-specific 2-D filters.
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