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HOMOGENIZATION OF SPHERICAL INCLUSIONS
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Abstract—The homogenization of cubically arranged, homogeneous
spherical inclusions in a background material is addressed. This is
accomplished by the solution of a local problem in the unit cell.
An exact series representation of the effective relative permittivity of
the heterogeneous material is derived, and the functional behavior
for small radii of the spheres is given. The solution is utilizing
the translation properties of the solutions to the Laplace equation
in spherical coordinates. A comparison with the classical mixture
formulas, e.g., the Maxwell Garnett formula, the Bruggeman formula,
and the Rayleigh formula, shows that all classical mixture formulas
are correct to the first (dipole) order, and, moreover, that the Maxwell
Garnett formula predicts several higher order terms correctly. The
solution is in agreement with the Hashin-Shtrikman limits.
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1. INTRODUCTION

The electromagnetic homogenization problem of materials is to find the
macroscopic electromagnetic response of a material with a microscopic
structure. If the microscopic structure is periodic with periodicity ε,
the homogenization is to find the effective material parameters as the
periodicity ε → 0, see Figure 1. The unit cell of the problem with
periodicity ε is denoted the Y ε-cell, see Figure 1.

Y -cellε

ε

Figure 1. A material with a microstructure with periodicity ε and the
Y ε-cell. The size of the periodicity ε is decreasing from left to right.

This homogenization problems is well studied in the mathematical
literature, see e.g., [1, 2, 4, 7, 15, 18] for excellent reviews on the subject.
Recent advances in the field of two-scaled convergence [12] have proven
valuable in this context. The generic problem is an electrostatic
problem (local problem) in the reference unit cell Y with sides of unit
length. The unit cell Y ε-cell is the Y -cell scaled by ε. Usually the
problem is formulated in the weak sense and a solution of the problem
is sought by the means of the finite element method (FEM).

In this paper, we are concerned with the homogenization problem
of a material consisting of two different isotropic materials (two-phase
material). More precisely, our problem is to find the effective relative
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permittivity for material consisting of homogeneous, isotropic spherical
inclusions in a homogeneous, isotropic background material. We limit
ourselves to a cubic lattice, but the method developed in this paper
has potential also in other lattice configurations. The series solution is
obtained by the use of the translation properties of the solutions to the
Laplace equation in spherical coordinates. These translation matrices
provide an excellent tool in finding the solution of the local problem,
and they are reviewed in an appendix.

The solution of the local problem seems not to be have solved with
the technique presented in this paper before, but the problem has been
addressed in the literature, see e.g., [7, p. 45]. Also, the early results
by Lord Rayleigh [13] are relevant. However, Lord Rayleigh does not
solve the local problem in the form of the present paper, but uses a
more physical point of attack.

Although simple in its geometry, the type of material addressed
in this paper is important in many applications, e.g., glass micro
balloon material in radome constructions. An excellent expose of other
important applications with many illustrations is given by Sihvola [16].

2. THE LOCAL PROBLEM

In this section, we give a short review of the homogenization of a
material with microstructure. For simplicity, we only treat the case
of isotropic permittivity. The more general problem of homogenizing
an anisotropic material is presented in e.g., [4, 19] or in the references
cited in the Section 1.

The relative permittivity ε(y) is Y -periodic and belongs to
L∞(Y ), where Y = (0, 1)3, i.e., ε(y) is measurable and bounded a.e.
on Y , and ε(y + êi) = ε(y) for every y ∈ R3, i = 1, 2, 3, where
êi, i = 1, 2, 3, are the Cartesian basis vectors in R3. This assumption
assumes that the inhomogeneities are arranged in a cubic lattice†.
Moreover, the material is assumed non-magnetic, i.e., the relative
permeability µ = 1, in this paper.

The homogenized permittivity of a periodic structure with a
periodicity that approaches zero relies on the solution of a local
boundary value problem in the unit cell Y . This local problem is
to find weak solutions χj(y) ∈ H1

#(Y ) (Sobolev space with one weak

† The more general case Y = (0, a1)×(0, a2)×(0, a3), where ai > 0, and ε(y+aiêi) = ε(y)
for every y ∈ R3, i = 1, 2, 3, can be solved with a similar technique.
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derivative and Y -periodic‡) for j = 1, 2, 3, satisfying [4, 19]∫∫∫
Y

∇w(y) · (ε(y)êj − ε(y)∇χj(y)) dv = 0, ∀w ∈ H1
#(Y ) (1)

The volume measure of R3 is denoted dv. The homogenized relative
permittivity, εhij , is then fund as an appropriate average of the solution
of (1) and the permittivity ε(y). The result is [4, 19]

εhij =< ε(y) > δij− < ε(y)
∂

∂yi
χj(y) > (2)

where the average over the Y -cell is defined as (the volume of the unit
cell, |Y |, is in our case chosen so that |Y | = 1)

< f >=
1
|Y |

∫∫∫
Y

f(y)dv

This homogenization procedure applies to the homogenization of
a general relative permittivity ε(y) in the unit cell. Notice that, in
general, the homogenized material is anisotropic. Below, in Section 4,
we specialize to a permittivity that takes two constant values in the
unit cell Y .

3. CLASSICAL MIXTURE FORMULA — SPHERICAL
INCLUSIONS

Before we proceed with the solution of the local problem for a two-
phased material, it is instructive to review some of the results on
classical mixture formulae, which are obtained by the use of physical
arguments and approximations. Some of these classical mixture
formulae are derived for a random distribution of spheres, but they are
nevertheless often applied to a regular lattice problem. The formulae
apply only to the case of inclusions of simple shapes, e.g., spheres or,
more generally, ellipsoids, see [16].

The classical mixture formulae apply to spherical inclusions in a
background material. Therefore, let the material consist of two phases;
a background material with relative permittivity εb and periodically
arranged spherical inclusions (cubic lattice) with relative permittivity
εi. We denote the radius of the sphere by a, and without loss of
‡ More precisely, H1

#(Y ) is the closure of C∞# (Y ) in the H1-norm, where C∞# (Y ) is the

subset of C∞(R3) of Y -periodic functions [4].
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generality we let the periodicity be 1. The volume fraction of the
inclusions is then f = 4πa3/3, a < 1/2.

Several of the effective relative permittivity expressions of a
mixture of homogeneous spherical inclusions are represented in the
formula [16]

εh − εb
εh + 2εb + ν(εh − εb)

= f
εi − εb

εi + 2εb + ν(εh − εb)

where εh is the effective permittivity of the mixture. The integer ν
represents different mixture formulas, e.g., ν = 0 the Maxwell Garnett
formula, ν = 2 the Böttcher mixture rule or Bruggeman formula, and
ν = 3 the coherent potential (CP) formula. The Maxwell Garnett
formula is explicitly

εh = εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)
(3)

Another mixture formula was derived by Lord Rayleigh and is
given by [5, 8–11, 13, 14, 16]

εh = εb +
3fεb

(εi + 2εb)/(εi − εb)− f − 1.305f10/3(εi − εb)/(εi + 4εb/3)

This formulae is identical to the Maxwell Garnett formula for small
values of the radius a. In fact, we have

εh = εb + 3fεb
εi − εb

εi+2εb−f(εi−εb)−1.305f10/3(εi−εb)2/(εi+4εb/3)

= εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)

·
{

1 +
1.305f10/3(εi − εb)2/(εi + 4εb/3)

εi + 2εb − f(εi − εb)

}
+ · · ·

≈ εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)

+9fεb
155a10(εi − εb)3

(3εi + 4εb)[εi + 2εb − f(εi − εb)]2
+ · · ·

All classical mixture formulae have their domain of validity for
small volume fractions f . The differences between the different
formulae are best seen from the power series expansion in f , i.e.,

εh = εb + αf + βf2 +O(f3)
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Table 1. The different coefficients in an expansion of εh = εb+αf+βf2

for small volume fractions f and different mixture formulae. The
constant ν = 0 for the Maxwell Garnett formula, ν = 2 for the Böttcher
mixture rule or Bruggeman formula, and ν = 3 for the coherent
potential (CP) formula. The coefficient α = 3εb(εi − εb)/(εi + 2εb).

ν β

0 α2/(3εb)

2 α2εi/(εb(εi + 2εb))

3 α2(4εi − εb)/(3εb(εi + 2εb))

The coefficient α = 3εb(εi − εb)/(εi + 2εb) is the same in all these
formulae, and this contribution represents the dipole contribution. The
β coefficient for the different formulae is given in Table 1 [16, p. 164].
Note that all mixture formulae agree up to first order in f ; then
the formulae corresponding to different ν-values differ (the Maxwell
Garnett and the Rayleigh formulae agree). Below, we show that the
homogenization procedure verifies the correctness of the first term
α and also that the Maxwell Garnett formula is correct in a power
series expansion in a up to a12. In fact, no other mixture formula
(Rayleigh formula is similar to the Maxwell Garnett formula) gives
the correct result beyond the dipole term (power a3). Moreover, the
Rayleigh formula is correct up to order 13 when compared to the result
obtained by the solution of the local problem treated in this paper.
Lord Rayleigh’s result is verified with the technique used in this paper
in Section 6.

4. SPHERICAL INCLUSIONS — SOLUTION OF LOCAL
PROBLEM

The local problem, (1), for a permittivity that takes two constant
values in the unit cell Y is now addressed. To this end, let V be
an open subset of the Y -cell with a Lipschitz continuous§ boundary
S. The relative permittivity assumes the value εi inside V and εb
elsewhere in Y , i.e., the permittivity is of the form

ε(y) = εb + (εi − εb)χV (4)
§ This assumption makes the traces on the surface S below well-defined.
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where χV is the characteristic function of the inclusion V . Below, we
apply only to the case of a single spherical inclusion, i.e.,

χ(y) = H(a− y), y ∈ Y (5)

where y = |y| and a < 1/2 is the radius of the sphere, and H is the
Heaviside step function. This geometry is depicted in Figure 2.

1

1
1

εb

Figure 2. The geometry of the problem with a spherical inclusion of
radius a in the unit cell Y .

It is appropriate to reformulate the local problem as a partial
differential equation problem. We start by finding the equivalent
differential problem. The volume integral is split in two parts — one
containing the integral over V , and one over Y \V .

εb

∫∫∫
Y \V

∇w(y) · (êj−∇χj(y))dv+εi

∫∫∫
V

∇w(y) · (êj−∇χj(y))dv = 0

Apply the Green’s theorem and use the periodic boundary conditions
of the test function w and the solution χj . We get, assuming two times
differential solutions χj in V and Y \V , respectively∫∫

S

w(y)
{

(εi − εb)êj · ν̂(y) + εb
∂

∂y
χj(y+)− εi

∂

∂y
χj(y−)

}
dS

+εb
∫∫∫
Y \V

w(y)∇2χj(y))dv + εi

∫∫∫
V

w(y)∇2χj(y))dv = 0
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where dS is the surface measure of the boundary S, and ν̂(y) is
outward directed unit normal vector. We also denote the traces of the
position vector from the outside and the inside of S by y±, respectively.
Since the test function is arbitrary, the local problem is rewritten as
an equivalent boundary value problem for j = 1, 2, 3, i.e.,



∇2χj(y) = 0, y ∈ Y, y /∈ S
∂

∂y
χj(y+)− ε

∂

∂y
χj(y−) = êj · ν̂(y)(1− ε), y ∈ S

χj(y+) = χj(y−), y ∈ S
χj(y + êi) = χj(y), y ∈ ∂Y, i = 1, 2, 3

(6)
where

ε = εi/εb

The solution to equation (6) is uniquely defined up to a constant [4].
In the next section, we specialize to the spherical inclusion case,

(5), and we make an Ansatz in spherical solutions of the Laplace
equation to solve this problem. From the solution of this problem, we
calculate the effective relative permittivity for a spherical inclusion, see
Section 5, and in Section 6 the effective relative permittivity for small
values of the radius a is extracted.

4.1. Ansatz

The solution of (6) for the spherical inclusion, (5), is now sought. The
unit normal vector is in this case ν̂(y) = ŷ = y/|y|. We make an
Ansatz in solutions to the Laplace equation in spherical coordinates
to determine the solution. The solutions to the Laplace equation in
spherical coordinates are denoted un (singular at the origin) and vn
(regular at the origin), see Appendix A for more details about these
definitions, and we adopt the notion of multi-index n = {σ,m, l}, where
σ = e (even), o (odd), m = 0, 1, 2, . . . , l − 1, l and l = 0, 1, 2, 3, . . ..

Due to the symmetries of the problem it suffices to solve for one
value of j in (6), i.e., j = 3, and below we denote this solution ψ = χj .
Moreover, the symmetries of the problem (even in y1 → −y1 and
y2 → −y2, and odd in y3 → −y3) imply that the only functions un
and vn that contribute in these expansions must have l odd integer,
σ = e, and m even integer. The pertinent index set is therefore
I = {(σ,m, l) = (e,m, l): m even, l odd}.

Outside the sphere we make an Ansatz as linear combination in
the singular functions un periodically extended by the cubic lattice,
and inside the sphere the solution must be regular and we expand in
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the regular functions vn, i.e.,


ψ(y) =
∑
n∈I

an
∑
i∈Z3

(un(y + ti)− (y ·Φi + φi)δn,e01) + Cve01(y),

y ∈ Y \V
ψ(y) =

∑
n∈I

bnvn(y), y ∈ V

(7)
where the translation vector, ti = i1ê1+i2ê2+i3ê3, i = (i1, i2, i3) ∈ Z3,
and where


φi = (1− δi,(000))ue01(ti) = (1− δi,(000))
a2

y2
Ye01(ŷ)

∣∣∣∣
y=ti

Φi = (1− δi,(000))∇ue01(y)
∣∣∣
y=ti

= (1− δi,(000))∇
(
a2

y2
Ye01(ŷ)

)∣∣∣∣∣
y=ti

We observe that the translated terms in (7) for n ∈ I behave for large
translations as

un(y + ti)− (y ·Φi + φi)δn,e01 = O(|i|−4) as |i| → ∞

where |i| =
√
i21 + i22 + i23. The series in (7) is therefore absolutely

convergent for every y ∈ Y w.r.t. the summation i.
The terms in the Ansatz are by construction Y -periodic for all

I 
 n �= {e01}. Notice that the term corresponding to n = {e01} has
to be compensated with a term Cve01 ∼ y3 so that the entire solution
becomes periodic by an appropriate adjustment of the constant C. To
see this, define

w(y) =
∑
i∈Z3

[ue01(y + ti)− (y ·Φi + φi)]

This sum is absolutely convergent and any rearrangement of the terms
gives the same value of the sum [17]. We get

w(y + tk)− w(y) =
∑
i∈Z3

[ue01(y + tk + ti)− ((y + tk) ·Φi + φi)]

−
∑
i∈Z3

[ue01(y + ti)− (y ·Φi + φi)]

= y ·
∑
i∈Z3

(Φi −Φi−k) +
∑
i∈Z3

(φi − φi−k − tk ·Φi−k)



10 Kristensson

where i−k = (i1−k1, i2−k2, i3−k3). The last two sums are absolutely
convergent. Instead of computing these two sums, we compensate
by adding the last linear term, Cve01, in the Ansatz, (7), and adjust
the constant C by an integral computation that is easier to perform.
The constant term is immaterial in the computations below, since the
solution of the local problem is undetermined by a constant.

Notice that the sums (see Appendix A for an explicit expression
of ue01, and also Appendix D for similar summations)

lim
R→∞

∑
i∈Z3

|ti|≤R

φi = a2

√
3
4π

lim
R→∞

∑
Z

3
i�=(000)
|ti|≤R

i3(
i21 + i22 + i23

)3/2
= 0

and

lim
R→∞

∑
i∈Z3

|ti|≤R

Φi

= a2

√
3
4π

lim
R→∞

∑
Z

3
i�=(000)
|ti|≤R

ê3
(
i21 + i22 + i23

)
− 3i3 (i1ê1 + i2ê2 + i3ê3)(

i21 + i22 + i23
)5/2

= 0

by symmetry, and therefore, all sums in (7) can be interpreted as


ψ(y) =
∑
n∈I

an lim
R→∞

∑
i∈Z3

|ti|≤R

un(y + ti) + Cve01(y), y ∈ Y \V

ψ(y) =
∑
n∈I

bnvn(y), y ∈ V
(8)

4.2. The Solution

We now determine the expansion coefficients an and bn as well as the
constant C in (8) so that the boundary conditions on the sphere S are
satisfied and the periodicity of the solution is guaranteed.

The translation properties of un, see (A1) and Appendix C, is very
useful here.

un(y + d) =
∑
n′

Pnn′(d)vn′(y), y < d

This sum is absolutely convergent for all arguments y and d such that
y < d. The definition of the Snn′ , see Appendix D and (D1), readily
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implies that the solution exterior to the sphere can be written as‖

ψ(y) =
∑
n∈I,n′

an{δnn′un′(y) + Snn′vn′(y)}+ Cve01(y), y ∈ Y \V

where
Snn′ = lim

R→∞

∑
Z

3
i�=(000)
|ti|≤R

Pnn′(ti)

To satisfy the continuity conditions on the surface of the sphere,
we must, by orthogonality of the spherical harmonics, have

Cδn,e01 +
∑
n′∈I

an′{δn′n + Sn′n} = bn, n ∈ I (9)

Since un(aŷ) = vn(aŷ) = Yn(aŷ). Moreover, the discontinuity of
the normal derivative on the surface of the sphere implies, due to
orthogonality of the spherical harmonics on the unit sphere, that
(n ∈ I)

∑
n′∈I

an′{−(l+ 1)δn′n + lSn′n}+Cδn,e01− εlbn + (ε− 1)a
√

4π
3
δn,e01 = 0

(10)
where we used

∂

∂y
un(aŷ) = − l + 1

a
Yn(ŷ),

∂

∂y
vn(aŷ) =

l

a
Yn(ŷ)

and ê3 · ŷ = cos θ =
√

4π/3Ye01(ŷ), see definition of the spherical
harmonics Yn(ŷ) in Appendix A.

From the continuity of ψ on S and the periodicity of ψ on ∂Y , we
get ∫∫∫

Y

∇ψ(y)dv =
∫∫
∂Y

ν̂(y)ψ(y)dS = 0

which implies

lim
R→∞

∫∫
∂Y

ν̂(y)




∑
n∈I

an
∑
i∈Z3

|ti|≤R

un(y + ti) + Cve01(y)




dS = 0

‖ The index n′ here runs over all σ,m, l-values, but is below, due to symmetry, shown to
run only over the index set I.
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The integral can be computed exactly, see Appendix B, (B1) and (B2),
and this relation also restores the periodicity of the solution. The result
is

a2

√
4π
3
ê3ae01 + C

√
3
4π
ê3

1
a

= 0

or (f = 4πa3/3)
C = −fae01 (11)

We now eliminated the coefficients bn and C in (10) by the use of
(9) and (11). The result is (n ∈ I)∑

n′∈I
an′{−(l + 1 + lε)δn′n + l(1− ε)Sn′n}+ (ε− 1)fae01δn,e01

= −(ε− 1)a
√

4π
3
δn,e01

or ∑
n′∈I

an′Mn′n = (ε− 1)a
√

4π
3
δn,e01, n ∈ I (12)

where

Mn′n = [l(ε+ 1) + 1− (ε− 1)fδn,e01]δn′n + l(ε− 1)Sn′n, n, n′ ∈ I (13)

The solution to (12) is then

an = (ε− 1)a
√

4π
3

(M−1)e01n, n ∈ I

and the final solution of (7) is


ψ(y) = (ε− 1)a
√

4π
3

∑
n∈I

(M−1)e01n{un(y) + wn(y)}, y ∈ Y \V

ψ(y) = (ε− 1)a
√

4π
3

∑
n∈I

(M−1)e01n{vn(y) + wn(y)}, y ∈ V

(14)
where

wn(y) =
∑
n′∈I

Snn′vn′(y)− fδn,e01vn(y), n ∈ I

Specifically, the solution (14) evaluated on the sphere is

ψ(aŷ) = (ε− 1)a
√

4π
3

∑
nn′∈I

(M−1)e01n{δnn′(1− fδn,e01) + Snn′}Yn′(ŷ)

(15)
This is the explicit solution of the problem on the sphere provided the
sum converges.
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5. THE HOMOGENIZED RELATIVE PERMITTIVITY

In this section, we find a closed form expression of the effective relative
permittivity of the heterogeneous material with spherical inclusions.

From the solution ψ in (14), we compute the effective relative
permittivity of the problem. Due to the symmetry of the problem, the
homogenized relative permittivity is isotropic, and its value is, see (2)
(εhij = εhδij)

εh =< ε(y) > − < ε(y)
∂

∂y3
ψ(y) >

where the last term is transformed to a surface integral over the sphere
S, viz.,

< ε(y)
∂

∂y3
ψ(y) >= (εi − εb)ê3 ·

∫∫
S

ψ(y)ŷdS

since the contribution from the boundary ∂Y vanish.
The homogenized relative permittivity then is (f = 4πa3/3)

εh

εb
= 1− f + εf − (ε− 1)

√
4π
3
a2

∫∫
Ω

ψ(aŷ)Ye01(ŷ)dΩ (16)

Here the surface measure of the unit sphere Ω in R3 is denoted dΩ.
We notice that only the projection of the solution ψ on the spherical
harmonics Ye01 is important in the computation of the homogenized
relative permittivity.

Due to the orthogonality of the spherical harmonics on the unit
sphere, the relative permittivity εh can be written in a series as, see
(15)

εh

εb
= 1+f+(ε−1)f−(ε−1)2f

∑
n∈I

(M−1)e01n{(1−f)δn,e01+Sne01} (17)

This solution of the homogenized relative permittivity is one of
the main results of this paper. This expression gives the relative
permittivity of the spherical inclusions correct to all orders of a,
provided the series converges. Below, we extract the first non-vanishing
contributions in powers of the radius a.

The summation in (17) is restricted to the index set I. All other
terms do not contribute to the sum since the symmetry of the problem
(even in y1 → −y1 and y2 → −y2, and odd in y3 → −y3) implies that
Sne01 = 0, if l even integer, σ = o, or m odd integer.
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6. SMALL VOLUME FRACTION ANALYSIS

In this section, we extract the leading contribution in a power series
expansion in the radius a of εh.

The dependence of a in the quantities Snn′ is, see Appendix D

Snn′ = O(al+l
′+1)

Also, from the fact Se01e01 = Se01e23 = Se23e01 = 0, we get the lowest
order contribution only from terms Se03e01, and Se01e03 which each
contribute as O(a5). The absence of the terms Se01e01, Se01e23, and
Se23e01 is an effect of the symmetry of the lattice (cubic lattice) and
for an other type of lattice these terms can contribute.

The symmetries of the problem simplify the evaluation of the
inverse (M−1)e01n. To leading order in a, we have, see (13) (nn′ ∈ I)

Mnn′ = [l(ε+ 1) + 1− f(ε− 1)δn,e01]δnn′ + (ε− 1)Se03e01δn,e03δn′e01

+3(ε− 1)Se01e03δn,e01δn′,e03 +O(a7) (18)

where the elements in O(a7) contain only matrix entries with at least
one index l ≥ 5. The inverse has to the same leading order in a the
form¶ (n ∈ I)

(M−1)e01n =
δn,e01

ε+ 2− f(ε− 1)
− 3(ε− 1)Se01e03δn,e03

(3ε+ 4)[ε+ 2− f(ε− 1)]
+O(a7)

(19)
For the diagonal term (M−1)e01e01 we also need higher order

terms. The identity

1 =
∑
n∈I

(M−1)e01nMne01

= (M−1)e01e01Me01e01 + (M−1)e01e03Me03e01 +O(a14)

implies by the use of (18) and (19)

1 = (M−1)e01e01(ε+2−f(ε−1))− 3(ε− 1)2Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]
+O(a12)

¶ Assume M has the form
M = D + a5A +O(a7)

where D is a diagonal matrix, D and A are independent of a. The inverse is then

M−1 = D−1 − a5D−1 ·A ·D−1 +O(a7)
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The diagonal term (M−1)e01e01 is therefore

(M−1)e01e01 =
1

ε+ 2− f(ε− 1)
+

3(ε− 1)2Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]2
+O(a12)

We are now ready to insert all these results and limits into (17).
The result is (remember Se01e01 = 0)

εh

εb
= 1 + (ε− 1)f − (ε− 1)2f(1− f)

ε+ 2− f(ε− 1)

−3f(1− f)(ε− 1)4Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]2

+
3f(ε− 1)3Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]
+O(a15)

which simplifies to

εh

εb
= 1+

3f(ε− 1)
ε+ 2− f(ε− 1)

+
9f(ε− 1)3Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]2
+O(a15) (20)

We observe that the first term is the Maxwell Garnett term, see (3).
This expansion is in agreement with the result reported in e.g., [7].
The lowest order correction term is

εcorr =
9f(ε− 1)3Se01e03Se03e01

(3ε+ 4)[ε+ 2− f(ε− 1)]2

and since, see (D2)

Se01e03Se03e01 = 196a10(4S1 + 2S2 − S3)2 ≈ 155a10

where the sums are

S1 =
∞∑

ijk=1

3i2j2 − i4

(i2 + j2 + k2)9/2
, S2 =

∞∑
ij=1

3i2j2 − 2i4

(i2 + j2)9/2
, S3 =

∞∑
i=1

1
i5

we have the final result for the first correction term to the Maxwell
Garnett formula

εcorr =
1764f(ε− 1)3a10(4S1 + 2S2 − S3)2

(3ε+ 4)[ε+ 2− f(ε− 1)]2

≈ 9f
155(ε− 1)3a10

(3ε+ 4)[ε+ 2− f(ε− 1)]2

This result is in agreement with the result obtained by Lord
Rayleigh [13], who used a different technique to obtain the result.
Moreover, it is consistent with the Hashin-Shtrikman’s bounds in (21)
since εcorr is positive for ε > 1.
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6.1. Hashin-Shtrikman’s Bounds

The Hashin-Shtrikman’s bounds constitute the limit values of the
effective permittivity εh. For the case ε > 1, the homogenized value εh
for spherical inclusions is bounded by [4, 16]

1 +
3f(ε− 1)

ε+ 2− f(ε− 1)
≤ εh

εb
≤ ε+

3(1− f)ε(1− ε)
1 + 2ε− (1− f)(1− ε)

(21)

If ε < 1 the inequalities are reversed.

7. NUMERICAL TREATMENT

The original problem given in (6)



∇2ψ(y) = 0, y ∈ Y, y /∈ S
∂

∂y
ψ(y+)− ε

∂

∂y
ψ(y−) = ê3 · ŷ(1− ε), y ∈ S

ψ(y+) = ψ(y−), y ∈ S
ψ(y + êi) = ψ(y), y ∈ ∂Y, i = 1, 2, 3

for the permittivity profile in (5) is easily transformed to a
homogeneous boundary value problem.

Let ψ0 denote the function

ψ0(y) =
ε− 1
ε+ 2

a

√
4π
3

{
ve01(y)
ue01(y)

}
=

ε− 1
ε+ 2

a cos θ
{

y/a
(a/y)2

} {
y < a
y > a

(22)
The function Ψ = ψ − ψ0 then satisfies



∇2Ψ(y) = 0, y ∈ Y, y /∈ S
∂

∂y
Ψ(y+)− ε

∂

∂y
Ψ(y−) = 0, y ∈ S

Ψ(y+) = Ψ(y−), y ∈ S
Ψ(y + êi) = Ψ(y)− ψ0(y + êi) + ψ0(y), y ∈ ∂Y, i = 1, 2, 3

or formally{
∇ · [ε(y)∇Ψ(y)] = 0, y ∈ Y
Ψ(y + êi) = Ψ(y)− ψ0(y + êi) + ψ0(y), y ∈ ∂Y, i = 1, 2, 3

which is a problem without source term. However, the problem is now
no longer periodic at the boundary, since ψ0 is on odd function in y3.
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Due to the symmetry and the periodicity of the original problem (even
in y1 → −y1 and y2 → −y2, and odd in y3 → −y3), we have

∂ψ(±ê1/2)
∂y1

= 0,
∂ψ(±ê2/2)

∂y2
= 0, ψ(±ê3/2) = 0

Thus, we obtain the following mixed boundary value problem:


∇ · [ε(y)∇Ψ(y)] = 0, y ∈ Y
∂Ψ(±ê1/2)

∂y1
=

∂Ψ(±ê2/2)
∂y2

= 0

Ψ(±ê3/2) = ∓ε− 1
ε+ 2

1
2


 a√

y2
1 + y2

2 + 1/4




3
(23)

Finally, from (16) and (22), we get

εh

εb
= 1 + 3f

ε− 1
ε+ 2

− (ε− 1)a2
∫∫
Ω

Ψ(aŷ) cos θdΩ (24)

which we easily evaluate numerically from the numerical solution of
(23). The last integral term is the correction term to the dipole
contribution. A numerical illustration of these calculations is depicted
in Figure 3.

3

2.5

2

1.5

1

0.5

0.1 0.2 0.3 0.4

εh

a

Figure 3. The homogenized relative permittivity εh of a spherical
inclusion as a function of the radius a. In this figure εb = 1 and εi = 16.
The solid line depicts the Hashin-Shtrikman limits, see (21). The small
radius approximation of the homogenized relative permittivity εh, see
(20), is shown in the dotted line, and the broken line shows the result
of the numerical computations, see (24). Notice that the lower Hashin-
Shtrikman’s limit is identical to the Maxwell Garnett formula (3).
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8. CONCLUSIONS AND DISCUSSIONS

An exact expression of the homogenized relative permittivity for
homogeneous, isotropic spherical inclusions in a homogeneous,
isotropic background material is computed by means of the translation
matrices of the solutions to the Lapalace equation in spherical
coordinates. This result is compared with the classical mixture
formulae in physics. It is found that the first (dipole) term, which
all formulae predict, is retrieved. The correct higher order terms are
only predicted by the Maxwell Garnett (and the Rayleigh) formula.
In fact, the Maxwell Garnett formula is correct up to order a12. The
correction term is small, of the order a13, which could explain the
success of this classical mixture formula.

The method presented in this paper can be generalized in various
ways, and it has potential for materials with anisotropic and more
complex lattice configurations than the cubic one analyzed here. Also,
higher order correction terms in the power series expansion in the
radius a can be extracted.
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APPENDIX A. THE SPHERICAL COORDINATE
SOLUTIONS

The appropriate solutions to the Laplace equation in spherical
coordinates are+




vn(y) =
(
y

a

)l
Yσml(ŷ)

un(y) =
(
y

a

)l+1

Yσml(ŷ)

+ We adopt the notion of multi-index n = σml.
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where the spherical harmonics, Yσml(ŷ), are orthogonal over the unit
sphere Ω. The multi-index, n = σml, takes the values σ = e (even), o
(odd), m = 0, 1, 2, . . . , l − 1, l, and l = 0, 1, 2, 3, . . .. The length of the
vector y is denoted by y = |y| and ŷ = y/|y|. The explicit expression
of Yσml(ŷ) is [3]

Yσml(θ, φ) =

√
2− δm,0

2π

√
2l + 1

2
(l −m)!
(l +m)!

Pm
l (cos θ)

{
cosmφ

sinmφ

}

and Pm
l (cos θ) denotes the Associated Legendre functions. The

spherical angles of ŷ are denoted θ and φ, respectively.
Of special importance in this paper is the solutions corresponding

to n = e01. They are


ve01(y) =
√

3
4π

y3

a

ue01(y) =
√

3
4π

y3

a

(
a

y

)3

since ê3 · ŷ = cos θ =
√

4π/3Ye01(ŷ).
Translation of the argument in the singular spherical solutions,

un, see Figure A1, can be expressed in the regular solutions, vn, as [3]

un(y + d) =
∑
n′

Pnn′(d)vn′(y), y < d (A1)

where the matrix Pnn′ is explicitly given in [3] and in Appendix C.
This translation relation is of paramount importance for the analysis
presented in this paper.

APPENDIX B. EVALUATION OF SOME INTEGRALS

In this section, we evaluate two integrals of importance in the analysis
of this paper. The first integral is

In = lim
R→∞

∑
i∈Z3

|ti|≤R

∫∫
∂Y

ν̂(y)un(y + ti)dS

where dS is the surface measure of the boundary surface ∂Y . This
integral is readily transformed into an integral over a “ragged sphere”
of radius R, which we denote by SR, since all contributions at all
surfaces cancel except at the end points of the summation in i. We get

In = lim
R→∞

∫∫
SR

ν̂(y)un(y)dS
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Origin

d
y

y + d

Figure A1. Translation of the origin.

This surface integral is in the limit R → ∞ identical to an integral
over the sphere y = R + 1, i.e.,

In = lim
R→∞

∫∫
y=R+1

ŷun(y)dS

since the difference between the surface integral is∫∫∫
VR

∇un(y)dv

where VR is the volume between SR and y = R + 1. This integral
approaches zero in the limit R → ∞, since the volume VR is of the
order O(R2) as R → ∞ and |∇un(y)| = O(R−l−2) as R → ∞. The
integral over the sphere y = R is easy to calculate. We have

In = δn,e01 lim
R→∞

∫∫
y=R

ŷue01(y)dS = δn,e01a
2

√
4π
3
ê3 (B1)

The second integral of interest is
∫∫
∂Y

ν̂(y)ve01(y)dS =
√

3
4π

∫∫
∂Y

ν̂(y)
y3

a
dS

=
√

3
4π
ê3

∫∫∫
Y

1
a
dv =

√
3
4π
ê3

1
a

(B2)
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APPENDIX C. THE TRANSLATION MATRICES Pnn′

In this section, we review the entries of the translation matrix, Pnn′ ,
in (A1). More details are found in [3].

If (d, η, α) are the spherical coordinates of d, the matrix entries of
Pnn′(d) are [3, 6]

Pσmlσ′m′l′(d) = (−1)m
′
Bmlm′l′(d, η)

{
cos(m−m′)α

(−1)σ
′
sin(m−m′)α

}

+(−1)σBml−m′l′(d, η)

{
cos(m+m′)α

(−1)σ sin(m+m′)α

} {
σ = σ′

σ �= σ′

where (−1)σ = 1 if σ = e and (−1)σ = −1 if σ = o and where

Bmlm′l′(d)= lim
k→0
Bmlm′l′(d)

jl′(ka)

h
(1)
l (ka)

= lim
k→0
Bmlm′l′(d)

i(ka)l+l
′+1

(2l′+1)!!(2l−1)!!

The matrix Bmlm′l′(d, η) is detailed as [3]

Bmlm′l′(d, η) = (−1)m+m′

√
(2−δm0)(2−δm′0)

4

l+l′∑
λ=|l−l′|

(−1)(l
′−l+λ)/2(2λ+1)

√
(2l + 1)(2l′ + 1)(λ− (m−m′))!

(λ+m−m′)!(
l l′ λ
0 0 0

) (
l l′ λ
m −m′ m′ −m

)
Pm−m′
λ (cos η)h(1)

λ (kd)

where
( · · ·
· · ·

)
is the Wigner 3-j symbol [6]. The limit process

k → 0 gives the final result.

Bmlm′l′(d, η) = (−1)m+m′+l′

√
(2−δm0)(2−δm′0)

4
(2l + 2l′ + 1)!!

(2l − 1)!!(2l′ + 1)!!√
(2l + 1)(2l′ + 1)(l + l′ − (m−m′))!

(l + l′ +m−m′)!(
l l′ l + l′

0 0 0

) (
l l′ l + l′

m −m′ m′ −m

)
Pm−m′
l+l′ (cos η)

(
a

d

)l+l′+1

where the Wigner 3-j symbol has the explicit expression [6](
l l′ l + l′

m −m′ m′ −m

)
= (−1)l−l

′+m−m′



22 Kristensson

×
√

(2l)!(2l′)!(l + l′ − (m−m′))!(l + l′ +m−m′)!
(2l + 2l′ + 1)!(l +m)!(l −m)!(l′ +m′)!(l′ −m′)!

The first explicit values for the lowest order terms used in this paper
are

Pe01e01(d) = −2P2(cos η)
(
a

d

)3

= (1− 3 cos2 η)
(
a

d

)3

and 


Pe01e03(d) = −4
√

3
7
P4(cos η)

(
a

d

)5

Pe01e23(d) = −
√

1
35
P 2

4 (cos η) cos 2α
(
a

d

)5

Pe03e01(d) = −4
√

7
3
P4(cos η)

(
a

d

)5

Pe23e01(d) = −1
3

√
7
5
P 2

4 (cos η) cos 2α
(
a

d

)5




APPENDIX D. THE SUM Snn′

An important matrix of frequent use in this paper is

Snn′ = lim
R→∞

∑
Z

3
i�=(000)
|ti|≤R

Pnn′(ti) = lim
R→∞

∑
0<|(ijk)|≤R

Pnn′(t(ijk)) (D1)

where the translation t(ijk) = iê1 + jê2 + kê3 and |(ijk)| = (i2 + j2 +
k2)1/2.

The symmetry of the solution (even in y1 → −y1 and y2 → −y2,
and odd in y3 → −y3) implies that the only non-vanishing entries of
Snn′ occur when l+ l′ is an even integer, σ = σ′, and m+m′ is an even
integer. The dependence of a is, see Appendix C

Snn′ = O(al+l
′+1)

We denote the spherical polar and azimuth angles of the
translation t(ijk) by ηijk and αij , respectively. In a cubic lattice we
have

cos ηijk =
k√

i2 + j2 + k2
cosαij =

i√
i2 + j2
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We proceed by computing the first few elements of the matrix
Snn′ . Several sums are of interests in this context. We get

a−3Se01e01 = lim
R→∞

∑
0<|(ijk)|≤R

i2 + j2 − 2k2

(i2 + j2 + k2)5/2

= 8
∑

i,j,k=1
i2+j2+k2≤R2

i2 + j2 − 2k2

(i2 + j2 + k2)5/2
+ 4

∑
i,j=1

i2+j2≤R2

1
(i2 + j2)3/2

+8
∑
i,k=1

i2+k2≤R2

i2 − 2k2

(i2 + k2)5/2
− 4

R∑
k=1

1
k3

+ 4
R∑
i=1

1
i3

= 4
∑
i,j=1

i2+j2≤R2

i2 + j2 + 2i2 − 4j2

(i2 + j2)5/2
= 0

Therefore, Se01e01 = 0. Similarly, we have


Se01e23 =
√

45
28
a5 lim

R→∞

∑
0<|(ijk)|≤R

(i2 − j2)(i2 + j2 − 6k2)
(i2 + j2 + k2)9/2

= 0

Se23e01 =
√

35
2
a5 lim

R→∞

∑
0<|(ijk)|≤R

(i2 − j2)(i2 + j2 − 6k2)
(i2 + j2 + k2)9/2

= 0

The first non-vanishing terms in powers of a are

a−5Se01e03 =−
√

3
28

lim
R→∞

∑
0<|(ijk)|≤R

3i4+6i2j2+3j4−24i2k2−24j2k2+8k4

(i2 + j2 + k2)9/2

=−
√

3
28


8

∞∑
i,j,k=1

3i4 + 6i2j2 + 3j4 − 24i2k2 − 24j2k2 + 8k4

(i2 + j2 + k2)9/2

+4
∞∑

i,j=1

3i4 + 6i2j2 + 3j4

(i2 + j2)9/2
+ 8

∞∑
i,k=1

3i4 − 24i2k2 + 8k4)
(i2 + k2)9/2

+ 4
∞∑
i=1

3
i5

+ 2
∞∑
k=1

8
k5

}

which we can rearrange by symmetry to

a−5Se01e03 =−
√

3
28


112

∞∑
i,j,k=1

i4 − 3i2j2

(i2 + j2 + k2)9/2
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+ 56
∞∑

i,j=1

2i4 − 3i2j2

(i2 + j2)9/2
+ 28

∞∑
i=1

1
i5




The other term of the same magnitude is

a−5Se03e01 =−
√

7
12

lim
R→∞

∑
0<|(ijk)|≤R

3i4+6i2j2+3j4−24i2k2−24j2k2+8k4

(i2 + j2 + k2)9/2

From this result we have

Se01e03Se03e01 = 196a10(S1 + 2S2 − S3)2 (D2)

The pertinent sums are

S1 =
∞∑

i,j,k=1

3i2j2 − i4

(i2 + j2 + k2)9/2
, S2 =

∞∑
i,j=1

3i2j2 − 2i4

(i2 + j2)9/2
, S3 =

∞∑
i=1

1
i5

The sums are positive and have approximate values as

S1 ≈ 0.021, S2 ≈ 0.033, S3 ≈ 1.037

and we get
Se01e03Se03e01 ≈ 155a10
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