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Abstract—In this paper, we present two methods for the inverse
problem of reconstructing a parameter profile of a nonuniform and
dispersive transmission line — one frequency domain and one time
domain method. Both methods are based on the wave splitting
technique, but apart from that the methods are mathematically
very different. The time domain analysis leads to hyperbolic
partial differential equations and an inverse method based on solving
implicit equations. The frequency domain analysis leads instead
to Riccati differential equations and an inverse method based on
optimization. The two methods are compared numerically by
simulating a reconstruction of a soil moisture profile along a flat band
cable. A heuristic model of the dispersion characteristics of a flat
band cable in moist sand is derived. We also simulate the effect
parasitic capacitances at the cable ends has on the reconstructions.
The comparison shows that neither method outperforms the other.
The time domain method is numerically much faster whereas the
frequency domain method is much faster to implement. An important
conclusion is also that it is crucial to model the connector parasitic
capacitances correctly — especially if there are impedance mismatches
at the connectors.
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1. INTRODUCTION

The inverse problem of parameter reconstruction on nonuniform
transmission lines has been considered extensively over the past years.
Primarily the reconstruction algorithms have been based on time
domain (TD) methods [1, 2], but frequency domain (FD) methods have
also been used [3, 4]. However, the developments of the algorithms in
the two different domains have progressed in parallel with few — if
any — comparisons in between by means of fourier transforms. One
reason for this negligence may be that there has been the opinion that
the reconstruction algorithm should be carried out in the frequency
(time) domain if the scattering data are obtained from a frequency
(time) domain measurement, since a numerically performed fourier
transform between the two domains inevitably introduces additional
errors in the measurement data. However, in a practical situation
the choice of domain for the measurement is not determined by
the reconstruction algorithm only. One must also take into account
several practical considerations, like for example the sensitivity to
calibration errors, whether the frequency spectrum is wide band or
narrow band, the accessibility to a network analyzer (NWA) or a
time domain reflectometer (TDR) etc.. Finally, an important criterion
can be the dispersion characteristics of the transmission line, since
certain dispersion model might be more suited for frequency domain
algorithms while others might be better suited for time domain
algorithms. These and other considerations determine whether the
measurements shall be conducted in the frequency domain or in the
time domain, and whether to use a frequency domain or time domain
inverse algorithm.

In this paper we consider two methods for parameter reconstruc-
tion on nonuniform dispersive transmission lines — one frequency do-
main method and one time domain method. As a suitable case study,
we have chosen the reconstruction of the water content in moist sand
through measurements of the reflected voltage from a flat band cable
buried in the sand. Our intentions are to compare the solutions to
the direct problem using the frequency domain and time domain di-
rect solvers, respectively, and to compare the reconstructions obtained
when using the FD and TD inverse algorithms, respectively, on arti-
ficial noisy measurement data that has been generated either in the
frequency domain or in the time domain. In a practical situation, geo-
metrical differences at the connection points of the nonuniform trans-
mission line give rise to stray capacitances. The influences of such stray
capacitances on the performances of the reconstruction algorithms are
also investigated.
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The disposition of the article is as follows: The scattering problem
and model equations are described in Section 2. In Section 3,
approximate dispersion models for the parameters are derived and
the values of the electrical parameters are given. In Sections 4
and 5, we derive the solutions to the direct scattering problem on
a nonuniform dispersive transmission in the frequency domain and
in the time domain, respectively. In Sections 6 and 7, we derive
the reconstruction algorithms for the inverse scattering problem on
a nonuniform dispersive transmission in the frequency domain and
in the time domain, respectively. Numerical results are presented in
Section 8, and Section 9 contains the conclusions.

2. PROBLEM FORMULATION

Consider a nonuniform transmission line (NTL) of length l, situated
between x = 0 and x = l. The nonuniform line is connected, via
uniform transmission lines at both ends, to a network analyzer (NWA)
or time domain reflectometer (TDR); see Figure 1. The transmission
lines to the left and right have the characteristic impedances Z0 and
Zl, respectively.

Z0, c0

R=G=0

Zl, cl

R=G=0

l x0

Nonuniform line

Z(x), c(x), r(x), g(x), r(x,t), g(x,t)

NWA / TDR

~~

V i1

V r 1V r

V tV i

Figure 1. A dispersive nonuniform transmission line of length l, is
connected to a NWA (or TDR) via nondispersive uniform transmission
lines at both ends.

Assuming that the wave propagation is dominated by the quasi-
TEM mode, we can model the transient signal propagation along the
nonuniform and dispersive transmission line with the transmission line
equations,

∂xV̂ (x, ω) = −
(
R̂ (x, ω) + jωL̂ (x, ω)

)
Î (x, ω) , (1)
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∂xÎ (x, ω) = −
(
Ĝ (x, ω) + jωĈ (x, ω)

)
V̂ (x, ω) , (2)

which in the time domain become

∂xV (x, t) = − (R (x, t) ∗+L (x, t) ∗ ∂t) I (x, t) , (3)
∂xI (x, t) = − (G (x, t) ∗+C (x, t) ∗ ∂t)V (x, t) . (4)

V (x, t) and I (x, t) denote the voltage and current at position x,
respectively. ∂x and ∂t denote differentiation with respect to x and t,
respectively. The symbol ∗ denotes a convolution integral with respect
to time, and should be understood as follows:

f1 (t) ∗ f2 (t) =
∫ t

0
f1

(
t− t′

)
f2

(
t′

)
dt′. (5)

L,C,R and G denote the distributed inductance, capacitance,
series resistance and shunt conductance of the transmission line,
respectively. The hat symbol denotes the Fourier transform of a
function, e.g., L̂ (x, ω) is the Fourier transform of L (x, t). Note that
L (x, t) ,C (x, t) ,R (x, t) andG (x, t) are dispersion kernels in the time
domain transmission line equations

3. DISPERSION MODEL AND FORMULATION OF THE
INVERSE PROBLEM

An example of a strongly dispersive transmission line is a flat band
cable surrounded by moist sand. Since water is highly dispersive,
the effect of the moist sand on the electrical parameters will make
the transmission line dispersive. If a model relating the electrical
parameters and the soil moisture can be determined, the soil moisture
can be determined from electrical measurements on the transmission
line.

To keep the analysis simple and illustrative, we develop a
heuristical dispersion model in the frequency domain. This model is
then transformed to the time domain.

3.1. The Dispersion Model in the Frequency Domain

The flat band cable consists of three strip conductors embedded in a
plastic band; see Figure 2. We assume that the even mode is excited,
i.e., the two outer conductors have the same potentials.

We consider the surrounding medium as a mixture of sand, water
and air. Since there are no pronounced magnetic properties in the
surrounding medium, we make the approximations that the series
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Figure 2. Cross section of the flat band cable in sand.

inductance L̂ is not affected by the surrounding moist soil, and that
the inductance is nondispersive, i.e.,

L̂ (x, ω) = Lb, (6)

where Lb is the inductance of the flat band cable in free space. L̂ (x, ω)
is thus independent of the position x and considered as non dispersive,
in the frequency interval of interest.

In the direction of the band cable, the surrounding medium is
described by a relative permittivity ε̂r (x, ω) that depends on the
position x and the angular frequency ω. The effective permittivity
of this three phase mixture can be determined by means of effective
medium theories; see e.g., [5]. However, in order to avoid a too
complicated material model in the inverse problem, we estimate the
effective relative permittivity from the upper Wiener bound, which is
the extremum obtained when all phases are arranged in parallel with
the direction of the applied field. The upper Wiener bound for our
mixture is

ε̂r (x, ω) = (1− ν) εrock + 1 · ν (1− q (x)) + νq (x) ε̂water (ω) , (7)

where ν is the relative pore-volume, εrock is the relative permittivity
for solid rock (the sand grains), ε̂water (ω) is the frequency dependent
and complex valued relative permittivity for water, and where q (x) is
the relative water content in the pore-volumes. q (x) is defined as the
moisture parameter. Thus, the inverse problem is to determine q as a
function of the position x along the band cable. Using the relation

ε̂water (ω) = 1 + χ̂water (ω) , (8)

where χ̂water (ω) is the electric susceptibility of water, (7) can be written
as

ε̂r (x, ω) = εsand + νq (x) χ̂water (ω) , (9)

where

εsand = (1− ν) εrock + ν, (10)
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is the upper bound for the relative permittivity of dry sand. If possible,
εsand should be determined from a measurement on dry sand, instead
of using (10).

At frequencies below 60 GHz, the electric susceptibility of water
can be described with the Debye model [6]

χ̂water (ω) = ε∞ +
εs − ε∞
1 + jωτd

− 1, (11)

in which εs is the relative permittivity for static fields, τd is the Debye
relaxation time, and ε∞ is the optical response [5]; the contribution
from the fast processes in the medium to the permittivity at moderate
frequencies.

The total shunt capacitance between the inner conductor and the
two outer conductors (even mode) in an insulated band cable embedded
in moist sand (see Figure 2) is estimated with the following formula:

Ĉ (x, ω) = C1 +
C2 · ε̂r (x, ω)C3

C2 + ε̂r (x, ω)C3
. (12)

In (12), C1, C2 and C3 can be interpreted as geometrical part
capacitances for a band cable surrounded with vacuum; C1 is the
capacitance inside the insulator between the conductors; C2 emanates
from the capacitances between the conductors and the surfaces of
the insulator; C3 is the exterior capacitance between the C2 parts;
see Figure 3. The presence of ε̂r (x, ω) in (12) implies a surrounding
medium that differs from vacuum.

C1

2C2 2C2εrC3

Figure 3. Circuit model for the total shunt capacitance.

Using (11) and (9) in (12), it follows that the total capacitance is
described by the Debye model

Ĉ (x, ω) = C∞ (x) +
Cs (x)− C∞ (x)

1 + jωτeff (x)
, (13)
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where

C∞ (x) = C1 +
C2C3 (εsand + νq (x) (ε∞ − 1))
C2 + C3 (εsand + νq (x) (ε∞ − 1))

, (14)

Cs (x) = C1 +
C2C3 (εsand + νq (x) (εs − 1))
C2 + C3 (εsand + νq (x) (εs − 1))

, (15)

τeff (x) = τd
C2 + C3 (εsand + νq (x) (ε∞ − 1))
C2 + C3 (εsand + νq (x) (εs − 1))

. (16)

C∞ is the optical response of the capacitance, Cs is the static
capacitance, and τeff is the effective relaxation time. Note that all
parameters in (13) depend on the local value of the moisture parameter
q (x).

If we allow the parameters in equations (1) and (2) to be complex
valued, there will be a seeming ambiguity in the separation into
dissipative and reactive parameters. For example, if all electrical losses
are attributed to the imaginary part of the complex valued capacitance
Ĉ (x), we have in the view of equation (2) that

Ĉ (x, ω) = Ĉ (x, ω) , Ĝ (x, ω) = 0. (17)

On the other hand, if we require both Ĉ and Ĝ to be real valued we
obtain

Ĉ (x, ω) = Re
{
Ĉ (x, ω)

}
, Ĝ (x, ω) = −ωIm

{
Ĉ (x, ω)

}
. (18)

In the present paper we will use (17), since it yields a shorter notation
in the FD analysis and is more appropriate in a problem involving
dielectric losses only; (18) is appropriate when the losses are dominated
by a static conductivity. The series resistance R̂ is considered to be
negligible, i.e.,

R̂ (x, ω) = 0. (19)

Hence, our frequency domain model for the electrical parameters
of the flat band transmission line is given by equations (6),
(9), (11), (13)–(16), (17) and (19), which involve the parameters
Lb, εsand, ν, q, ε∞, εs, τd, C1, C2 and C3.

3.2. The Dispersion Model in the Time Domain

The time domain model is obtained by taking the inverse fourier
transforms of the parameters in the frequency domain model. We
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obtain

C (x, t) = C∞ (x) δ (t) +
Cs (x)− C∞ (x)

τeff (x)
H (t) exp

( −t
τeff (x)

)
, (20)

L (x, t) = Lbδ (t) , (21)
R (x, t) =G (x, t) = 0, (22)

where δ (t) is Dirac’s delta function and H (t) is Heaviside’s step
function. With G (x, t) = 0 it follows that all electric losses are
included in the dispersion kernel C (x, t) for the capacitance. In
conformance with the ambiguity in the frequency domain, one can
transform from C (x, t) to another capacitance kernel and a nonzero
conductance kernel; see also the discussion in Section 5.

3.3. The Values of the Electrical Parameters

The length of the band cable is chosen to l = 1 m and the characteristic
impedances of the homogeneous transmission lines at x = 0 and x = l,
respectively, are chosen to Z0 = Zl = 50 Ω; see Figure 1.

In the comparison, the values of the electrical parameters are
based on measurements on a flat band cable used for soil moisture
determinations at the Institute for Meteorology and Climate research
(IMK) in Karlsruhe, Germany. The parameters are the following:

C1 = 3.5 pF/m, (23)
C2 = 340 pF/m, (24)
C3 = 16 pF/m, (25)
Lb = 770 nH/m. (26)

For the sand, the relative permittivity and pore volume are taken to
be εsand = 2.5 and ν = 0.45, respectively.

At a temperature of 20◦C, we have for water εs = 80, ε∞ = 5, 27
and τd = 10 ps. However, the relaxation time τd = 10 ps is very
short in comparison with the round trip time, which is around 20 ns
with our choice of electrical parameters. The rise time needed in
the incident pulse for reconstructing a reasonable variation in the
moisture parameter q is therefore much longer than the relaxation
time. Equivalently, the frequencies needed to resolve the variation
in q are much lower than the relaxation frequency in the Debye model.
Thus, the medium reacts almost instantaneously and there will be no
significant effects of the dispersion. Since we expect a much stronger
influence from the dispersion if the relaxation time is comparable with
the round trip time, we test the algorithms with different values of the
Debye relaxation time τd: 10 ps, 1 ns, 10 ns and 1µs.
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4. THE DIRECT PROBLEM IN THE FREQUENCY
DOMAIN

In this section, we solve the direct reflection problem in the frequency
domain. Since the analysis is carried out at a fixed angular frequency ω,
the frequency dependencies of the voltage, current and the parameters
are not written out explicitly. Following the analysis presented in [3],
we collect the transmission line equations (1) and (2) into one ordinary
differential equation (ODE) in a matrix form:

∂x

(
V̂ (x)
Î (x)

)
=

(
0 −R̂ (x)− jωL̂ (x)

−Ĝ (x)− jωĈ (x) 0

) (
V̂ (x)
Î (x)

)

= D̂ (x)

(
V̂ (x)
Î (x)

)
. (27)

4.1. Wave Splitting and the Riccati Equation

We transform the dependent variables from the voltage V̂ and the
current Î to the split voltages, denoted V̂ + and V̂ −, through the
following wave-splitting:(

V̂ + (x)
V̂ − (x)

)
1
2

(
1 Z0

1 −Z0

) (
V̂ (x)
Î (x)

)
S0

(
V̂ (x)
Î (x)

)
, (28)

for which the inverse transformation from split voltages to voltage and
current reads(

V̂ (x)
Î (x)

) (
1 1
Y0 −Y0

) (
V̂ + (x)
V̂ − (x)

)
S−1

0

(
V̂ + (x)
V̂ − (x)

)
, (29)

where Y0 = Z−1
0 . Using (28) and (29) in (27), we obtain the ODE for

the split voltages:

∂x

(
V̂ + (x)
V̂ − (x)

)
S0D̂ (x)S−1

0

(
V̂ + (x)
V̂ − (x)

)
=

(
−â (x) −b̂ (x)
b̂ (x) â (x)

)(
V̂ + (x)
V̂ − (x)

)
, (30)

where

â (x) =
1
2

(
jω

(
Ĉ (x)Z0 + L̂ (x)Y0

)
+

(
Ĝ (x)Z0 + R̂ (x)Y0

))
, (31)

b̂ (x) =
1
2

(
jω

(
Ĉ (x)Z0 − L̂ (x)Y0

)
+

(
Ĝ (x)Z0 − R̂ (x)Y0

))
. (32)
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Using the wave-splitting (28), it follows that V̂ + and V̂ − are the
incident and reflected voltages, respectively, on the uniform line in the
region x < 0, and that the continuity of the voltage and the current
is preserved for the split voltages. Thus, if we define the reflection
coefficient r̂ (x) from the relation

V̂ − (x) = r̂ (x) V̂ + (x) , (33)

r̂ (x) becomes the physical reflection coefficient for a subline
(embedding geometry) [x, l], of the original line [0, l], connected to
a uniform line with characteristic impedance Z0. Using (30) and (33),
we obtain the following Riccati equation for the reflection coefficient:

∂xr̂ (x) = 2â (x) r̂ (x) + b̂ (x)
(
1 + r̂2 (x)

)
. (34)

If the nonuniform part (with an impedance that differs from Z0) recedes
to x = l, we obtain the boundary condition

r̂ (l) =
Zl − Z0

Zl + Z0
, (35)

for the reflection coefficient. Starting from (35) and integrating (34)
in the −x direction, we obtain the reflection coefficient r̂ (x), for every
subline [x, l], and especially r̂ = r̂ (0), which is the reflection coefficient
for the entire nonuniform transmission line.

4.2. Stray Capacitances at the Connections

If there are geometrical differences between the nonuniform line and
the connected uniform lines, we can expect an increased capacitance
in the vicinities of the connection points. Those stray capacitances are
modeled with two lumped capacitors denoted C0 and Cl, respectively.
With the capacitor Cl at x = l, the boundary condition (35) must be
modified to

r̂ (l) =
Zl − Z0 (1 + jωClZl)
Zl + Z0 (1 + jωClZl)

. (36)

With the capacitor C0 at x = 0, the reflection coefficient (as seen from
the supplying line) becomes

r̂ =
r̂ (0)− jωC0Z0 (1 + r̂ (0)) /2

1 + jωC0Z0 (1 + r̂ (0)) /2
, (37)

where r̂ (0) has been determined from integration of (34), starting from
(36).
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5. THE DIRECT PROBLEM IN THE TIME DOMAIN

In this section we derive the mathematical equations needed to
compute the reflected impulse response in the time domain.

In this work we allow the electrical parameters of the nonuniform
transmission line to depend on both position and frequency. However,
since all signals in practice have finite frequency contents, i.e. finite
rise-times, we can separate the dispersion kernels into slowly and
quickly varying parts. The quickly varying parts vary significantly
faster than the signal varies. Hence, we can replace these parts by
direct response terms. For example, let L (x, t) = Lf (x, t) + L̃ (x, t),
where Lf (x, t) is the quickly varying part. The last term of equation
(3) then becomes

L (x, t) ∗ ∂tI (x, t) =
(
Lf (x, t) ∗ ∂t + L̃ (x, t) ∗ ∂t

)
I (x, t)

≈
(
L (x) ∂t + L̃ (x, t) ∗ ∂t

)
I (x, t) , (38)

where

L (x) =
∫ ∞
0
Lf (x, t) dt. (39)

Integration by parts finally yields(
L (x) ∂t+L̃ (x, t) ∗ ∂t

)
I (x, t)

(
L (x) ∂t+L̃ (x, 0)+L̃t (x, t) ∗

)
I (x, t) ,

(40)
where the subscript t denotes the time derivative of the dispersion
kernel and the tilde symbol distinguishes the dispersion kernels from
direct response parameters. L (x) can be interpreted as the value of
the inductance L̂ (x, ωu), where ωu is the upper limit of the frequency
bandwidth of the signal.

In this way, we now rewrite equations (3) and (4) to obtain

∂xV (x, t) =−
(
L (x) ∂t+R (x)+L̃ (x, 0)+R̃ (x, t) ∗+L̃t (x, t) ∗

)
I (x, t) ,

(41)

∂xI (x, t) =−
(
C (x) ∂t+G (x)+C̃ (x, 0)+G̃ (x, t) ∗+C̃t (x, t) ∗

)
V (x, t) .

(42)

From (41) and (42) we notice that R (x), the direct response of
the series resistance, and L̃ (x, 0), the initial value of the inductance
dispersion kernel, are equivalent from a signal propagation point
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of view. The same holds for G (x) and C̃ (x, 0), R̃ (x, t) and
L̃t (x, t), G̃ (x, t) and C̃t (x, t). Thus, we make the following variable
substitutions:

r (x) = R (x) + L̃ (x, 0) , (43)

g (x) = G (x) + C̃ (x, 0) , (44)

r̃ (x, t) = R̃ (x, t) + L̃t (x, t) , (45)

g̃ (x, t) = G̃ (x, t) + C̃t (x, t) . (46)

The parameter r (x) represents resistive losses caused by the series
resistance and dispersive inductance, and g (x) represents losses caused
by the shunt conductance and dispersive capacitance. Likewise, r̃ (x, t)
represents the dispersion in the series resistance and inductance,
while g̃ (x, t) represents the dispersion in the shunt conductance
and capacitance. Finally, defining the transmission line parameters
according to equations (43)-(46) we have

∂x

(
V (x, t)
I (x, t)

)
=

(
0 −L (x) ∂t

−C (x) ∂t 0

) (
V (x, t)
I (x, t)

)

+
(

0 −r (x)− r̃ (x, t) ∗
−g (x)− g̃ (x, t) ∗ 0

)(
V (x, t)
I (x, t)

)

= A (x)
(
V (x, t)
I (x, t)

)
+B (x)

(
V (x, t)
I (x, t)

)
. (47)

The left hand side of equation (47) together with the matrix operator
A (x) determine the characteristics of (47), i.e., the wavefront velocity.
The matrix operator B (x) contains the dissipative and dispersive
terms. Note that B (x) is zero on a uniform, lossless transmission
line with nondispersive parameters. Thus, the B (x) term is zero
on the connected transmission lines at x < 0 and x > l. In
terms of signal propagation the transmission line is characterized by
four nondispersive parameters; L(x), C(x), r(x) and g(x), and two
dispersive parameters; r̃(x, t) and g̃(x, t). It is important to notice that
this means that the dispersion in the inductance and series resistance
cannot be distinguished in any measurements. The same holds for the
dispersion of the capacitance and shunt conductance.

For our specific problem, with the transmission line model given
by equations (20)–(22), the parameters in (47) become

L (x) = Lb, (48)

C (x) = C∞ (x) = C1 +
ε′∞ (x)C2C3

C2 + C3ε′∞ (x)
, (49)
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r (x) = r̃ (x, t) = 0, (50)

g (x) =
Cs (x)− C∞ (x)

τeff (x)

= C2C3

(
ε′s (x)− ε′∞ (x)

C2 + C3ε
′
s (x)

C2 + C3ε′∞ (x)

)
1

τd (C2+ C3ε′∞ (x))
,

(51)

g̃ (x, t) = −Cs (x)− C∞ (x)
τ2
eff (x)

H (t) exp
( −t
τeff (x)

)

= −H (t)
C2C3 (C2 + C3ε

′
s (x))

(τd (C2 + C3ε′∞ (x)))2

·
(
ε′s(x)− ε′∞(x)

C2+C3ε
′
s(x)

C2 + C3ε′∞(x)

)
exp

(
− t (C2+C3ε

′
s(x))

τd(C2+C3ε′∞(x))

)
,

(52)

where ε′s = εsand + q (x) ν (εs − 1) and ε′∞ = εsand + q (x) ν (ε∞ − 1).
With the parameter values given in Subsection 3.3, we see that the

momentaneous response capacitance C (x) varies between 38.4 pF/m
and 60.7 pF/m as q goes from 0 to 1. This corresponds to a change of
the characteristic impedance, Z (x), and wavefront velocity, c (x), from
141.5 Ω to 112.6 Ω and from 1.84·108 m/s to 1.46·108 m/s, respectively.

The shunt conductance g (x) is zero if q (x) = 0 and depending
on τd being 10 ps, 1 ns, 10 ns or 1µs, g (x) is 36,2, 0.362, 0.0362 or
0.36 ·10−3 S/m when q (x) = 1. When τd approaches zero, g (x) goes to
infinity, and at the same time the dispersion kernel g̃ (x, t) approaches
a delta function with area = −g (x). In this limit the transmission
line can be approximated as nondispersive. The corresponding optical
response approximation is

Copt (x) = C1 +
ε′s (x)C2C3

C2 + C3ε′s (x)
, (53)

gopt (x) = 0, (54)
g̃opt (x, t) = 0. (55)

5.1. Wave Splitting

In this section we transform the dependent variables from voltage and
current to the split components, denoted V + and V −. The split
components are uncoupled right and left moving waves on lossless,
uniform and nondispersive transmission lines, i.e., the split components
equals the incoming and outgoing waves at the boundaries of the
nonuniform transmission line, x = 0− and x = l+.



Frequency domain and time domain methods 15

A wave-splitting uncouples the dependent variables in the
principal part of the PDE, i.e., diagonalizes the right hand side of
equation (47), [7, 1]. The simplest wave-splitting, fulfilling these
criteria, is(

V + (x, t)
V − (x, t)

)
1
2

(
1 Z (x)
1 −Z (x)

) (
V (x, t)
I (x, t)

)
≡ S (x)

(
V (x, t)
I (x, t)

)
, (56)

and the inverse transform is(
V (x, t)
I (x, t)

) (
1 1

Y (x) −Y (x)

) (
V + (x, t)
V − (x, t)

)
≡ S−1 (x)

(
V + (x, t)
V − (x, t)

)
,

(57)
where Z(x) and Y (x) are the time domain characteristic impedance
and admittance, respectively:

Z (x) =
1

Y (x)
=

√
L (x)
C (x)

. (58)

The PDE for the split components is given by (47) and (56)–(57) as

∂x

(
V + (x, t)
V − (x, t)

) (
SAS−1+(∂xS)S−1

) (
V + (x, t)
V − (x, t)

)
+ SBS−1

(
V + (x, t)
V − (x, t)

)
,

(59)
which yields

∂x

(
V +

V −

)
+

1
c (x)

∂t

(
V +

V −

)
=

(
α (x) β (x)
γ (x) θ (x)

) (
V +

V −

)

+

(
α̃ (x, t) ∗ β̃ (x, t) ∗
−β̃ (x, t) ∗ −α̃ (x, t) ∗

) (
V +

V −

)
, (60)

where

c (x) =
1√

L (x)C (x)
, (61)

is the wavefront velocity and the nondispersive parameters are given
by

α (x) =
1
2

(Zx (x)Y (x)− g (x)Z (x)− r (x)Y (x)) , (62)

β (x) =
1
2

(−Zx (x)Y (x)− g (x)Z (x) + r (x)Y (x)) , (63)

γ (x) =
1
2

(−Zx (x)Y (x) + g (x)Z (x)− r (x)Y (x)) , (64)

θ (x) =
1
2

(Zx (x)Y (x) + g (x)Z (x) + r (x)Y (x)) , (65)
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where Zx (x) = ∂xZ (x). Finally, the dispersive parameters are given
by

α̃ (x, t) =
1
2

(−g̃ (x, t)Z (x)− r̃ (x, t)Y (x)) , (66)

β̃ (x, t) =
1
2

(−g̃ (x, t)Z (x) + r̃ (x, t)Y (x)) . (67)

Equation (60) is the dynamical equation for the split components
V ±(x, t). If the incident signal is continuous in time, we see from (56)
that the split components are continuous where Z(x) is continuous,
i.e., everywhere except at the boundaries x = 0 and x = l.

5.2. Green’s Functions

The general solution of the scattering problem can be expressed in
terms of the fundamental solution, which involve Green’s functions. In
this section, we derive the partial differential equations (PDEs) and
the initial and boundary conditions for the Green’s functions. We
consider the case where we may have an impedance mismatch at x = l
but no mismatch at x = 0. This is motivated by the fact that a
hard reflection at the far side of the line simplifies a two-parameter
reconstruction from reflected data, while a hard reflection at the near
end only decreases the quality of the information from the reflections
[8, 2]. Furthermore, it is also a minor complication to include a far end
impedance mismatch while it is more complicated to include a near
end mismatch. We thus include the near end mismatch separately
in Subsection 5.3. Note however that we are only considering a one-
parameter inverse problem here, which means that we will not utilize
the hard reflection from the far end in the present inverse method. The
general solution for V ±(x, t) ∈ (0, l), in the case where the impedance
at x = 0 is continuous, is given by [9]

V + (x, t+ τ (0, x)) = a+ (x)V i
1 (t) +G+

cd (x, t) ∗ V i
1 (t) , (68)

V − (x, t+ τ (0, x)) = a− (x)V i
1 (t− 2τx, l)+G−cd (x, t) ∗ V i

1 (t) , (69)

where V i
1 (t) = V + (0+, t) is the incident signal from the left on the

nonuniform transmission line, τ (x1, x2) is the wavefront travel time
from x1 to x2:

τ (x1, x2) =
∫ x2

x1

dx
c (x)

. (70)

a+ (x) and a− (x) describe the attenuation of the wavefront traveling
to the right and left, respectively. The subscript cd on the Green’s
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functions refers to that the impedance is continuous and discontinuous
at the near and far end, respectively.

The dynamical equations for the Green’s functions, jump and
boundary conditions etc., are derived by substituting (68) and (69)
into (60) and noting that terms like (· · ·) ·V i

1 (t) , (· · ·) ·V i
1 (t− 2τ (x, l))

and (· · ·) ∗ V i
1 (t) are independent since V i

1 (t) is arbitrary. The PDEs
for G±cd are found to be

∂x

(
G+

cd

G−cd

)
− 2
c (x)

∂t

(
0
G−cd

)
=

(
α (x) β (x)
γ (x) θ (x)

) (
G+

cd

G−cd

)

+

(
α̃ (x, t) β̃ (x, t)
−β̃ (x, t) −α̃ (x, t)

)
∗

(
G+

cd

G−cd

)

+a+ (x)
(

α̃ (x, t)
−β̃ (x, t)

)
+a− (x)

(
β̃ (x, t− 2τ (x, l))
−α̃ (x, t− 2τ (x, l))

)
, (71)

where the attenuation factors are given by

a+ (x) = exp
(∫ x

0
α

(
x′

)
dx′

)
, (72)

a− (x) = rla
+ (l) exp

(∫ x

l
θ

(
x′

)
dx′

)
, (73)

where rl is the reflection coefficient at x = l:

rl =
Zl − Z (l−)
Zl + Z (l−)

. (74)

Note that the attenuation factor a−(x) includes a factor rla+(l), which
is the relative amplitude of the reflected wavefront at x = l. The
boundary value of a+ at x = 0 is 1 since the wavefront has not
undergone any attenuation there.

We also obtain the following jump and boundary conditions for
the Green’s functions:

G−cd
(
x, 0+)

= −1
2
c (x) a+ (x) γ (x) , (75)

∆G+
cd (x, 2τ (x, l)) =

1
2
c (x) a− (x)β (x) , (76)

G−cd
(
l−, t

)
= rlG

+
cd

(
l−, t

)
, (77)

G+
cd

(
0+, t

)
= 0, (78)

where ∆f (x, t) = f (x, t+) − f (x, t−). The boundary condition
(78) is given directly by equation (68), since V i

1 (t) = V + (0+, t).
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Likewise, equation (77) is derived from (68) and (69) and the fact
that V − (l+, t) = 0 (there is no incident wave from the right), using
continuity of the voltage and the current.

Equation (71) together with (75)–(78) can accurately and
efficiently be solved numerically with the method of characteristics.
The jump condition (76) has to be used in the numerical program
since it constitutes a discontinuity in G+

cd along the characteristic
line of G+

cd. There are also discontinuities in G+
cd across the

characteristic line (x, 2τ (0, l)), and in G−cd along the characteristic line
(x, 2τ (0, l) + 2τ (x, l)). However, since these discontinuities occur along
the respective characteristic lines, it is not necessary to treat them
separately in the numerical program. But, to achieve better accuracy
one should include the analytical solution of these discontinuities. By
integrating equation (15) along these characteristic lines, using (72)–
(78), we obtain

∆G+
cd (x, 2τ (0, l))= −1

2
a+ (x) c (0) a− (0)β (0) , (79)

∆G−cd (x, 2τ (0, l)+2τ (x, l))= rl
a−(x)
a−(l)

(
−1

2
a+(l) c(0)a−(0)β(0)

)
. (80)

5.3. The Direct Problem

The direct problem is to compute the transient response of the
nonuniform transmission line from an incident delta pulse from the
left (x < 0). In the previous subsection, we derived the PDEs and
boundary conditions needed to compute the Green’s functions in the
domain x ∈ (0, l) , t > 0. In this subsection, we show how to obtain the
transient response of the nonuniform transmission line with impedance
mismatches at both ends.

The transient response for the nonuniform transmission line with
an impedance mismatch at x = l only, is given by

V r
1 (t) = b−V i

1 (t− 2τ) +Rcd (t) ∗ V i
1 (t) , (81)

where τ = τ (0, l) is the one-way travel time, V r
1 (t) = V −(0+, t) and

V i
1(t) is the incident wave at x = 0+, as shown in Figure 1. The

reflection factor b−, and the reflection kernel Rcd(t), are given by

b− = a− (0) , (82)

Rcd(t) = G−cd
(
0+, t

)
. (83)
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This is readily derived from equations (68) and (69). The transient
response including the impedance mismatch at x = 0 is given by

V r (t) =
∞∑
k=0

r+k V
i (t− k · 2τ) +Rdd (t) ∗ V i (t) , (84)

where r+k is the reflection coefficients of undistorted directly propagated
pulses, which arise because of multiple reflections between the
impedance discontinuities at x = 0 and x = l. V i (t) = V + (0−, t)
is the incident wave from the left (x < 0), and V r (t) = V − (0−, t) is
the reflected wave at x = 0−.

We have the equations to compute the transient response, given by
(82)–(83). But, since we are studying the scattering problem described
by (84), we need to transform the data in (82)–(83) to the latter case.
This can be done by utilizing the relation between V i and V r, and V i

1
and V r

1 , which is(
V r (t)
V i

1 (t)

) (
r0 1− r0

1 + r0 −r0

) (
V i (t)
V r

1 (t)

)
, (85)

where r0 is the reflection coefficients at x = 0:

r0 =
Z (0+)− Z0

Z (0+) + Z0
. (86)

From (85) we find that(
V i

1 (t)
V r

1 (t)

)
=

1
1− r0

( −r0 1
1 −r0

) (
V i (t)
V r (t)

)
. (87)

The relation from Rcd(t) to Rdd(t) is found from equations (81) and
(84) by substituting (V i(t), V r(t)) for (V i

1(t), V
r
1 (t)) ((87) in (81)), and

using the fact that V i(t) is arbitrary. For the reflection data we obtain

r+0 = r0, (88)

r+k =
(
1− (r0)

2
)
b−

(
−r0b−

)k−1
, k ≥ 1, (89)

Rdd (t) + r0Rcd (t) ∗Rdd (t) =
(
1− (r0)

2
)
Rcd (t)− r0b−Rdd (t− 2τ)

−r0
∞∑
k=1

r+k Rcd (t− k · 2τ) . (90)

Hence, to compute the impulse response (reflection only) for the
transmission line with impedance mismatches at both ends, we begin
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by computing the Green’s functions for the transmission line with
impedance mismatch at x = l only. For this we use equations (70)
to (80) and the method of characteristics [1]. From this we have the
reflection kernel Rcd (t), the reflection factor b− and the round trip
delay 2τ (equations (82) and (83)).

Finally, to compute the reflection kernel Rdd (t) we first determine
the reflection factors r+k from equations (88) and (89) and then solve the
integral equation (90). All these procedures are well posed operations.

6. THE INVERSE PROBLEM IN THE FREQUENCY
DOMAIN

In this section, we present the frequency domain approach to the
inverse problem of determining the moisture parameter q (x), in the
interval x ∈ [0, l]. Define an objective functional as follows:

J (q) =
ωmax∑
ω=ωmin

|r̂ (0, ω)− r̂m (ω)|2 , (91)

where r̂m (ω) is the measured reflection coefficient, at a certain number
of frequencies in the interval [ωmin, ωmax]. r̂ (0, ω) is the calculated
reflection coefficient, without taking into account the influences from
stray capacitances at the connection points; see Subsection 4.2. To
solve the inverse problem iteratively with an optimization approach,
we need the gradient of the objective functional (91) with respect to
the moisture parameter q (x). To calculate the gradient, we essentially
follow the approach described in [3].

At each frequency, a small perturbation δq (x) in the moisture
profile q (x) results in a small perturbation δ̂r (x, ω) in the reflection
coefficient r̂ (x, ω). Neglecting higher order terms, the ODE for δ̂r
follows from (34) as

∂xδ̂r = 2
(
â+ b̂r̂

)
δ̂r + 2r̂δ̂a+

(
1 + r̂2

)
δ̂b, (92)

where, from (17), (31) and (32), we have (L̂ and R̂ do not depend on
q)

δ̂a (x, ω) = δ̂b (x, ω) =
jω
2
Z0

ˆδC (x, ω) , (93)

From (35), it follows that the boundary condition for δ̂r at x = l is

δ̂r (l, ω) = 0. (94)
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The resulting perturbation in the objective functional becomes

δJ (q) = 2
ωmax∑
ω=ωmin

(r̂ (0, ω)− r̂m (ω))⊕ δ̂r (0, ω) , (95)

where ⊕ denotes the complex conjugate. Introducing a dual function
û (x, ω), subject to the following boundary condition at x = 0:

û (0, ω) = (r̂ (0, ω)− r̂m (ω))⊕ , (96)

it follows from (96) and (94) that

δJ (q) = 2Re
ωmax∑
ω=ωmin

û (0, ω) δ̂r (0, ω)

= −2
∫ l

0
Re

ωmax∑
ω=ωmin

(
∂xû · δ̂r + û · ∂xδ̂r

)
dx. (97)

Next, substituting (92) for ∂xδ̂r in (97) and using (93) we obtain

δJ (q) = −
∫ l

0
Re

ωmax∑
ω=ωmin

(
2

(
∂xû+2

(
â+b̂r̂

)
û
)
δ̂r+jωZ0û(1+r̂)2 ˆδC

)
dx.

(98)
Now, if (for each frequency) the dual function û (x, ω) obeys the ODE

∂xû (x) + 2
(
â (x) + b̂ (x) r̂ (x)

)
û (x) = 0, (99)

we have from (99) and (98) that the perturbation in the objective
functional becomes

δJ (q) = −
∫ l

0
dxRe

ω=ωmax∑
ω=ωmin

jωZ0û (x, ω) (1+r̂ (x, ω))2 ˆδC (x, ω) . (100)

Finally, using that to the first order

ˆδC (x, ω) =
∂Ĉ

∂q
(x, ω) δq (x, ω) , (101)

and identifying (100) as the inner product

δJ (q) =
∫ l

0

∂J

∂q
(x) · δq (x) dx, (102)
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the gradient is identified as

∂J

∂q
(x) = −Re

ω=ωmax∑
ω=ωmin

jωZ0û (x, ω) (1 + r̂ (x, ω))2
∂Ĉ

∂q
(x, ω) . (103)

where it follows from (12) and (9) that

∂Ĉ

∂q
(x, ω) =

C2
2C3

(C2+ε̂r (x, ω)C3)
2 ·
∂ε̂r
∂q

(x, ω) =
νC2

2C3χ̂water (ω)
(C2+ε̂r (x, ω)C3)

2

(104)
With the gradient available, the objective functional J is diminished
with a standard conjugate gradient method [10]. Note that the dual
function û (x, ω), that appears in the expression (103) for the gradient,
is determined by integrating the ODE (99) in the +x direction starting
from the boundary condition (96).

The reconstruction algorithm was implemented numerically with
the Matlab software, on a 180 MHz PowerPC. The time needed for a
reconstruction of q (x), starting from the initial guess q (x) = 0, was
found to be around 15 minutes.

7. THE INVERSE PROBLEM IN THE TIME DOMAIN

In this section, we present the time domain approach to the inverse
problem of reconstructing the soil moisture profile q (x) from a
measurement of the reflected signal V r (t) due to an incident pulse
V i (t). The proposed method is a mixture of an exact analysis and an
optimization approach. The optimization approach is used to compute
an approximation of the impulse response of the transmission line. An
exact inverse method is then used to reconstruct the moisture profile
q (x) from the reflection impulse response. The inverse method is exact
in the sense that no mathematical approximations are made, but the
numerical implementation involves naturally some approximations.

As mentioned in Section 5, the impedance mismatch at x = 0 does
not contribute with any useful information to the inverse problem. The
impedance mismatch only degrades the quality of the useful signal,
which originates from continuous reflections of the incident signal as it
propagates along the transmission line from x = 0 to x = l. When the
incident signal has propagated through the transmission line, enough
information to reconstruct the moisture parameter can be found in
the corresponding reflections. That is, we only need one round trip of
reflection data to reconstruct the moisture parameter q (x) , x ∈ [0, l].
In cases where there are significant hard reflections at both x = 0 and
x = l, it is advantageous to use as few round trips of data as possible.
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This is because the hard reflections may contain more energy than
the useful signals (continuously scattered) do. As each hard reflection
introduces numerical errors in the algorithm, it is clear that one should
use data containing as few hard reflections as possible, i.e. only use
one round trip of data. In the frequency domain this would mean using
frequency intervals of 1

2τ , where τ is the one round trip propagation
time on the transmission line.

The first step in the reconstruction procedure is to deconvolve
the reflection data with the incident pulse to obtain the reflection
impulse response. However, since the impedance mismatch at x = 0
only hides the useful signals, we want to de-embed this mismatch
from the reflection data, to obtain the reflection impulse response as
if the impedance was continuous at x = 0. In Subsection, 7.1 we
outline how to deconvolve and de-embed the reflection data by means
of optimization. In Subsection 7.2, we then outline the procedure
to reconstruct the moisture parameter from the reflection impulse
response. The input data to the inverse method is the de-embedded
and deconvolved data obtained from the procedure described in
Subsection 7.1.

7.1. De-Embedding of the Transient Response

In this subsection, we show how to deconvolve and de-embed the
reflection data in a single procedure. The inputs are V i (t) and
V r (t), and the outputs are Rcd (t) , r0, b− and 2τ . Rcd (t) is the
reflection kernel one would obtain from a reflection measurement on a
transmission line with matched impedance at x = 0.

We begin by deriving the equation for determining Rcd (t) , b−, r0
and τ from V i (t) and V r (t). Equation (85) yields (see also Figure 1)

(1− r0)V i
1 (t) = V i (t)− r0V r (t) , (105)

(1− r0)V r
1 (t) = V r (t)− r0V i (t) . (106)

By substituting these expressions for V i
1 and V r

1 into (81), we get

V r (t)− r0V i (t) = b−
(
V i (t− 2τ)− r0V r (t− 2τ)

)
+Rcd (t) ∗

(
V i (t)− r0V r (t)

)
. (107)

Rcd (t) , b−, r0 and τ are determined from (107) in three steps. First,
r0 is determined by matching the very initial time traces of V r and
V i, which correspond to the hard reflection at x = 0. Then b− and τ
are determined from the first hard reflection that arrives from x = l,
i.e., by matching the signals in a short time interval after t = 2τ .
Finally, Rcd (t) is determined by deconvolving equation (107) with
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a time domain optimization procedure. We have chosen to use a
conjugate gradient method [10] to minimize the following cost function:

J r =
∫ T

0

(
Rcd (t) ∗ V i

2 (t)− V m
R (t)

)2 dt, (108)

where T is the time period for which Rcd (t) is to be determined, and
where

V i
2 (t) = V i (t)− r0V r (t) , (109)

V m
R (t) = V r (t)− r0V i (t)− b−

(
V i (t− 2τ)− r0V r (t− 2τ)

)
. (110)

The optimization is easily done by using the exact expression for the
gradient of J r with respect to Rcd (t):

J r
Rcd

(
t′

)
=
δJ r

δRcd

∫ T

t′

(
Rcd (t) ∗ V i

2 (t)− V m
R (t)

)
V i

2

(
t− t′

)
dt. (111)

Thus, the impulse response, consisting of Rcd (t) , b− and τ , is obtained
by deconvolving equation (107). By deconvolving this equation, the
impedance mismatch at x = 0 is de-embedded from the transient
response in the same step as the impulse response is determined.

7.2. Reconstruction Procedure

In this subsection, we outline the time domain inverse method to
reconstruct q (x) from the one sided reflection impulse response:
Rcd (t) , b− and 2τ . To determine q (x), we also need the reflection
factor r0 and the dispersion model of the flat band cable in moist soil,
(48)–(52) (or in the optical approximation case, (48), (50) and (53)–
(55)).

The reconstruction is based on equation (75) for the initial value
G−cd (x, 0+). If the initial value of G−cd is known, the spatial derivative
of q (x) can be determined by using equations (75), (72), (64), (61),
(58), (49) and (51). The relation between G−cd (x, 0+) and dq (x) /dx
is somewhat complicated expression-wise, but straightforward to
compute numerically. Hence, from G−cd (x, 0+), we can solve for
dq (x) /dx, and by integration we have q (x).

The moisture profile q (x) is reconstructed from x = 0 to x = l by
the following procedure:

1. Deconvolve and de-embed the reflection data V i (t) and V r (t) in
order to obtain Rcd (t) , b−, 2τ and r0 (cf. Subsection 7.1)
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2. Space and time are discretized as (x, t) = (xi, j · dt), where dt =
2τ/n and i ∈ [0, n]. Space is discretized nonuniformly whereas
time is discretized uniformly. This follows from the method of
characteristics; cf. Section 5 or ref. [1].

3. i = 0 : Set initial values at x = 0: xi = 0, Zi =
Z0 (1 + r0) / (1− r0) , a+

i = 1, G−cd (i, j) = Rcd (j · dt) and
G+

cd (i, j) = 0. Finally, Li, dLi/dx and ri are given by (48) and
(50).

4. i = 0 : Compute qi from Zi and Li using (49). Then compute
dqi/dx from G−cd (i, 0) using equations (75), (72), (64), (61), (58),
(49) and (51). This determines all the electrical parameters at
x = 0.

5. i = i + 1 : Estimate xi and the electrical parameters at xi from
the parameter values at xi−1.

6. Compute G±cd (i, 0) from the electrical parameter values at xi and
xi−1, and G±cd (i− 1, [0, 1]).

7. Compute dqi/dx from G−cd (i, 0) (cf. step 4 above). With the new
dqi/dx, recalculate qi. Then, based on the new qi, recalculate the
electrical parameters, as well as xi.

8. Repeat steps 6 and 7 a few times to improve the accuracy of the
reconstructed qi.

9. Compute G±cd (i, [1, n− 1])
10. If xi < l, go to step 5, else end.

The above procedure involves some interaction in determining
b−, r0 and 2τ in the deconvolution/de-embedding procedure. However,
it turns out that the reconstruction is insensitive to errors in these
parameters. b− is needed in the de-embedding procedure, but not
later in the reconstruction of q (x). Hence, the choice of b− is not
critical. b− does however influence the accuracy of q close to x = l.
Likewise, the determination of the round trip delay 2τ is not crucial.
This time only sets the limit for how far into the transmission line q can
be determined. A somewhat too large value is therefore to prefer over
a too small value. r0 is the most important parameter. An accurate
determination of r0 improves the reconstruction of q at x = 0. Since
the reconstruction procedure is sequential and starts at x = 0, one
expects it to be important to have a small error at x = 0. However, it
turns out that the method is not very sensitive to errors in r0, but, the
larger the error in r0 is, the larger the erroneous region of q at x = 0
becomes.

The numerical implementation of the inverse method followed
second order approximations. Because of the convolution integrals
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in the PDEs, the computational load increases as n3 as the number
of discretization intervals increases. For n in the order of 1000,
the computational time is in the order of 10 seconds for a 180 MHz
PowerPC. For a realistic reconstruction that aims at a resolution along
the transmission line of 10 to 100 steps, the computational time is less
than one second.

8. NUMERICAL RESULTS

First we present a comparison between the solutions to the direct
problem when using the frequency domain and time domain direct
solvers, respectively. Next, we present the reconstructions obtained
when using the frequency domain and time domain inverse solvers,
respectively, on simulated noisy measurement data generated in the
frequency domain. After that we present the reconstructions obtained
when using the frequency domain and time domain inverse solvers,
respectively, on simulated noisy measurement data generated in the
time domain. Finally, we present the reconstructions obtained
when using the frequency domain and time domain inverse solvers,
respectively, on simulated clean measurement data generated in the
frequency domain but with stray capacitances at the endpoints of the
band cable. In all numerical examples, we consider four different values
of the Debye relaxation time τd: 10 ps, 1 ns, 10 ns and 1µs.

8.1. Comparisons of the Solutions Obtained to the Direct
Problem Using Frequency and Time domain Direct Solvers,
Respectively

In the time domain, the reflection kernels were computed as described
in Section 5. For the shortest relaxation time of 10 ps, the computation
became very slow since the resolution of the dispersion kernel then
required a very fine discretization in the time variable. To circumvent
this problem, the optical response approximation, described by (53)–
(55), was used in the time domain instead of the dispersion model (20),
when τd = 10 ps. The reflected voltages due to an incident voltage in
the form of a gaussian pulse with a peak value of 1 V and a half width of
1 ns were then obtained through convolution with the reflection kernels.
In the frequency domain, the corresponding reflection coefficients were
calculated, as described in Subsection 4.1, for frequencies from 0 Hz in
step of 10 MHz up to 3 GHz, where the spectrum of the gaussian pulse is
diminished effectively. The reflected voltages, obtained by multiplying
the reflection coefficients with the spectrum of the gaussian pulse, were
then transformed to the time domain by means of an inverse fast fourier
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transform (IFFT) in which we used a sampling frequency of 60 GHz.
The reflected voltages at x = 0− are depicted in Figure 4, where we
in Figures 4(b), 4(c) and 4(d) see an excellent agreement between the
results obtained for τd = 1 ns, τd = 10 ns and τd = 1µs, respectively
(the incident pulse has its peak value at x = 0− when t = 3 ns). In
Figure 4(a) (τd = 10 ps) we see small discrepancies for the later times.
This is because an optic response approximation was used in the time
domain.

8.2. Reconstructions Using Noise Contaminated Data
Generated in the Frequency Domain

The frequency domain direct solver was used to generate clean
reflection data in the interval 0 Hz to 1 GHz with 10 MHz spacing
between the frequencies. To simulate noise contaminated measurement
data, gaussian noise with a zero mean value and a standard deviation
of 0.025 was added on both the real and the imaginary part of the
calculated reflection coefficient.

To avoid problems with local minima in the objective functional
(91), when using the frequency domain method, the initial minimi-
zation must be carried out using frequencies up to around 100 MHz
only which yields a rough initial reconstruction. Then one succes-
sively incorporates higher frequencies to obtain a more detailed
reconstruction. The reconstructions obtained for the moisture
parameter q (x) when using the FD method are shown in Figure 5,
where we notice good agreements with the true profile except for the
case when τd = 1 ns. A probable explanation for this is that we have
very high losses in the region where q (x) 
= 0 when τd = 1 ns. Waves
with higher frequencies will then suffer a strong attenuation and can
consequently not reach into the far end region of the transmission line;
cf. the longer period in the oscillations in the reconstructed profile in
the region x > 0.4 m.

The frequency domain data were then transformed to the time
domain by means of IFFT. To obtain a more localized incident pulse
in the time domain, the FD data was multiplied with the following
Kaisser-Bessel filter function, before the IFFT:

H (f) =
sin

(√(
πf
f0

)2
− β2

)

I0 (β)
√

πf
f0

2 − β2

, (112)

where we used f0 = 1 GHz and β = 0.1.
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(a) Relaxation time τ = 10 ps

(b) Relaxation time τ = 1 ns Relaxation 

(c) Relaxation time τ = 10 ns Relaxation 

(d) Relaxation time τ = 1 µs Relaxation 

Figure 4. The reflected voltage as a function of time, for different
values of the relaxation time τd in the Debye model. The incident
voltage is a gaussian pulse with a peak value of 1 V and half width
of 1 ns. The solid lines depict the results obtained by using the time
domain method and the dashed lines depict the results obtained from
an inverse discrete fourier transform of the data generated with the
frequency domain method.
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Figure 5. Frequency domain reconstruction of the moisture parameter
q (x) using artificial noisy data generated in the frequency domain; the
true profile is given by solid lines and the reconstructed profiles are
given by dashed lines.

First, the transient response of the band cable was de-embedded
from the TD data, as described in Subsection 7.1. The results of
the de-embedding are shown in Table 1. After that, the moisture
profile q (x) was reconstructed using the TD inversion algorithm. The
reconstructions obtained are shown in Figure 6. In conformance with
the results from using the FD method, we see in Figure 6 good
agreements with the true profile except for the case when τd = 1 ns,
where the TD inverse code fails at x = 0.4 m because the directly
propagating signal becomes too weak in that region. The TD inverse
algorithm explicitly uses the amplitude of the directly propagating
signal. Hence, if that is too small the algorithm becomes sensitive
to numerical and measurement errors. The amplitude of the hard
reflection from x = l indicates the amplitude of the received useful
signal from the far end of the line. In Table 2, we see that the first
hard reflection, r+1 , from the far end of the line is negligibly small
for τd = 1 ns. For τd = 10 ps the exact r+1 is actually even smaller
and a reconstruction would therefore seem to be impossible. However,
since we aim for a reconstruction resolution of about 5 cm, we only
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Figure 6. Time domain reconstruction of the moisture parameter
q (x) using IFFT transformed artificial noisy data generated in the
frequency domain; the true profile is given by solid lines and the
reconstructed profiles are given by dashed lines.

Table 1. Values used in the deconvolution and de-embedding.

Debye relaxation time τd 10 ps 1 ns 10 ns 1µs

Estimated r0 0.473 0.481 0.481 0.477

Estimated b− -0.3 0 -0.106 -0.47

Estimated roundtrip time 2τ 18.1 ns 25.0 ns 11.9 ns 11.9 ns

Time intervals in reconstructed Rcd 250 250 250 33

Time intervals used in deconvolution 500 500 500 500

need an incident pulse width of around 1 ns. The pulse width is
hence long as compared with the relaxation time of 10 ps, and the
optical response approximation can therefore be assumed valid. This
assumption is verified by the good agreement in the direct problem as
shown in Figure 4. Using the optical response approximation, we get
the reflection factor r+1 as shown in Table 2.

In Figure 4, one can clearly see that the reflected signal for the
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Table 2. Reflection factors obtained in the TD direct problem for
different relaxation times.

τd r+0 r+1 r+2 b−

10 ps 0.478 -0.369 -0.0842 -0.478
1 ns 0.478 −8.89 · 10−8 −4.89 · 10−15 −1.15 · 10−7

10 ns 0.478 -0.0834 -0.00400 -0.104
1µs 0.478 -0.363 -0.0817 -0.471

case with τd = 1 ns contains no visible hard reflection from x = l,
whereas such reflections are seen for the other relaxation times. What
is interesting to notice is that the reconstruction problem in the 1 ns
case is also seen in the FD method, which do not explicitly use the
directly propagating signals. It can thus be concluded that a parameter
reconstruction is based on having a directly propagating signal that
resolves the spatial variation via reflections.

8.3. Reconstructions Using Noise Contaminated Data
Generated in the Time Domain

The time domain direct solver was used to generate clean reflection
data. To simulate noise contaminated measurement data, gaussian
noise with a zero mean value and a standard deviation of 0.005 ·
max {V i} was added on both V i and V r.

The results after de-embedding the transient response from the
TD data are shown in Table 3. After that, the moisture profile q (x) was
reconstructed using the TD inversion algorithm. The reconstructions
obtained are shown in Figure 7, where we see good agreements with
the true profile except for the case when τd = 1 ns, in which the
TD algorithm was interrupted by numerical errors (cf. the results in
Figure 6 from the previous subsection). The overall quality of the
reconstructions obtained using the TD algorithm on TD generated
data is slightly better than what was obtained when using the TD
algorithm on IFFT transformed FD data.

The noise contaminated TD data were transformed to the
frequency domain by means of FFT (with no filtering in advance). The
reconstructions obtained when using the frequency domain method are
shown in Figure 8. In conformance with the results from using the
TD method, we see in Figure 8 good agreements with the true profile
except for the case when τd = 1 ns, where the FD algorithm cannot
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Figure 7. Time domain reconstruction of the moisture parameter
q (x) using artificial noisy data generated in the time domain; the true
profile is given by solid lines and the reconstructed profiles are given
by dashed lines.

Table 3. Values used in the deconvolution and de-embedding.

Debye relaxation time τd 10 ps 1 ns 10 ns 1µs

Estimated r0 0.477 0.477 0.478 0.478

Estimated b− -0.45 0 -0.1 -0.47

Estimated roundtrip time 2τ 18.2 ns 19.6 ns 11.9 ns 11.8 ns

Time intervals in reconstructed Rcd 25 35 25 25

Time intervals used in deconvolution 500 500 500 500

reproduce the sharp slope in the profile around x = 0.75 m (cf. the
results in Figure 5 from the previous subsection). The reconstructions
obtained using the FD algorithm on TD generated data that has been
transformed with FFT exhibit slightly more oscillations superimposed
on the true profile, but are otherwise of the same quality as the ones
obtained when using the FD algorithm on FD generated data.
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Figure 8. Frequency domain reconstruction of the moisture parameter
q (x) using FFT transformed artificial noisy data generated in the time
domain; the true profile is given by solid lines and the reconstructed
profiles are given by dashed lines.

8.4. Reconstructions Using Frequency Domain Data
Generated with Stray Capacitances at the Endpoints of the
Band Cable

The frequency domain direct solver was modified, as described in
Subsection 4.2, to generate clean reflection data influenced by two
stray capacitances C0 = Cl = 2 pF connected at the endpoints of the
band cable; data were then generated from 0 Hz to 1 GHz with 10 MHz
spacing. The reconstructions obtained for the moisture parameter q (x)
when using the frequency domain method are shown in Figure 9. The
result for τd = 10 ps shows good agreement, but the influence of the
stray capacitance C0 at x = 0 m can be seen clearly, since q(x = 0)
becomes rather high. The results when using the longer relaxation
times are heavily distorted by oscillations superimposed on the true
profile and the influence of C0 at x = 0 m can be seen clearly, since
q(x = 0) ≥ 1 (which is unphysical with the model used). For all
relaxation times considered, there is no noticeable influence of the
capacitance Cl at x = 1 m, in terms of an increased value of q(x = 1).
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Figure 9. Frequency domain reconstruction of the moisture parameter
q (x) using artificial clean data generated in the frequency domain but
with stray capacitances at the endpoints of the band cable; the true
profile is given by solid lines and the reconstructed profiles are given
by dashed lines.

The TD data was obtained by IFFT after the FD data had
been multiplied with the filter function (112). The results after
de-embedding the transient response are shown in Table 4. The
reconstructions obtained after using the TD algorithm on the transient
responses are shown in Figure 10. The result for τd = 10 ps shows good
agreement, with no visible influences from the stray capacitances in
terms of increasing values of q near the endpoints. For τd = 1 ns the
TD algorithm once again fails due to numerical imbalance. For the
relaxation times, τd = 10 ns and τd = 1µs, there are no increases
of q near the endpoints and no oscillations, which were the cases
when using the FD algorithm, but the reconstructed profiles become
shifted downwards in comparison with the true profile, especially when
τd = 1µs.
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Figure 10. Time domain reconstruction of the moisture parameter
q (x) using IFFT transformed artificial clean data generated in the
frequency domain but with stray capacitances at the endpoints of the
band cable; the true profile is given by solid lines and the reconstructed
profiles are given by dashed lines.

Table 4. Values used in the deconvolution and de-embedding.

Debye relaxation time τd 10 ps 1 ns 10 ns 1µs

Estimated r0 0.505 0.515 0.515 0.505

Estimated b− -0.35 0 -0.11 -0.49

Estimated roundtrip time 2τ 18.0 ns 18.0 ns 11.8 ns 11.7 ns

Time intervals in reconstructed Rcd 40 30 40 40

Time intervals used in deconvolution 500 500 500 500
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9. DISCUSSION AND CONCLUSIONS

In this paper, we have compared the FD and TD direct and inverse
algorithms for a nonuniform and dispersive transmission line, for the
special case of reconstructing the relative water content in moist
sand. The influence of stray capacitances at the end points has been
investigated also.

Regarding that the TD algorithm was implemented numerically
with compiled C-code whilst the FD algorithm was implemented with
slower interpreting Matlab code, our conclusion is anyway that the
TD algorithm is computationally faster than the FD algorithm. On
the other hand, at present we have not automated the determination of
Rcd, r0, b

− and 2τ . These parameters are thus determined interactively
with the help of a program. In difficult cases, this process may require
some skills. However, b− is not very important at all and the TD
method is robust to errors in both r0 and 2τ .

The conclusion from the comparisons of the direct solvers is
that both direct solvers work fine, and that there is no difference in
generating the data in either domain. Hence, there is no reason to by
default use an inverse analysis in the same domain as the measurement
is performed in as long as the band width in the frequency domain
allows a transformation to the time domain and vice versa.

When reconstructing from FD generated data, a general impres-
sion is that the FD and TD inverse methods are equally accurate.
It was interesting to notice that both method failed at x = 0.4 m in
the case when τd = 1 ns. Since the TD method is based on an exact
algorithm, the reconstruction fails completely at x > 0.4 m. In the
FD method, which is based on optimization, the algorithm is robust
against high values of the loss parameters, but the high frequency
components of the gradient then become attenuated which prevents
from reconstructing rapidly varying parameters. When reconstructing
from TD generated data, the reconstructions obtained using the TD
method exhibit less ripple than the ones obtained from the FD method,
which might be a consequence of that the TD method uses one round
trip of data only and thus suppresses errors due to multiple reflections
between x = 0 and x = l. When the artificial measurement data
were generated with stray capacitances at the end points of the band
cable, we obtained significant errors in the reconstructed profiles when
using both the FD and TD inversion algorithms, respectively. Thus, it
is of crucial importance that the stray capacitances can be estimated
accurately, in order to be incorporated into the FD and TD inversion
algorithms, respectively.
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