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Abstract—This paper presents an eigenfunction expansion of the
electric-type dyadic Green’s functions for both a unbounded gyroelec-
tric chiral medium and a cylindrically-multilayered gyroelectric chiral
medium in terms of the cylindrical vector wave functions. The un-
bounded and scattering Green dyadics are formulated based on the
principle of scattering superposition for the electromagnetic waves,
namely, the direct wave and scattered waves. First, the unbounded
dyadic Green’s functions are correctly derived and some mistakes oc-
curring in the literature are pointed out. Secondly, the scattering
dyadic Green’s functions are formulated and their coefficients are ob-
tained from the boundary conditions at each interface. These coeffi-
cients are expressed in a compact form of recurrence matrices; coupling
between TE and TM modes are considered and various wave modes
are decomposed one from another. Finally, three cases, where the im-
pressed current source are located in the first, the intermediate, and
the last regions respectively, are taken into account in the mathemat-
ical manipulation of the coefficient recurrence matrices for the dyadic
Green’s functions.
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1. INTRODUCTION

The dyadic Green’s functions (DGFs) play an important role in
electromagnetic theory and its applications to practical analysis of
various electromagnetic boundary value problems. The eigenfunction
expansion of the dyadic Green’s functions has been well developed
and applied over the last several decades [1–4], despite the ever
increasing demand for numerical methods. The vector wave functions
have found versatile applications in the formulation of the dyadic
Green’s functions, as can be seen from the work done [3, 5–16].
Although the DGFs in isotropic media have been well-studied in
the last three decades, complete formulation of the DGFs in various
anisotropic media using the eigenfunction expansion technique has not
been achieved so far. Since 1970’s, the dyadic Green’s functions in
anisotropic media have been derived [2, 17–30] using (1) the Fourier
transform technique, (2) the method of angular spectrum expansion,
and (3) the transmission matrix method. The DGFs and fields in
gyroelectric media have also been formulated [31–36].

There have been some results for bianisotropic media or
gyroelectric chiral media available nowadays, however most of them
are basically valid for unbounded media only while some of them
are not correct, for instance, the results in [36] commented by [37].
Thus, the motivation of this work is quite appearant. Different from
the existing work, this paper aims at (1) the direct development of
the unbounded dyadic Green’s functions in an unbounded gyroelectric
chiral medium where the cylindrical vector wave expansion technique
is employed and mistakes in the existing work are pointed out; (2)
the formulations of the scattering dyadic Green’s functions and their
coefficients in a cylindrically multilayered gyroelectric chiral medium
where each layer is assumed to be the gyroelectric chiral medium and
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its results can be reduced to those of the isotropic media, and where the
source is assumed to have an arbitrary 3-dimensional distribution and
can be located anywhere while the field point can also be arbitrarily
located in the multilayers; and (3) the rigorous derivation of the
irrotational part of the dyadic Green’s functions which were not always
provided in the existing work. Due to the different geometries of the
multilayered gyroelectric chiral media, the formulation of the dyadic
Green’s functions differs one from another. The work included in
the present paper is a further extension of the previous work done
in [38], where the dyadic Green’s functions have been represented for
the planar-multilayered gyroelectric chiral media.

In order to obtain a complete, general representation of
the eigenfunction expansion of the dyadic Green’s functions in a
cylindrically multilayered medium, the mathematical derivation under
the cylindrical coordinates is carefully conducted in this paper.
Section 2 summarizes the normal series eigenfunction expansion in
terms of the cylindrical vector wave functions, making the paper
more complete and self-contained. The dyadic Green’s function in
cylindrical coordinates for an unbounded gyroelectric chiral medium
is then obtained by a rigorous eigenfunction expansion in terms
of the cylindrical vector wave functions. Most importantly, the
irrotational part of the dyadic Green’s function for the unbounded
gyroelectric chiral medium is derived. The results obtained herein
by the cylindrical vector wave function expansions are new formulas
unavailable elsewhere. In Section 3, the principle of scattering
superposition is applied to obtain the scattering dyadic Green’s
functions. These scattering coefficients of the dyadic Green’s functions
have, although coupled to each other, been obtained from the boundary
conditions and have been represented by a set of compact recurrence
matrices. Further analysis includes the derivation of the scattering
coefficients of the DGFs for various cases where the current source
located in the first, the intermediate and the last regions of the
multilayered structure. Throughout the paper, a time dependence
e−iωt is assumed and suppressed in the analysis.

2. DGFS FOR UNBOUNDED GYROELECTRIC CHIRAL
MEDIA

A homogeneous gyroelectric chiral medium with the time harmonic
excitation can be characterized by a set of constitutive relations [36]

D = ε ·E + iξcB, (1a)

H = iξcE +B/µ, (1b)
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where

ε =

 ε −ig 0
ig ε 0
0 0 εz

 . (2)

Substituting (2) into the source-incorporated Maxwell’s equations
leads to

∇×∇×E − 2ωµξc∇×E − ω2µε ·E = iωµJ . (3)

2.1. General Formulation of Unbounded DGFs

The electric field can thus be expressed in terms of the DGF and electric
source distribution as

E(r) = iωµ

∫
V ′
Ge(r, r′) · J(r′) dV ′, (4)

where V ′ denotes the volume occupied by the exciting current source.
Similarly, substituting (4) into (3) leads to

∇×∇×Ge(r, r′)−2ωµξc∇×Ge(r, r′)−ω2µε ·Ge(r, r′) = Iδ(r−r′),
(5)

where I and δ(r − r′) denotes the dyadic identity and Dirac delta
function, respectively.

According to the well-known Ohm-Rayleigh method, the source
term in (5) can be expanded in terms of the solenoidal and irrotational
cylindrical vector wave functions in cylindrical coordinate system.
Thus,

Iδ(r − r′) =
∫ ∞
0

dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mn(h, λ)An(h, λ)

+Nn(h, λ)Bn(h, λ) +Ln(h, λ)Cn(h, λ)] , (6)

where Mn(h, λ) & Nn(h, λ) are the solenoidal, and Lnλ(h) is the
irrotational, cylindrical vector wave functions while λ & h are the
spectral longitudinal and radial wave numbers, respectively. The
solenoidal and irrotational cylindrical vector wave functions are defined
as [36]

Mn(h, λ) = ∇× [Ψn(h, λ)ẑ] , (7a)

Nn(h, λ) =
1
kλ

∇×Mn(h, λ), (7b)

Ln(h, λ) = ∇ [Ψn(h, λ)] , (7c)
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where kλ =
√

λ2 + h2, and the generating function is given by

Ψn(h, λ) = Jn(λρ)ei(nφ+hz). (8)

The vector expansion coefficients, An(h, λ), Bn(h, λ), and Cn(h, λ) in
(6), are to be determined from the orthogonality relationships among
the cylindrical vector wave functions which are given by:∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzMn(h, λ) ·M−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzNn(h, λ) ·N−n′(−h′,−λ′)

= 4π2λδ(λ− λ′)δ(h− h′)δnn′ , (9a)

∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzLn(h, λ) ·L−n′(−h′,−λ′)

= 4π2 (λ2 + h2)
λ

δ(λ− λ′)δ(h− h′)δnn′ , (9b)

and ∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzMn(h, λ) ·N−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzNn(h, λ) ·L−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzLn(h, λ) ·M−n′(−h′,−λ′)

= 0. (9c)

Therefore, by taking the scalar product of (6) with M−n′(−h′,−λ′),
N−n′(−h′,−λ′) and L−n′(−h′,−λ′) each at a time, the vector
expansion coefficients are given by:

An(h, λ) =
1

4π2λ
M ′
−n(−h,−λ), (10a)

Bn(h, λ) =
1

4π2λ
N ′−n(−h,−λ), (10b)

Cn(h, λ) =
λ

4π2(λ2 + h2)
L′−n(−h,−λ), (10c)

where the prime notation of the cylindrical vector wave functions
denotes the expressions at the source point r′.
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The dyadic Green’s function can thus be expanded as [36]:

G0(r, r′) =
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mn(h, λ)an(h, λ)

+Nn(h, λ) bn(h, λ) +Ln(h, λ) cn(h, λ)] , (11)

where the vector expansion coefficients an(h, λ), bn(h, λ) and cn(h, λ)
are obtained by substituting (11) and (6) into (5), which the dyadic
Green’s function must satisfy, and noting the instinct properties of the
vector wave functions,

Mn(h, λ) =
1
kλ

∇×Nn(h, λ), (12a)

Nn(h, λ) =
1
kλ

∇×Mn(h, λ), (12b)

∇×Ln(h, λ) = 0, (12c)

we end up with∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞

{[
k2
λI − ω2µε

]
· [Mn(h, λ)an(h, λ)

+Nn(h, λ)bn(h, λ)]− 2kλωµξc [Nn(h, λ)an(h, λ)

+Mn(h, λ)bn(h, λ)]− ω2µε ·Ln(h, λ)cn(h, λ)
}

=
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mn(h, λ)An(h, λ)

+Nn(h, λ)Bn(h, λ) +Ln(h, λ)Cn(h, λ)] . (13)

The above approach shows an important fact that the afore-assumed
unknowns, an(h, λ), bn(h, λ), and cn(h, λ), may not be the same as
those coefficients, An(h, λ),Bn(h, λ), andCn(h, λ) although they were
assumed to be the same in [36].

By taking the anterior scalar product of (13) with the vector wave
equations, respectively, and by performing the integration over the
entire space, we can formulate the equations satisfied by the unknown
vectors and the known scalar and vector parameters in a matrix form
as given below:

[Ω][X] = [Θ], (14)

where [Ω] is a 3 × 3 matrix given by

[Ω] = [Ω1Ω2Ω3] (15)



DGFs in cylindrically-multilayered gyroelectric chiral media 149

with

Ω1 =


k2
λ − ω2µε

−ωµ
(
2ξckλ + ωg hkλ

)
−iω2µg λ

2

k2
λ

 , (16a)

Ω2 =


−ωµ

(
2ξckλ + ωg hkλ

)
k2
λ − ω2µ

k2
λ

(h2ε + λ2εz)

− ihλ2
k3
λ

ω2µ(ε− εz)

 , (16b)

Ω3 =


iω2µg

ih
kλ

ω2µ(ε− εz)

−ω2µ
k2
λ

(
λ2ε + h2εz

)
 , (16c)

and [X] and [Θ] are two column vectors given respectively by

[X] =

 an(h, λ)
bn(h, λ)
cn(h, λ)

 , (17a)

[Θ] =

 An(h, λ)
Bn(h, λ)
Cn(h, λ)

 . (17b)

Solving (14), we have the solutions for an(h, λ), bn(h, λ) and cn(h, λ)
as

an(h, λ) =
1
Γ

[α1An(h, λ) + β1Bn(h, λ) + γ1Cn(h, λ)] , (18a)

bn(h, λ) =
1
Γ

[α2An(h, λ) + β2Bn(h, λ) + γ2Cn(h, λ)] , (18b)

cn(h, λ) =
1
Γ

[α3An(h, λ) + β3Bn(h, λ) + γ3Cn(h, λ)] , (18c)

where

Γ = k2
λ(h

2εz+ελ2)−µω2
[
2h2εεz−λ2(g2−ε2−εεz)+4µξ2(h2εz+ελ2)

]
−4ghεzµ2ξcω

3 + εzµ
2ω4(ε2 − g2) (19)

and the coupling coefficients are

α1 = h2εz + λ2ε− ω2µεεz, (20a)

β1 = α2 =
ωµ

kλ

[
ghεzω + 2ξc(h2εz + ελ2)

]
, (20b)
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β2 =
1
k2
λ

[
(k2
λ − ω2µε)(h2εz + λ2ε) + ω2µg2λ2

]
, (20c)

γ1 = − k2
λ

λ2
α3 = i

[
2ωµhξc(ε− εz) + g(k2

λ − ω2µεz)
]
, (20d)

γ2 = − k2
λ

λ2
β3

= i
1
kλ

[
h(k2

λ − µω2ε)(ε− εz) + ωµg(2k2
λξc + ghω

]
, (20e)

γ3 =
1

ω2µ

{
−k4
λ + ω2µ

[
2h2ε + λ2(ε + εz) + 4k2

λµξ
2
c

]
+4ghξcµ2ω3 +

ω4µ2

k2
λ

[
h2(g2 − ε2)− εεzλ

2
]}

. (20f)

It should be noted that the substitution of (11) and (6) into (5) to
give (2.1) is based upon the condition that one can interchange the
summation on n and the integrals on h, λ. This condition can be
justified if one notes that the terms in the square brackets of (6) and
(11) are continuous with respect to h and λ, simultaneously.

Now, it becomes quite clear that each of the coefficients, an(h, λ),
bn(h, λ), and cn(h, λ), is actually a linear combination of those known
coefficients, An(h, λ), Bn(h, λ), and Cn(h, λ). In other words, the
coupling of the TE and TM modes from source distribution, and to
the field expression, exists. Thus, the results obtained in [36] are not
correct at all because such coupling is absent there in the formulation.
In terms of the cylindrical vector wave functions for the gyroelectric
chiral media, this paper presents a correct form of the unbounded
dyadic Green’s functions.

Furthermore, the unbounded dyadic Green’s function can be
written as

G0(r, r′) =
∫ ∞
−∞

dh

∫ ∞
0

dλ
∞∑

n=−∞

1
4π2λΓ

{Mn(h, λ)[α1M
′
−n

× (−h,−λ) + β1N
′
−n(−h,−λ) +

λ2

k2
λ

γ1L
′
−n(−h,−λ)]

+Nn(h, λ)[α2M
′
−n(−h,−λ) + β2N

′
−n(−h,−λ)

+
λ2

k2
λ

γ2L
′
−n(−h,−λ)] +Ln(h, λ)[α3M

′
−n(−h,−λ)

+ β3N
′
−n(−h,−λ) +

λ2

k2
λ

γ3L
′
−n(−h,−λ)]}. (21)
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In this way, the dyadic Green’s function in an unbounded gyroelectric
chiral medium is explicitly represented in the form of the eigenfunction
expansion in terms of the cylindrical vector wave functions, as given in
(21). However, for practical applications and interpretation to possible
novel phenomena, mathematical simplification to (21) is necessary.

In order to apply the residue theorem to (21), we must first extract
the part in (21) which does not satisfy the Jordan lemma [1]. To do
so, we write

Ln(h, λ) = Lnt(h, λ) +Lnz(h, λ), (22a)
L′−n(−h,−λ) = L′−nt(−h,−λ) +L′−nz(−h,−λ), (22b)

Nn(h, λ) =Nnt(h, λ) +Nnz(h, λ), (22c)
N ′−n(−h,−λ) =N ′−nt(−h,−λ) +N ′−nz(−h,−λ), (22d)

where the subscript t and z denote the transverse vector components
and the z-vector components respectively of the two functions Ln(h, λ)
and Nn(h, λ). In terms of these functions, (21) can be rewritten in
the form

G0(r, r′) =
∫ ∞
−∞

dh

∫ ∞
0
dλ
∞∑

n=−∞

1
4π2λΓ

×
{
(h2εz + λ2ε−ω2µεεz)Mn(h, λ)M ′

−n(−h,−λ)

+
kλ
h

[
g(ω2µεz − λ2) + 2hεzωµξc

]
× [Mn(h, λ)N ′−nt(−h,−λ) +Nnt(h, λ)M ′

−n(−h,−λ)]
+ kλ(gh + 2εωµξc)[Mn(h, λ)N ′−nz(−h,−λ)
+Nnz(h, λ)M ′

−n(−h,−λ)]

+
k2
λ

h2ω2µ
[λ2(ω2µε + 4ω2µ2ξ2

c − k2
λ)

+ ω2µεz(k2
λ − εω2µ)]Nnt(h, λ)N ′−nt(−h,−λ)

+
k2
λ

hω2µ

[
h(k2

λ − ω2µε)− 2ω2µ2ξc(2hξc + gω)
]

× [Nnt(h, λ)N ′−nz(−h,−λ) +Nnz(h, λ)N ′−nt(−h,−λ)]

+
k2
λ

ω2µλ2
[−h2k2

λ + ω2µε(2h2 + λ2)

+ 4hω2µ2ξc(hξc + gω) + ω4µ2(g2 − ε2)]
×Nnz(h, λ)N ′−nz(−h,−λ)}, (23)

where we have expressed Lnt(h, λ) and Lnz(h, λ) in terms of Nnt(h, λ)
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and Nnz(h, λ), and similarly, for the primed functions; namely

Lnt(h, λ) = − ikλ
h
Nnt(h, λ), (24a)

L′−nt(−h,−λ) =
ikλ
h
N ′−nt(−h,−λ); (24b)

and

Lnz(h, λ) =
ihkλ
λ2

Nnz(h, λ), (24c)

L′−nz(−h,−λ) = − ihkλ
λ2

N ′−nz(−h,−λ). (24d)

2.2. Analytical Evaluation of the λ Integral

In this subsection, we will analytically evaluate the λ integrals for the
dyadic Green’s function arisen in (23). This effort is intended to make
the results applicable in solving the source-incorporated boundary
value problems of cylindrically multilayered structures consisting of
gyroelectric chiral media.

By applying the idea given in [1] to obtain an exact expression of
the irrotational dyadic Green’s function, we have from (6)

ẑẑδ(r − r′) =
∫ ∞
0

dλ

∫ ∞
−∞

dh
∞∑

n=−∞

1
4π2λ

k2
λ

λ2
Nnz(h, λ)N ′−nz(−h,−λ).

(25)
Thus, the singular term in (23) is contained in the Nnz(h, λ)N ′−nz
(−h,−λ) dyad component.

From (19), we rewrite Γ into the following form in order to perform
the λ integration,

Γ = εz(k2
λ − k2

1)(k
2
λ − k2

2) (26)

where
k2

1,2 =
1
2ε

{
pλ ±

√
p2
λ + qλ

}
(27)

and

pλ = h2(ε− εz) + ω2µ
[
−g2 + ε(ε + εz + 4µξ2

c )
]

qλ = − 4εω2µ[h2(ε− εz)(ε + 4µξ2
c )− 4ghεzωµξc

+ ε2εzω
2µ− g2(h2 + εzω

2µ)].
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With simple algebraic manipulation, we can split (23) into

G0(r, r′) = −
∫ ∞
−∞

dh

∫ ∞
0
dλ
∞∑

n=−∞

1
4π2λ

k2
λ

ω2µελ2
Nnz(h, λ)N ′−nz(−h,−λ)

+
∫ ∞
−∞

dh

∫ ∞
0
dλ
∞∑

n=−∞

1
4π2λ

1
ε(k2
λ − k2

1)(k
2
λ − k2

2)

×{(h2εz + λ2ε−ω2µεεz)Mn(h, λ)M ′
−n(−h,−λ)

+
kλ
h

[
g(ω2µεz − λ2) + 2hεzωµξc

]
× [Mn(h, λ)N ′−nt(−h,−λ) +Nnt(h, λ)M ′

−n(−h,−λ)]
+ kλ(gh + 2εωµξc)[Mn(h, λ)N ′−nz(−h,−λ)
+Nnz(h, λ)M ′

−n(−h,−λ)]

+
k2
λ

h2ω2µ
[λ2(ω2µε + 4ω2µ2ξ2

c − k2
λ) + ω2µεz(k2

λ − ε ω2µ)]

×Nnt(h, λ)N ′−nt(−h,−λ)

+
k2
λ

hω2µ

[
h(k2

λ − ω2µε)− 2ω2µ2ξc(2hξc + gω)
]

× [Nnt(h, λ)N ′−nz(−h,−λ) +Nnz(h, λ)N ′−nt(−h,−λ)]

+
k2
λ

λ2εω2µ
{k2
λ

[
k2
λε + h2(εz − 2ε)

]
+ ω2µ[g2(k2 − h2)

+ h2(2ε− εz)(ε + 4µξ2
c )− k2ε(εz + 4µξ2

c )]
+ 4ghω3µ2ξc(ε− εz) + ω4µ2(g − ε)(g + ε)(ε− εz)}
×Nnz(h, λ)N ′−nz(−h,−λ)}. (28)

In view of (25), the first integration term in (28) must be the
contribution from the irrotational vector wave functions, given as
follows:

− 1
ω2µεz

ẑẑ δ(r − r′). (29)

Obviously, this irrotational Green’s dyadic of the gyroelectric chiral
media can be simply reduced to that of an isotropic medium by letting
εz = ε. It is observed that this irrotational term is only a function
of the permittivity εz only. This is simply because the anisotropic
medium has an axial direction of ẑ.

The second integration term can be evaluated by making use of the
residue theorem in λ-plane (Appendix A). This term contributes from
the solenoidal vector wave functions. Hence after some mathematical



154 Li et al.

manipulations, we arrived at the final unbounded dyadic Green’s
function for a gyroelectric chiral medium which is suitable for further
analysis of a cylindrically multilayered structure.

G0(r, r′) = − 1
ω2µεz

ẑẑ δ(r − r′)

+
i

4π

∫ ∞
−∞

dh
∞∑

n=−∞

1
2(k2

1 − k2
2)

2∑
j=1

(−1)j+1

λ2
j

×


 M

(1)
n,h(λj)P

′
−n,−h(−λj)

Mn,h(−λj)P
′(1)
−n,−h(λj)


+

kλj
ε

Q
(1)
n,h(λj)M

′
−n,−h(−λj)

Qn,h(−λj)M
′(1)
−n,−h(λj)


+

k2
λj

h2ω2µε

U
(1)
n,h(λj)N

′
−nt,−h(−λj)

Un,h(−λj)N
′(1)
−nt,−h(λj)


+

k2
λj

λ2
jω

2µε

 V
(1)
n,h(λj)N

′
−nz,−h(−λj)

V n,h(−λj)N
′(1)
−nz,−h(λj)


 , ρ >

< ρ′, (30)

where the superscript (1) of the vector wave functions denotes the first-
kind cylindrical Hankel function H

(1)
n (λρ). The vector wave functions

P ′−n,−h(−λj), Qn,h(λj), Un,h(λj) and V n,h(λj) are given respectively
by

P ′−n,−h(−λj) = (λ2
j +

εz
ε
h2 − εzω

2µ)M ′
−n,−h(−λj)

+
kλj
ε

[
g

h
(εzω2µ− λ2

j ) + 2εzωµξc

]
N ′−nt,−h(−λj)

+
kλj
ε

(gh + 2ε ωµξc)N ′−nz,−h(−λj), (31a)

Qn,h(λj) =
[
g

h
(εzω2µ− λ2

j ) + 2εzωµξc

]
Nnt,h(λj)

+ (gh + 2ε ωµξc)Nnz,h(λj), (31b)

Un,h(λj) =
[
(k2
λj − ε ω2µ)(εzω2µ− λ2

j ) + 4λ2
jω

2µ2ξ2
c

]
Nnt,h(λj)

+ h
[
h(k2

j − ε ω2µ)− 2ω2µ2ξc(2hξc + gω)
]
Nnz,h(λj),

(31c)
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V n,h(λj) = λ2
j

[
(k2
λj − ε ω2µ)− 2ω2µ2ξc

h
(2hξc + gω)

]
Nnt,h(λj)

+
1
ε

{
k2
λj

[
λ2
jε + h2(εz − ε)

]
+ ω2µ

[
g2λ2

j

+h2(2ε− εz)(ε + 4µξ2
c )− k2

λjε(εz + 4µξ2
c )

]
+ 4ghω3µ2ξc(ε−εz)+ω4µ2(g2−ε2)(ε−εz)

}
Nnz,h(λj).

(31d)

Now, we obtained the rigorous expression of the unbounded dyadic
Green’s functions for the gyroelectric chiral medium. This form differs
from the existing representations of the dyadic Green’s functions for
the gyroelectric chiral medium or some more generalized media. The
agreement can be obtained in no ways between the present form of
DGFs and other forms given in the literature elsewhere. This is
because (1) the dyadic Green’s functions obtained elsewhere in the
literature using different approaches take quite different forms as ours
and the direct comparison among these theoretical results are almost
impossible; (2) the dyadic Green’s functions obtained using the same
approach in [36] are incorrect as indicated and shown in [37]; and (3)
the dyadic Green’s functions given using the similar approach in [39–
44] are not rigorously correct as the irrotational parts of the DGFs
were missing in the presentations (where the mistakes are due to the
ignorance of the Jordan lemma conditions [1]).

3. SCATTERING DGFS FOR CYLINDRICALLY
MULTILAYERED GYROELECTRIC CHIRAL MEDIUM

In the following section, the scattering dyadic Green’s function in a
cylindrically multilayered gyroelectric chiral media is presented. The
Green’s dyadics are formulated based on the principle of superposition
of the electromagnetic waves namely the direct wave and the scattered
waves. We will solve for the source-incorporated boundary value
problems of the cylindrically multilayered structures consisting of the
gyroelectric chiral media.

3.1. Scattering Dyadic Green’s Functions

With the scattering superposition principle, it is assumed that

G
(fs)
e (r, r′) = G0(r, r′)δsf +G(fs)

s (r, r′), (32)
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Figure 1. Geometry of a cylindrically-multilayered gyroelectric chiral
medium.

where the representation of the scattered dyadic Green’s function is
given by:

G
(fs)
s (r, r′) = G1 +G2 (33)

with the component dyadics given for j = 1 and 2 as follows:

Gj =
i

4π

∫ ∞
−∞

dh
∞∑

n=−∞

1
(k2

1s − k2
2s)

(−1)j+1

λ2
js

{
(1− δNf )M (1)

n,h(λ
f
j )

×
[
(1− δ1

s)A
fs
MjP

′−n,−h(−λsj) + (1− δNs )BfsMjP
′(1)
−n,−h(λ

s
j)

]
+ (1− δNf )

kλjs
εs
Q

(1)
n,h(λ

f
j )

[
(1− δ1

s)A
fs
QjM

′−n,−h(−λsj)

+(1− δNs )BfsQjM
′(1)
−n,−h(λ

s
j)

]
+ (1− δNf )

k2
λjs

εzsω2µsh2
U

(1)
n,h(λ

f
j )
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(1− δ1

s)A
fs
UjN

′−nt,−λ(−hsj) + (1− δNs )BfsUjN
′(1)
−nt,−h(λ

s
j)

]
+ (1− δNf )

k2
λjs

λ2
jsεzsω

2µs
V

(1)
n,h(λ

f
j )

[
(1− δ1

s)A
fs
V jN

′−nz,−h(−λsj)

+(1− δNs )BfsV jN
′(1)
−nz,−h(λ

s
j)

]
+ (1− δNf )Mn,h(−λfj )

×
[
(1− δ1

s)C
fs
MjP

′−n,−h(−λsj) + (1− δNs )DfsMjP
′(1)
−n,−h(λ

s
j)

]
+ (1− δNf )

kλjs
εs
Qn,h(−λfj )

[
(1− δ1

s)C
fs
QjM

′−n,−h(−λsj)

+(1− δNs )DfsQjM
′(1)
−n,−h(λ

s
j)

]
+ (1− δNf )

k2
λjs

εzsω2µsh2
Un,h(−λfj )

×
[
(1− δ1

s)C
fs
UjN

′−nt,−λ(−hsj) + (1− δNs )DfsUjN
′(1)
−nt,−h(λ

s
j)

]
+ (1− δNf )

k2
λjs

λ2
jsεzsω

2µs
V n,h(−λfj )

[
(1− δ1

s)C
fs
V jN

′−nz,−h(−λsj)

+(1− δNs )DfsV jN
′(1)
−nz,−h(λ

s
j)

]}
. (34)

The construction of the dyadic Green’s functions follows the similar
considerations to those in [38]. In other words, we have taken the
multiple transmissions and reflections into account when formulating
the scattering dyadic Green’s functions for the gyroelectric chiral
cylinder of multiple layers. Although the scattering DGF can be
reduced directly to that of the isotropic medium, it does differ in
form from that of the isotropic medium. Therefore, it is necessary
to formulate it in detail subsequently.

3.2. Boundary Condition Equations

The electric dyadic Green’s function, G
(fs)
e (r, r′), satisfies the

following boundary conditions at the cylindrical interfaces ρ = ρj(j =
1, 2, ..., N − 1):

ρ̂×G(fs)
e (r, r′) = ρ̂×G[(f+1)s]

e (r, r′), (35a)

ρ̂×
[

1
µf

∇× G
(fs)
e (r, r′)− ωξcf G

(fs)
e (r, r′)

]
= ρ̂×

[
1

µf+1
∇×G[(f+1)s]

e (r, r′)− ωξc(f+1)G
[(f+1)s]
e (r, r′)

]
. (35b)
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To simplify the derivation of the general solution of the coefficients,
we rewrite the boundary conditions (35a) and (35b) into the following
matrix form.

3.3. Recurrence Formulae of Scattering DGFs’ Coefficients

By using the boundary conditions, a set of linear equations of the
scattering coefficients, which can be replaced by a series of compact
matrices as done in [14], is obtained. The following compact recurrent
equations are formulated:[
Flj(f+1)

]
·
{[

Υlj(f+1)s

]
+ δsf+1

[
U(f+1)

]}
= [Fljf ] ·

{
[Υljfs] + δsf [Df ]

}
(36)

where j = 1, 2 and l = M,Q,U and V . These matrices are given by

[FMjf ] =

 ∂h̄j ∂j
λ2jf
µf

υjf h̄j − ωξcf∂h̄j
λ2jf
µf

υjf j − ωξcf∂j

 , (37a)

[Fljf ] =


χljf
kλjf

h̄j
1
kλjf

[
wltjh

2+wlzjλ
2
jf

µf
∂h̄j − ωξcfχljf h̄j

]
χljf
kλjf

j
1
kλjf

[
wltjh

2+wlzjλ
2
jf

µf
∂j − ωξcfχljf j

]

T

, (37b)

h̄j = H(1)
n (λjfρf ), (37c)

j = Jn(λjfρf ), (37d)

∂h̄j =
d

[
H

(1)
n (λjfρ)

]
dρ

|ρ=ρf , (37e)

∂j =
d [Jn(λjfρ)]

dρ
|ρ=ρf , (37f)

υjf =
nh

λ2
jfρf

+ 1, (37g)

χljf =
1

kλjf

[
wltj

nh

ρf
+ wlzjλ

2
jf

]
. (37h)

The terms wltj and wlzj are the weighting factors associated with the
scattering coefficients Afslj , Bfslj , Cfslj and Dfslj . They are expressed as

wqtj =
gs
h

(εzsω2µs − λ2
js) + 2εzsωµsξcs, (38a)
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wqzj = gshjs + 2εsωµsξcs, (38b)

wutj = (k2
λjs − εsω

2µs)(εzsω2µs − λ2
js) + 4λ2

jsω
2µ2
sξ

2
cs, (38c)

wuzj = h
[
h(k2

λ − εsω
2µs)− 2ω2µ2

sξcs(2hξcs + gsω)
]
, (38d)

wvtj = λ2
jsk

2
λjs − εsω

2µs −
2ω2µ2

sξcs
h

(2hξcs + gsω), (38e)

wvzj =
1
εs

{
k2
λjs

[
λ2
jsεs + h2(εzs − εs)

]
+ ω2µs

[
g2
sλ

2
js

+ h2(2εs − εzs)(εs + 4µsξ2
cs) −k2

λjsεs(εzs + 4µsξ2
cs)

]
+ 4gsh(εs−εzs)ω3µ2

sξcs+ω4µs(gs−εs)(gs+εs)(εs−εzs)
}
. (38f)

The following matrices are also given as

[Υljfs] =

 Afslj Bfslj

Cfslj Dfslj

 , (39a)

[Uf ] =
[

1 0
0 0

]
, (39b)

[Df ] =
[

0 0
0 1

]
. (39c)

Defining the following transmission T-matrix:

[Tljf ] =
[
Flj(f+1)f

]−1
· [Fljff ] (40)

where
[
Flj(f+1)f

]−1
is the inverse matrix of

[
Flj(f+1)f

]
, we rewrite the

linear equation into the following form:[
Υlj(f+1)s

]
= [Tljf ] ·

{
[Υljfs] + δsf [Df ]

}
− δsf+1

[
U(f+1)

]
. (41)

We also introduce:[
TKlj

]
2×2

= [Tlj,N−1] [Tlj,N−2] · · · [Tlj,K+1] [Tlj,K ]

=

[
TKlj,11 TKlj,12

TKlj,21 TKlj,22

]
. (42)

It should be noted that the coefficients matrices of the first and the
last layers have the following relations:

[Υlj1s] =

[
A1s
lj B1s

lj

0 0

]
, (43a)
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[ΥljNs] =
[

0 0
CNslj DNslj

]
. (43b)

It should be pointed out that the current formulation for the
gyroelectric chiral media is more generalized as compared to those for
isotropic and chiral media in [1] and [14]. Also, it is realized from the
current programming exercises that the explicit symbolic derivations
of the scattering coefficients of the dyadic Green’s functions for an
arbitrarily large number of planar layers is not realistic so far, although
possible in principle. It is basically due to the restrictions of computer
platforms themselves and symbolic features of the software packages
such as Mathematica. Therefore, the current procedure of formulating
some of the intermediates is necessary.

3.4. Three Specific Cases

Although general, the previously obtained coefficients can be
significantly reduced in form, respectively, for the following three cases
where the source point is located in the first, the second, and the third
regions.

3.4.1. Source in the First Layer

When the current source is located in the first layer (i.e., s = 1), the
first term containing (1−δ1

s) in (34) vanishes. These will further reduce
the coefficient matrices in (39a) and (3.3) to:

[Υlj,11] =
[

0 B11
lj

0 0

]
, (44a)

[Υlj,m1] =

[
0 Bm1

lj

0 Dm1
lj

]
, (44b)

[Υlj,N1] =
[

0 0
0 DN1

lj

]
, (44c)

where m = 2, 3, · · · , N − 1. It can be seen that only four coefficients
for the first layer or the last layer, and 8 coefficients for each of the
remaining layers need to be solved for. Following (41), the recurrence
relations in the f th layer become:

[Υlj,f1] = [Tlj,f−1] · · · [Tlj,1] {[Υlj,11] + [D1]} . (45)

With f = N in (45), a matrix equation satisfied by the coefficient
matrices in (3.4.1) can be obtained. The coefficients for the first layer
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where the source is (i.e., s = 1) is given by:

B11
lj = −

T
(1)
lj,12

T
(1)
lj,11

. (46)

The coefficients for the last layer can be derived in terms of the
coefficients for the first layer given by:

DN1
lj = T

(1)
lj,21B

11
lj + T

(1)
lj,22. (47)

The coefficients for the intermediate layers can be then obtained by
substituting the coefficients for the first layer in (46) to (45). Thus, all
the coefficients can be obtained by these procedures.

3.4.2. Source in the Intermediate Layers

When the current source is located in an intermediate layer, (i.e.
s 	= 1, N), only the terms containing (1 − δ1

f ) for the first layer and
(1− δNf ) for the last layer vanishes in (34). We thus have:

[Υlj,1s] =

[
A1s
lj B1s

lj

0 0

]
, (48a)

[Υlj,ms] =

[
Amslj Bmslj
Cmslj Dmslj

]
, (48b)

[Υlj,Ns] =

[
0 0

CNslj DNslj

]
. (48c)

From (41), the recurrence equation becomes:

[Υlj,fs] = [Tlj,f−1] · · · [Tlj,s] {[Tlj,s−1] · · · [Tlj,1] [Υlj,1s]
+u(f − s− 1) [Ds]− u(f − s) [Us]} , (49)

where u(x− x0) is the unit step function. For f = N , the coefficients
for the first layer are given by:

A1s
lj =

T
(s)
lj,11

T
(1)
lj,11

, (50a)

B1s
lj = −

T
(s)
lj,12

T
(1)
lj,11

. (50b)
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For the last layer,
CNslj = T

(1)
lj,21A

1s
lj − T

(s)
lj,21, (51a)

DNslj = T
(1)
lj,21B

(s)
lj + T

(s)
lj,22. (51b)

Substituting (3.4.2) into (49), the rest of the coefficients can be
obtained for the dyadic Green’s function.

3.4.3. Source in the Last Layer

For the source to be located in the last layer (i.e., S = N), the
coefficients are:

[Υlj,1N ] =

[
A1N
lj 0
0 0

]
, (52a)

[Υlj,mN ] =

[
AmNlj 0

CmNlj 0

]
, (52b)

[Υlj,NN ] =

[
0 0

CNNlj 0

]
. (52c)

From the recurrence equation (41), similarly we have,

[Υlj,fN ] = [Tlj,f−1] · · · [Tlj,1] [Υlj,1N ]− u(f −N) [UN ] . (53)

By letting f = N ,

A1N
lj =

1

T
(1)
lj,11

. (54)

And for the last layer,

CNNlj = T
(1)
lj,21A

1N
lj . (55)

Similarly, we can obtain the rest of the coefficients.
Thus, we have obtained a complete set of scattering dyadic Green’s

functions in a gyroelectric chiral medium in terms of the cylindrical
vector wave functions. Reduction can be made for formulating the
dyadic Green’s function in a less complex medium of specific cylindrical
geometries.
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4. CONCLUSION

A complete eigenfunction expansion of the dyadic Green’s functions
for a unbounded gyroelectric chiral medium and a cylindrically
multilayered gyroelectric chiral medium is presented in this paper. The
unbounded dyadic Green’s function in the gyroelectric chiral medium
is first obtained, based on the Ohm-Raleigh method. The scattered
dyadics are constructed with the principle of scattering superposition
for a multilayered medium. By the use of the boundary conditions
at each interface, the scattering coefficients of the dyadic Green’s
functions are represented in the form of compact recurrence matrices.
Further analysis is performed for three cases, i.e., the source excitation
located in the first, the intermediate and the last regions, respectively.
From the formulation of the generalized dyadic Green’s functions,
it is seen that (1) the general form of DGFs for the cylindrically
multilayered gyroelectric chiral medium can be reduced to those DGFs
for less complex media, such as chiral media, anisotropic media, and
isotropic media; (2) the wave mode splitting is observed from the
formulation of the DGFs; and (3) as a result, the dyadic Green’s
functions can be easily decomposed using the aforementioned modes.
In summary, the present paper contributes to (1) a correct formulation
of the unbounded dyadic Green’s function in a gyroelectric chiral
medium as compared with the published work [36] and [37], (2) a
detailed formulation of the irrotational part of the dyadic Green’s
functions which was quite often ignored in the recent publications
such as in [36], (3) a formulation of the dyadic Green’s functions in
a cylindrically multilayered gyroelectric chiral medium, and (4) the
compact matrix expression of the scattering coefficients of the dyadic
Green’s functions. Application of the present work can be made to
problems of electromagnetic wave propagation through and scattering
by, and antenna radiation in, cylindrically multilayered gyroelectric
chiral media.

APPENDIX A. INTEGRATION OF λ

To this end, we write

Mn(h, λ) = (∇× ẑ)Ψn(h, λ), (A1a)
M ′
−n(−h,−λ) = (∇′ × ẑ)Ψ′−n(−h,−λ), (A1b)
Nn(h, λ) =Nnt(h, λ) +Nnz(h, λ)

= (∇×∇× ẑ) 1
kλ

Ψn(h, λ). (A1c)
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Noting that ∇×∇×ẑ = ih∇−∇2ẑ = ih∇t−∇2
t ẑ where the subscript

t denotes the transverse gradient operator. Then,

Nnt(h, λ) = (ih∇t)
1
kλ

Ψn(h, λ), (A2a)

and
Nnz(h, λ) = (−∇2

t ẑ)
1
kλ

Ψn(h, λ). (A2b)

Similarly,

N ′−nt(−h,−λ) = (−ih∇′t)
1
kλ

Ψ′−n(−h,−λ), (A3a)

and
N ′−nz(−h,−λ) = (−∇′2t ẑ)

1
kλ

Ψ−n(−h,−λ), (A3b)

where Ψn(h, λ) is given by (8). In actuality, the differentiations are
performed before the integration. But in this case, it may be simpler
to perform the dλ integration before taking the derivative operations
insideMn(h, λ),Nnt(h, λ) andNnz(h, λ). Hence after exchanging the
order of dλ integration and differentiation, typical integrals involving
Mn(h, λ), Nnt(h, λ) and Nnz(h, λ) terms in (28) are of the form

I2 =
∫ ∞
0

dλ
f(λ)Jn(λρ)J−n(−λρ′)
λ(k2

λ − k2
1)(k

2
λ − k2

2)
. (A4)

With
Jn(λρ) =

1
2

[
H(1)
n (λρ) + H(2)

n (λρ)
]
,

we thus have

I2 =
1
2

lim
δ→0

∫ ∞
δ
dλ

f(λ)Jn(λρ)H
(1)
−n(−λρ′)

λ(k2
λ − k2

1)(k
2
λ − k2

2)

+
∫ ∞
δ
dλ

f(λ)Jn(λρ)H
(2)
−n(−λρ′)

λ(k2
λ − k2

1)(k
2
λ − k2

2)

 . (A5)

Here, the limit is introduced because now, a pole at λ = 0 exists in
each of the integrands due to the Hankel functions. Furthermore, by
letting λ = e−iπλ′, and using the reflection formulas H

(2)
n (e−iπλρ) =

(−1)nH(1)
n (λρ) and Jn(−λρ) = (−1)nJn(λρ),
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Figure A1. The contour C and the deformed path of integration on
the complex λ plane.

I2 =
1
2

lim
δ→0

[∫ ∞
δ
dλ

f(λ)Jn(λρ)H
(1)
n (λρ′)

λ(k2
λ − k2

1)(k
2
λ − k2

2)
+

∫ −δ
−∞

dλ′
f(λ)Jn(λ′ρ)H

(1)
n (λ′ρ′)

λ′(k2
λ − k2

1)(k
2
λ − k2

2)

]

=
1
2
P.V.

∫ ∞
−∞

dλ
f(λ)Jn(λρ)H

(1)
n (λρ′)

λ(k2
λ − k2

1)(k
2
λ − k2

2)
, (A6)

where P.V. represents a principal value integral. Notice that in (A6),
poles exist at λ = ±

√
k2

1,2 − h2 which may be on the real axis. But
again with the introduction of some loss, these Figure A1 and the
integral in (A6) is well defined.

Moreover, a residue contribution can be added to (A6) at the
origin to make it a complete contour integral. In other words,

I2 =
1
2

∫
C
dλ

f(λ)Jn(λρ)H
(1)
n (λρ′)

λ(k2
λ − k2

1)(k
2
λ − k2

2)

− 1
2|n|f(0)

(
ρ<

ρ>

)|n| [ 1
(h2 − k2

1)(h2 − k2
2)

]
, (A7)

where the following relation has been utilized:

lim
λ→0

[
Jn(λρ<)H(1)

n (λρ>)
]

= − i

|n|π

(
ρ<

ρ>

)|n|
.

In (A7), the last term is the residue contribution which has been
included in the first term to make C a continuous contour.
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Thus, we have for ρ > ρ′ the following formula:

I2 = πi
2∑
j=1

(−1)j+1f(λj)Jn(λjρ′)H
(1)
n (λjρ)

2λ2
j (k

2
1 − k2

2)

− 1
2|n|f(0)

(
ρ′

ρ

)|n| [ 1
(h2 − k2

1)(h2 − k2
2)

]
. (A8)

A similar operation on ρ < ρ′ will result in:

I2 = πi
2∑
j=1

(−1)j+1 f(λj)Jn(−λjρ)H
(1)
n (−λjρ

′)
2λ2
j (k

2
1 − k2

2)

− 1
2|n|f(0)(

ρ

ρ′
)|n|

[
1

(h2 − k2
1)(h2 − k2

2)

]
, (A9)

since f(λ) = f(−λ).
The term due to the residue contribution from the origin λ = 0 in

(28) is given by

I0 = − 1
8π2|n|

1
ε(h2 − k2

1)(h2 − k2
2)

{
(h2εz − ω2µεεz)

× (∇t × ẑ)(∇′t × ẑ) +
kλ
h

[
gω2µεz + 2hεzωµξc

]
× [(∇t × ẑ)(−ih∇′t) + (ih∇t)(∇′t × ẑ)]
+ kλ(gh + 2εωµξc)[(∇t × ẑ)(−∇′2t ẑ)− (∇2

t ẑ)(∇′t × ẑ)]

+
k2
λ

h2ω2µ

[
ω2µεz(k2

λ − ε ω2µ)
]
(ih∇t)(−ih∇′t)

+
k2
λ

hω2µ
[h(k2

λ − ω2µε)− 2ω2µ2ξc(2hξc + gω)]

× [(ih∇t)(−∇′2t ẑ)+(∇2
t ẑ)(ih∇t)]+

k2
λ

λ2εω2µ
{k2
λ[k

2
λε+h2(εz−2ε)]

+ ω2µ[g2(k2 − h2) + h2(2ε− εz)(ε + 4µξ2
c )− k2ε(εz + 4µξ2

c )]
+ 4ghω3µ2ξc(ε− εz) + ω4µ2(g − ε)(g + ε)(ε− εz)}ψn(h, λ)

× ψ′−n(−h,−λ)(−∇2
t ẑ)(−∇′2t ẑ)}ψn(h, λ)ψ′−n(−h,−λ)

(
ρ<

ρ>

)|n|
,

(A10)

where all the intermediates inside should be replaced by themselves
after taking λ = 0.
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This term I0 tends to vanish as a consequence of

(∇t×ẑ)(∇′t×ẑ)
(
ρ<

ρ>

)|n|
= (iρ̂− φ̂)(φ̂− iρ̂)

n2

ρ>ρ<

(
ρ<

ρ>

)|n|
, (A11a)

(∇t×ẑ)(−ih∇′t)
(
ρ<

ρ>

)|n|
= ih(iρ̂− φ̂)(ρ̂+ iφ̂)

n2

ρ>ρ<

(
ρ<

ρ>

)|n|
, (A11b)

(ih∇t)(∇′t × ẑ)
(
ρ<

ρ>

)|n|
= ih(ρ̂+iφ̂)(−iρ̂+φ̂)

n2

ρ>ρ<

(
ρ<

ρ>

)|n|
, (A11c)

(∇t × ẑ)(−∇′2t ẑ)
(
ρ<

ρ>

)|n|
= 0, (A11d)

(−∇2
t ẑ)(∇′t × ẑ)

(
ρ<

ρ>

)|n|
= 0, (A11e)

(ih∇t)(−ih∇′t)
(
ρ<

ρ>

)|n|
= −h2(ρ̂+ iφ̂)(ρ̂+ iφ̂)

n2

ρ>ρ<

(
ρ<

ρ>

)|n|
,

(A11f)

(ih∇t)(−∇′2t ẑ)
(
ρ<

ρ>

)|n|
= 0, (A11g)

(−∇2
t ẑ)(−ih∇t)

(
ρ<

ρ>

)|n|
= 0, (A11h)

(−∇2
t ẑ)(−∇′2t ẑ)

(
ρ<

ρ>

)|n|
= 0, (A11i)

where we assume that ∇2
t

(
ρ<

ρ>

)|n|
= 0 for ρ 	= ρ′. I0 = 0 is expected

on physical grounds since this is an unphysical field with λ = 0, h 	= 0.
In fact, this field does not satisfy the dispersion relationship.
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