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Abstract—In this paper new stability theorems for Yee’s Finite-
Difference Time-Domain (FDTD) formulation are derived based on
the energy method. A numerical energy expression is proposed. This
numerical energy is dependent on the FDTD model’s E and H field
components. It is shown that if the numerical energy is bounded,
then all the field components will also be bounded as the simulation
proceeds. The theorems in this paper are inspired by similar results in
nonlinear dynamical system. The new theorems are used to prove the
stability of a FDTD model containing non-homogeneous dielectrics,
perfect electric conductor (PEC) boundary, nonlinear dielectric and
also linear/nonlinear lumped elements. The theorems are intended to
complement the well-known Courant-Friedrich-Lewy (CFL) Criterion.
Finally it is shown how the theorems can be used as a test, to determine
if the formulation of new lumped element in FDTD is proper or not. A
proper formulation will preserve the dynamical stability of the FDTD
model. The finding reported in this paper will have implications in
the manner stability analysis of FDTD algorithm is carried out in the
future.
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1. INTRODUCTION

Classical Finite-Difference Time-Domain (FDTD) method using Yee’s
second order formulation [1] has been successfully employed to model
a wide range of microwave circuits and high-frequency printed circuit
board (PCB) assembly [2–5]. Traditionally to ensure numerical
stability of the algorithm for a linear model, the Courant-Friedrich-
Lewy (CFL) Criterion has to be fulfilled [3]. In an unstable algorithm
the computed E and H field components will increase without limit
as the simulation progresses. The CFL Criterion has been derived
with the assumption of homogeneous linear dielectric and unbounded
medium using Discrete Fourier Transform (DFT) (the Von Neumann
approach, [6, 9]). For a practical microwave circuit model the CFL
Criterion serves as a rule-of-thumb at best. A few attempts recently
extended the stability analysis to include linear dispersive media [6] and
linear lumped elements [7]. There is also an attempt to cast the FDTD
method into iterative matrix equation [8]. The methods reported
still rely on mathematical tools for linear systems (i.e., superposition
principle, DFT etc.) and will fail for nonlinear models. To-date
to the best of the authors’ knowledge, there is still no satisfactory
theory to explain the stability of FDTD formulation containing non-
homogeneous dielectrics, boundary condition, nonlinear dielectric and
also linear and nonlinear lumped elements arranged in an arbitrary
manner. In this paper new stability theorems based on the energy
method are derived to address the issue. This work is inspired
by stability theory of dynamical systems [10], notably the Second
Liapunov Method [11–13]. Although not shown due to lack of
space, the FDTD formulation is actually a discrete dynamical system.
The proof of the theorems is shown in Appendix A and B and
the application is demonstrated in the main text. The theorem
is used to prove what have been known throughout the years via
simulation, that the incorporation of certain lumped components such
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as resistor, capacitor, diode and bipolar junction transistor in the
FDTD framework is found to be stable. The theorems also show with
ease how a model containing non-homogeneous and nonlinear dielectric
is stable. The theorems are intended to complement the CFL Criterion
and the results of [6–8]. In Section 3 it is shown how the theorems
are used as a test, to determine whether the inclusion of new lumped
element in FDTD is proper without performing lengthy simulation. A
proper formulation will preserve the stability of the FDTD model. We
begin by considering a 3D FDTD model for PCB or microwave circuit
without any source (voltage or current source), with perfect electric
conductor (PEC) as the model boundaries. The new theorems are
stated and we proceed to prove the stability of the sourceless model.
Then we extend the theorems to check the stability of a 3D FDTD
model with voltage source. Finally a simple simulation example serves
to substantiate the results.

Terminal

RF/Microwave
Conector

Casing,
consisting
of PEC

Spiral
inductor

Active/Passive
discrete components
and integrated circuits

Resonating

PCB

structures

Figure 1. A typical microwave circuit module.

2. THE NEW STABILITY THEOREM

Figure 1 shows a typical 3D FDTD model for microwave circuit PCB
without any voltage or current source, with perfect electric conductor
(PEC) as the model boundaries. Discretization and field components
of each Yee’s Cell are shown in Figure 2. The model has nx, ny and nz
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Figure 2. Discretization of the 3D mode, and the standard Yee’s Cell
(i, j, k) with associated field components.

cells along x, y and z axis respectively. Initially we assume the model
to be non-magnetic, i.e., µ = µo for all H fields. Also the cells are the
same in size. All the E and H field components within the model have
update equations given by the following form [3–5].

H
n+ 1

2

x(i,j,k) = H
n− 1

2

x(i,j,k) −
∆t
µ
∇× Enx(i,j,k) (1a)

H
n+ 1

2

y(i,j,k) = H
n− 1

2

y(i,j,k) −
∆t
µ
∇× Eny(i,j,k) (1b)

H
n+ 1

2

z(i,j,k) = H
n− 1

2

z(i,j,k) −
∆t
µ
∇× Enz(i,j,k) (1c)

En+1
x(i,j,k) = Enx(i,j,k) +

∆t
εx(i,j,k)

[
∇×Hn+ 1

2

x(i,j,k) − J
n+ 1

2

x(i,j,k)

]
(1d)

En+1
y(i,j,k) = Eny(i,j,k) +

∆t
εy(i,j,k)

[
∇×Hn+ 1

2

y(i,j,k) − J
n+ 1

2

y(i,j,k)

]
(1e)

En+1
z(i,j,k) = Enz(i,j,k) +

∆t
εz(i,j,k)

[
∇×Hn+ 1

2

z(i,j,k) − J
n+ 1

2

z(i,j,k)

]
(1f)

where in (1a)–(1f)

∇× Enx(i,j,k) =
Enz(i,j+1,k) − Enz(i,j,k)

∆y
−
Eny(i,j,k+1) − Eny(i,j,k)

∆z
(1g)

∇×Hn+ 1
2

x(i,j,k) =
H
n+ 1

2

z(i,j,k) −H
n+ 1

2

z(i,j−1,k)

∆y
−
H
n+ 1

2

y(i,j,k) −H
n+ 1

2

y(i,j,k−1)

∆z
(1h)
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and so forth for y and z terms. Notice that the restriction for ε has
been removed, allowing it to vary according to location and orientation.
Though not indicated, εr(i,j,k) (r = x, y, z) can also be functions of field
components at previous time-steps. Similarly the current density term

J
n+ 1

2

r(i,j,k) (r = x, y, z) also depends only on E and H field components
at earlier time-steps.

Equations (1a)–(1f) will be known as the Canonical FDTD Form
for E andH field components. Update equations for many applications
can usually be written in this form. Let us now introduce two new
quantities, as defined by:

V n=
∆V
2

nz∑
k=1

ny∑
j=1

nx∑
i=1




∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µo(H
n− 1

2

r(i,j,k))
2

)

−Hn− 1
2

x(i,j,k)

[
∆t
∆y

(
Enz(i,j+1,k) − Enz(i,j,k)

)

− ∆t
∆z

(
Eny(i,j,k+1) − Eny(i,j,k)

)]

−Hn− 1
2

y(i,j,k)

[
∆t
∆z

(
Enx(i,j,k+1) − Enx(i,j,k)

)

− ∆t
∆x

(
Enz(i+1,j,k) − Enz(i,j,k)

)]

−Hn− 1
2

z(i,j,k)

[
∆t
∆x

(
Eny(i+1,j,k) − Eny(i,j,k)

)

− ∆t
∆y

(
Enx(i,j+1,k) − Enx(i,j,k)

)]




(2a)

Pd=−∆V
nz∑
k=1

ny∑
j=1

nx∑
i=1

{ ∑
r=x,y,z

1
2

(
En+1
r(i,j,k) + Enr(i,j,k)

)
J
n+ 1

2

r(i,j,k)

}
(2b)

where ∆V = ∆x∆y∆z. In equation (2a), V n is known as the
‘numerical energy’ of the 3D FDTD model at sequence n, it is
analogous to the stored electromagnetic energy in a physical system.
It comprises all the E field components at time-step n and H field
components at time-step n− 1

2 . Similarly the numerical energy V n+1

comprises all E and H field components at time-step n+ 1 and n+ 1
2

respectively. In (2b) each term 1
2(En+1

r(i,j,k) + Enr(i,j,k))J
n+ 1

2

r(i,j,k) will be
known as ‘elemental dissipation’ since it is the approximate power
density dissipated by lumped element coinciding with Er(i,j,k) field.
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The negative sum of all elemental dissipation multiplied by ∆V is the
total dissipation Pd of the model. Since all the boundaries are PEC, the
numerical energy within the model cannot escape from the boundary.
The following theorems give the relationship between numerical energy
and total dissipation, and the stability result.

Lemma 2.1 – Relationship between numerical energy and total
dissipation

Consider a 3D FDTD model with PEC boundaries of Figure 1.
Given that all field update equations are of the form (1a)–(1f), with
V n and Pd as defined in (2a) and (2b), then the following relation is
true:

V n+1 − V n = ∆t · Pd ✷ (3)

Lemma 2.2 – Positive definiteness of V n

Consider a 3D FDTD model with PEC boundaries of Figure 1.
Given that all field update equations are of the form (1a)–(1f), then
V n is positive definite if and only if:

(a) εx(i,j,k) > 0, εy(i,j,k) > 0, εz(i,j,k) > 0 and µ = µo > 0. (4a)

(b) For ε = min{εx(i,j,k), εy(i,j,k), εz(i,j,k)} and cm = 1√
µoε

, let:

∆t < min


 1

cm
√

2
√

1
∆y2

+ 1
∆z2

,
1

cm
√

2
√

1
∆x2 + 1

∆z2

,
1

cm
√

2
√

1
∆x2 + 1

∆y2




(4b)

where i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , ny}, k ∈ {1, 2, . . . , nz}. ✷

A function f(x) is positive definite when x 	= 0 implies f(x) > 0,
and f(x) = 0 when x = 0 [13]. Note that x can be a vector or a scalar.
The proofs for Lemma 2.1 and Lemma 2.2 are shown in Appendix A.
In this context stability implies the FDTD algorithm for the 3D model
is both numerically and dynamically stable. This means that if we
were to reduce ∆t to zero or increase the time-step n to infinity, the
solution for E and H field components would always remain bounded.

Definition 2.1 – Stability of FDTD algorithm

Suppose we construct a vector Xn whose elements consist of all
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E and H field components of the model:

X
n =




Enx(1,1,1)
Enx(2,1,1)

...
Enz(nx+1,ny+1,nz)

H
n− 1

2

x(1,1,1)

H
n− 1

2

x(2,1,1)
...

H
n− 1

2

z(nx,ny ,nz+1)




(5a)

dimXn = M = 6nxnynz + 3(nxny + nxnz + nynz) + nx + ny + nz
(5b)

Then the FDTD algorithm is stable when

∥∥Xn∥∥ ≤ C(T ) n = 1, 2, 3, . . . , N and N =
T

∆t
✷ (5c)

The symbol ‖x‖ means taking the ‘norm’ of a vector x [16],
which is a measure of the ‘distance’ between x and the origin. C(T )
is a positive real value which depends only on T , the maximum
computation time. N = T/∆t is the maximum sequence. As
∆t → 0, N will approach infinity. However (5c) dictates that C(T )
must be finite as N approaches infinity as long as T is bounded.
We allow C to be a function of T as certain solution of the FDTD
can increase with time. For instance when there is a source in the
model that increases with time, it is then reasonable to expect the
field components to gradually increase too. What (5c) means is that
the solution remains bounded for finite time interval. If (5c) is not
fulfilled as n increases, then the algorithm is not stable. Finally we
define the stability theorem:

Theorem 2.3 – Stability theorem for 3D FDTD model

Consider a 3D FDTD model with PEC boundaries of Figure 1,
if the model fulfills all the conditions in Lemma 2.2, then a sufficient
condition for it to be stable is Pd ≤ 0. ✷

The proof is given in Appendix B. The next section will shows how
Lemma 2.2 and Theorem 2.3 can be used to determine the stability of
a general 3D FDTD model for microwave circuits.
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3. APPLICATION EXAMPLE — ESTABLISHING THE
STABILITY OF A SOURCELESS 3D PRINTED CIRCUIT
BOARD (PCB) MODEL

Assume a PCB model of Figure 1. The PCB model contains non-
homogeneous dielectric, lumped resistors, lumped capacitors and
nonlinear components such as PN junctions and bipolar junction
transistors (BJTs). The FDTD update equations for E and H fields
of all these elements can be found in [2–5]. Initially we will consider a
sourceless 3D FDTD model for reasons to be explained in Section 4.
This means the model will not contain any source, such as the lumped
resistive voltage source [2]. We begin by computing the elemental

dissipation 1
2(En+1

r(i,j,k) +Enr(i,j,k))J
n+ 1

2

r(i,j,k) of each element, and show that
this is always greater or equal to 0 under normal E and H field
values. Furthermore we will also show that εr(i,j,k) is always positive
under normal field values. Element meeting these two characteristics
is called proper. An elemental dissipation > 0 means that the element
is absorbing numerical energy from the model. When all the elements
are proper, the total dissipation Pd will be equal to 0 or negative,
the condition of Theorem 2.3 will be fulfilled. We then limit the
time discretization ∆t as dictated by (4b) of Lemma 2.2. With the
final condition met, Theorem 2.3 tells us that the model will be
stable. For simplicity we assume the elements to be oriented in the
+z direction. This can always be generalized to elements oriented
along other directions.

Lossless Linear Dielectric

For the Ez field of a lossless linear dielectric [3]:

En+1
z(i,j,k) = Enz(i,j,k) +

∆t
εrεo
∇×Hn+ 1

2

z(i,j,k) (6a)

Comparing (6a) with the Canonical FDTD Form for Ez component:

J
n+ 1

2

z(i,j,k) = 0 and εz(i,j,k) = εrεo (6b)

Thus elemental dissipation 1
2(En+1

z(i,j,k) + Enz(i,j,k))J
n+ 1

2

z(i,j,k) = 0. Since
εz(i,j,k) = εrεo > 0, the lossless linear dielectric formulation is proper.
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Perfect Electric Conductor (PEC)

The electric field in a PEC is always 0. It can be written as:

En+1
z(i,j,k) = 0 = Enz(i,j,k) +

∆t
εPEC

∇×Hn+ 1
2

z(i,j,k) (7)

where εPEC → +∞, assuming E0
z(i,j,k) = 0. Again comparison with

Canonical FDTD Form shows that J
n+ 1

2

z(i,j,k) = 0, implying elemental
dissipation is 0. The PEC formulation is proper.

Capacitor

For a lumped capacitor C oriented in z axis, according to [2]:

En+1
z(i,j,k) = Enz(i,j,k) +




∆t
εo

1 +
C∆z

εo∆x∆y


∇×Hn+ 1

2

z(i,j,k)

= Enz(i,j,k) +
∆t

εo

(
1 +

C∆z
εo∆x∆y

)∇×Hn+ 1
2

z(i,j,k) (8a)

Comparing (8a) with Canonical FDTD Form:

J
n+ 1

2

z(i,j,k) = 0 and εz(i,j,k) = εo

(
1 +

C∆z
εo∆x∆y

)
(8b)

From (8b) the effective permittivity is always positive and the
elemental dissipation is 0. The capacitor formulation is therefore
proper.

Linear Dielectric with Loss

For the Ez field of a linear dielectric with conductivity σ, according
to [3]:

En+1
z(i,j,k)=


1− σ∆t

2ε

1 +
σ∆t
2ε


Enz(i,j,k) +




∆t
ε

1 +
σ∆t
2ε


∇×Hn+ 1

2

z(i,j,k)

=Enz(i,j,k)+
∆t

ε

(
1+
σ∆t
2ε

)∇×Hn+ 1
2

z(i,j,k)−2




σ∆t
2ε

1+
σ∆t
2ε


Enz(i,j,k) (9a)
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Comparing (9a) with Canonical FDTD Form:

εz(i,j,k) = ε

(
1 +

σ∆t
2ε

)
(9b)

∆t

ε

(
1 +

σ∆t
2εo

)Jn+ 1
2

z(i,j,k) = 2




σ∆t
2ε

1 +
σ∆t
2ε


⇒ J

n+ 1
2

z(i,j,k) = σEnz(i,j,k) (9c)

From (9b), εz(i,j,k) is always positive, but not the elemental dissipation.

Using x = Enz(i,j,k), d = σ∆t
2ε and y = ∇ × Hn+ 1

2

z(i,j,k), the elemental
dissipation is:

1
2

(
En+1
z(i,j,k) + Enz(i,j,k)

)
J
n+ 1

2

z(i,j,k) =
1
2

[
1− d
1 + d

x+
∆t

ε(1 + d)
y + x

]
(σx)

=
σ

2(1 + d)

(
2x+

∆t
ε
y

)
x (10)

This expression is not positive definite, certain combinations of x
and y will cause it to become negative. To ensure that it is always
positive or 0, we need to introduce extra conditions. Requiring that

σ
2(1+d)(2x+ ∆t

ε y)x ≥ 0:

For x ≥ 0 : y ≥ − 2ε
∆t
x⇒ ∇×Hn+ 1

2

z(i,j,k) ≥ −2
ε

∆t
Enz(i,j,k) (11a)

For x < 0 : y < − 2ε
∆t
x⇒ ∇×Hn+ 1

2

z(i,j,k) < −2
ε

∆t
Enz(i,j,k) (11b)

Most of the time the conditions of (11a) or (11b) are met,
especially when σ is small (low loss at σ < 10). Extensive real-time
examinations of elemental dissipation during FDTD simulation show
that the value is always positive for low to medium loss. We do not
have to explicitly impose conditions (11a) and (11b) during simulation.
Equations (11a) and (11b) imply that current flowing through the
element is always limited. This is similar to an electrical circuit with a
few paths having low resistance. Even though the low resistance path
can support large current, the circuit configuration will tend to limit
the current through the paths, ensuring positive power dissipation.
In the case of FDTD simulation, the system model will usually limit
the magnetic field components surrounding the electric field so that
power dissipation is positive. However since finite-difference is only
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an approximation to the actual Maxwell’s equations, it is expected
that the elemental dissipation can become negative once in a while.
Extensive simulations show that when σ is substantially greater than
10, the elemental dissipation of (10) results in negative values once in
a while. Most lossy dielectric material will have σ much smaller than
1. When the elemental dissipation is negative, we could impose the
following equality (complying with (11a) and (11b)) to force it to 0:

∇×Hn+ 1
2

z(i,j,k) = −2
ε

∆t
Enz(i,j,k) (12a)

Applying (12a) to the update equation of (9a) would result in:

En+1
z(i,j,k) = −Enz(i,j,k) (12b)

It is found that using (12b) for the case when elemental dissipation is
negative does not cause any noticeable change in the FDTD simulation
results. A typical flow of updating the E field for lossy dielectric with
elemental dissipation checking and correction is shown in Figure 3.
Therefore by modifying the update routine for linear dielectric with
loss according to the flow of Figure 3, we could again conclude that
the formulation is proper. A similar procedure can be used to show
that exponential time-stepping scheme [3] for high loss material is also
proper, the details are omitted due to lack of space. Formulation such

as this where we limit ∇ × Hn+ 1
2

z(i,j,k) given Enz(i,j,k) will be known as
conditionally proper.

Resistor

The update equation for a lumped resistive element of resistance
R is very similar to the form for linear dielectric with loss. We just
replace the term σ with ∆z

R∆x∆y [2].

En+1
z(i,j,k) =




1− ∆t∆z
2εoR∆x∆y

1+
∆t∆z

2εoR∆x∆y


Enz(i,j,k)+




∆t
εo

1+
∆t∆z

2εoR∆x∆y


∇×Hn+ 1

2

z(i,j,k)

(13)

Using similar modified update routine as in Figure 3, the formulation
for resistor is also proper. Again simulation evidence shows that this
is not required most of the time, except for low resistance.
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Figure 3. Modified update routine for linear dielectric with nonzero
conductivity.

Diode or PN Junction

Consider a PN junction in parallel to the z-axis, with the update
equation for the corresponding electric field given by (using the first
order approximation) [4]:

En+1
z(i,j,k) = Enz(i,j,k) −

C1

B1
(14)

C1 =
N∆t
ε∆x∆y

InD −
∆t
εo
∇×Hn+ 1

2

z(i,j,k),

B1 =
∆t∆z
ε∆x∆y

(
1
2
dID
dV

(V n) +
1

∆t
Cn

)
+ 1

InD = Is

(
exp

(
V n

ηVT

)
− 1

)
, V n = NEnz(i,j,k)∆z, VT =

kT

q

N is the orientation constant, it is +1 if the element is oriented in
+z direction (i.e., positive current flows in +z direction) [4]. Let
C2 = N∆t

εo∆x∆y
InD, we could write (14) as:

En+1
z(i,j,k) = Enz(i,j,k) +

∆t
εoB1

∇×Hn+ 1
2

z(i,j,k) −
C2

B1
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Comparing this with the Canonical FDTD Form:

εz(i,j,k) = εoB1 =
∆t∆z
∆x∆y

(
1
2
dInD
dV

+
1

∆t
Cn

)
+ εo

⇒ εz(i,j,k)

(
Enz(i,j,k)

)

=
∆t∆z
∆x∆y

(
Is

2ηVT
exp

(
NEnz(i,j,k)∆z

ηVT

)
+

1
∆t
Cn

)
+εo (15a)

∆t
εoB1

J
n+ 1

2

z(i,j,k) =
C2

B1
⇒ J

n+ 1
2

z(i,j,k) =
εo
∆t
C2 (15b)

From (15a) the effective permittivity εz(i,j,k) is a function of Enz(i,j,k)
and it is always positive, since Cn (the junction capacitance) and the
exponential term always gives positive values. Let us form the following
product to examine the sign of elemental dissipation:

D =
1
2

(
En+1
z(i,j,k) + Enz(i,j,k)

)
J
n+ 1

2

z(i,j,k) =
εo

2∆t

(
2Enz(i,j,k) −

C1

B1

)
C2 (16)

D is a function of Enz(i,j,k) and ∇ × Hn+ 1
2

z(i,j,k). Using x = Enz(i,j,k) and

y = ∇×Hn+ 1
2

z(i,j,k), a plot of D(x, y) versus x and y for a typical surface-
mount Schottky diode HSMS-2820 [15] is shown in Figure 4. The diode
is oriented in −z direction (N = −1) and the range of x and y are:

x ∈ [−1000, 7500], y ∈ [−5000, 5000]

Using V = NEnz(i,j,k)∆z, the range for x corresponds to 0.55 to
−4.125 Volts, from hard forward biased to hard reverse biased. This
range of x and y is typically encountered in simulation for low voltage
RF circuits. We could enlarge the coverage if we wish, with similar
result obtained. It is seen from Figure 4 that D is weakly influenced by
y. Figure 4 confirms that the elemental dissipation is always positive
or 0 for normal values of E field. In general it can be shown that
this is also true for all practical diode models. Thus from the above
arguments, the diode or PN junction formulation is also proper.
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Figure 4. D versus x = Enz(i,j,k) and y = ∇×Hn+ 1
2

z(i,j,k).

Bipolar Junction Transistor (BJT)

A procedure similar to analyzing the characteristics of the PN
junction can be employed to analyze the BJT. The BJT is formulated
according to [5] where it consists of two PN junctions, the emitter (BE)
and the collector (BC) junctions. The elemental dissipation of BE and
BC junctions are summed up simultaneously to give the total elemental
dissipation of the device. The individual dissipation can be negative,
but the total elemental dissipation is always positive or 0 as long as
the transistor is suitably biased. We can show that when the BJT
is not pushed to extreme saturation or cut-off, the BJT formulation
of [5] is also conditionally proper. This is done by verifying the total
device dissipation, εz(ic,jc,kc) and εz(ie,je,ke) (effective permittivity of
BC, BE junctions) are positive definite within the 4 operating regions
of a BJT, i.e., active, saturation, inverse and cut-off regions. The BJT
formulation is thus conditionally proper. Due to limited space the
details will be left out here.

Now suppose the model consists of many cubes of similar size,
with ∆x = 0.75 mm, ∆y = 0.8 mm, ∆z = 0.52 mm. The model is non-
magnetic, but the dielectric constant is not uniform, with variation of
ε across the model and a portion of the model is free space. Also from
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(6b), (8b), (9b) and (15a), the effective permittivity εr(i,j,k) is always
greater than εo. From this information, we conclude that the smallest
permittivity equals to εo as any dielectric which is not air will have εr
greater than unity. Using condition (4b) of Lemma 2.2:

cm =
1√
µoεo

∼= 1√
(4π × 10−7)(8.854× 10−12)

∼= 2.99796× 108

∆t < min




(
cm
√

2
√

1
∆y2

+
1

∆z2

)−1

= 1.02835× 10−12,

(
cm
√

2
√

1
∆x2

+
1

∆z2

)−1

= 1.0079× 10−12,

(
cm
√

2
√

1
∆x2

+
1

∆y2

)−1

= 1.2905× 10−12




⇒ ∆t < 1.0079× 10−12

Compare this with CFL Criteria:

∆t <
1

cm

√
1

∆x2
+

1
∆y2

+
1

∆z2

= 1.2573× 10−12

The new stability criterion has an increase in restriction by 19.84%.
Finally we conclude that if all elements used have update equations of
the above and ∆t < 1.0079× 10−12, then according to Lemma 2.2 and
Theorem 2.3, the model of Figure 1 will be stable. This means that if
the initial E and H field components at time-step n = 0 is not 0, all
field components will remain bounded as we advance the time-step n.

Notice that throughout this section we only require the effective
permittivity εr(i,j,k) of each E field component be positive. Thus the
permittivity can change with location, be a nonlinear function of field
components and yet the sourceless 3D model is still stable. So the
method proposed here could also be used to prove the stability of
model with non-homogeneous dielectric and nonlinear dielectric. In
the next section, the case when there is a resistive voltage source in
the model will be considered.
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4. EXTENSION OF THE STABILITY THEOREM TO 3D
MODEL WITH SOURCE

Suppose in addition to the elements mentioned in Section 3, the 3D
model of Figure 1 also contains a lumped resistive voltage source, with
update equation for Ez field given by [2]:

En+1
z(i,j,k) =

(
1−Dz

1 +Dz

)
Enz(i,j,k) +

∆t
ε(1 +Dz)

∇×Hn+ 1
2

z(i,j,k)

−
[

2Dz

(1 +Dz)∆z

]
V

(
n+

1
2

)
(17)

Where Dz = ∆t∆z
2Rsε∆x∆y

, V (n+ 1
2) is the independent voltage source as

a function of time-step n and Rs being the source resistance. V (n+ 1
2)

can represent a constant d.c. source, a pulse, sinusoidal function and
so forth. Converting (17) into the Canonical FDTD Form, we observe
that the equivalent current density is:

J
n+ 1

2

z(i,j,k) =
∆z

Rs∆x∆y

(
Enz(i,j,k) +

V (n)
∆z

)
(18)

By introducing x = Enz(i,j,k), y = ∇ × Hn+ 1
2

z(i,j,k) and v = V (n+ 1
2
)

∆z , the
elemental dissipation can be written as:

Dn+ 1
2 (x, y, v) =

1
2

(
En+1
z(i,j,k) + Enz(i,j,k)

)
J
n+ 1

2

z(i,j,k)

=
∆z

2Rs∆x∆y
· 1
1 +Dz

[
2x+

∆t
ε
y

]
x

− ∆z
2Rs∆x∆y

· 1
1 +Dz

[
2Dzv −

∆t
ε
y − 2(1−Dz)x

]
v

(19)

Again this equation is indefinite, Dn+ 1
2 can be positive or negative.

When source element such as (17) is present, Pd can become positive
and from Lemma 2.1 the numerical energy V n of the model can increase
with time-step. Assuming v is a constant positive value (we can
consider it to be a d.c. voltage source), a plot of the region A in the x-y
plane where elemental dissipation Dn+ 1

2 becomes negative is shown in
Figure 5. A similar but inverted region can be easily plotted when v
is a constant negative value.

A pertinent question is whether there is any further constraint
apart from region A? In fact there is. The first constraint is the
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−= ε2
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A

Vs

+zRs

Is

∆

Figure 5. Negative region A of the resistive voltage source when v > 0
and is constant.

current Is (see Figure 5) must not be more that Vs/Rs, which represents
the source current when the terminals are shorted. There are cases
when source current can exceed this limit but for a properly designed
circuit Vs/Rs is usually the threshold. The second constraint is for the
source of (17) to continuously supply power to the model, elemental
dissipation must always be negative or 0 at all sequence n. This means
if the (x, y) of sequence n result in Dn+ 1

2 ≤ 0, then (x, y) of sequence
n + 1 must also result in Dn+ 3

2 ≤ 0. From Appendix C, we can show
that these requirements can be expressed mathematically as:

y <
2ε
∆t

(Dzv − x) (20a)

Dn+ 1
2 (x, y, v) ≤ 0 (20b)

xn+1 =
(

1−Dz

1 +Dz

)
xn +

∆t
ε(1 +Dz)

yn+ 1
2 − 2Dz

1 +Dz
v ≥ −v (20c)

Using the criteria of (20a)–(20c), and assuming V (n + 1
2) = 1, a

new negative region, called B is shown in Figure 6a for Dz < 1 and
Figure 6b for Dz > 1. When (x, y) is outside the shaded region B, the
resistive voltage source will bound to stop supplying numerical power
to the model in future sequence and the E and H field components
will start to decrease.

The negative regions B identified in Figure 6a and Figure 6b
are still quite conservative, nevertheless it is sufficient for our next
argument. In order to have Dn+ 1

2 ≤ 0 for all n, the actual region could
be smaller than shown. For a resistive voltage source to continuously
supply numerical energy to the model, its state (x, y) must always be
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Figure 6a. Negative region for resistive voltage source fulfilling (20a)
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confined to B. Furthermore if the source V (n+ 1
2) is not constant, then

we can construct the negative region based on the largest magnitude
of V (n + 1

2). Negative regions for resistive voltage source when
V (n+1

2) is negative can be constructed in a similar manner using (20a)–
(20c). The importance of the negative regions can be summed up as
follows. Suppose an FDTD model as in Figure 1 contains all proper or
conditionally proper formulations and a few resistive voltage sources.
Then initially the numerical energy V n of the system will increase.
Since in Appendix B we have proven that V n is radially unbounded to
all field components, a diverging V n will entails at least one or more
E or H field components that are increasing. Due to the propagating
nature of Maxwell’s equations, a field component that is increasing
without limit will subsequently cause the rest of the model’s E and
H field components to increase too. The important feature of the
negative regions is that it is bounded as long as the source voltage Vs
is bounded and Rs greater than 0. If the increment of V n is not limited
by other dissipative elements in the model, (x, y) will eventually cross
the boundary of the negative region. Then the elemental dissipation
of the resistive voltage source will bound to become positive again
and the increment of numerical energy halts. Thus there is a built-
in mechanism (due to Rs) in the resistive voltage source formulation
to prevent uncontrolled increment of the field components. With
this we can conclude that the general FDTD model with resistive
voltage sources will be numerically stable if and only if the following 3
conditions are met:

1. Theorem 2.3 is fulfilled.
2. There is no other source except resistive voltage sources.
3. FDTD formulations of other elements are proper or conditionally

proper.

5. SIMULATION EXAMPLE

A simulation is carried out to verify the concepts discussed. Here
a short conducting trace energized by a resistive voltage source is
connected to a parallel RC load. The PEC boundary is used in this
experiment. The schematic and the top view of the FDTD model is
shown in Figure 7. The simulated voltage across the resistive voltage
source and the load is shown in Figure 8(A), while the numerical energy
V n is shown in Figure 8(B). In this model the resistive voltage source
is immersed in the dielectric and is z directed. Its voltage function
is a single pulse of amplitude 3.3 V, active during 0–2100 ps and then
set to 0 beyond 2100 ps. As seen in Figure 8(B) when the voltage
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11 cells along z-axiz.
Dielectric thickness = 3 cells

Resistive voltage source

PEC boundary

x

y

Vs

t
0

2000ps

3.3V

Zc=50

Parallel load

Figure 7. The schematic and top view of the test model.
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Figure 8. (A) Voltage across the resistive voltage source and the RC
load. (B) Numerical energy V n of the system.



Stability of classical FDTD formulation 69

P1

P2

P3

n = 0

n = 2000

Negative
region

x

y

Figure 9. Location of the state (x, y) for n = 0 to n = 2000 at an
interval of 10 time-steps.

source is active, V n increases rapidly and then saturates, as the ‘power’
supplied by the source equals the ‘power’ dissipated by the resistors in
the model. During active stage the state (x, y) of the resistive voltage
source is determined from the correspondingE andH fields and plotted
in the x-y plane of Figure 9. From the result we could clearly see that
the coordinate never leaves the negative region. After the voltage Vs
is deactivated, the resistive voltage source reverts to a normal resistor
model. We observe that the numerical energy V n of the model starts
to decline, as now all the elements in the model are proper.

6. CONCLUSIONS

The theorems in Section 2 are useful. They overcome the limitations
of Von-Neumann approach, which result in the CFL Criterion. First
and foremost, they can be used to determine and ensure the stability of
Yee’s FDTD model for microwave circuit or high-speed PCB with the
following conditions: (a) Variable and nonlinear dielectric constant.
(b) Containing linear and nonlinear lumped elements. (c) Including
the effect of PEC boundary. In applying Theorem 2.3, the only
requirement for permittivity ε is that it must be positive for all E
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field components while the requirement for permeability µ is that it
must be equal to µo for all H field components.

Secondly, the conditions imposed on εr(i,j,k), J
n+ 1

2

z(i,j,k) and Pd in
Lemma 2.2 and Theorem 2.3 can be used as a test to check whether
the FDTD formulation of a lumped element is proper. For a new
lumped element, we can write its E field update equation in the
Canonical FDTD Form, determine the equivalent current density and

compute its elemental dissipation 1
2(En+1

z(i,j,k) + Enz(i,j,k))J
n+ 1

2

z(i,j,k) against
all possible combinations of dependent field components as shown in
Section 3. As long as the elemental dissipation is greater or equal to 0
and εr(i,j,k) > 0, we know that the formulation is proper and will not
contribute to instability of the model.

The Von-Neumann and other linear approaches cannot be used to
analyze stability of the system under the above conditions of (a)–(c),
and traditionally rule-of-thumbs are used to ensure that the FDTD
model is stable. In addition, the approach presented here can also be
extended to include:
• Variable and nonlinear permeability.
• Non-uniform cell size.
• Dispersive elements and lumped inductors.
• Absorbing boundary condition.

The first and second extension can be carried out by writing
µ = µr(i,j,k) and reformulating the condition for V n to be positive
definite. The third extension can be carried out by implement a
monitoring algorithm much like Figure 3. The fourth extension can
be achieved by introducing a few layers of cells with conductivity
before the PEC boundary. A better approach would be to introduce
magnetic conductivity and magnetic current. Then formulate an
absorbing boundary condition (ABC) based on Perfectly Matched
Layer (PML) method [3]. Similar procedures as in the previous sections
can be used to derive extended theorem incorporating magnetic loss

of 1
2

(
H
n+ 1

2

r(i,j,k) +H
n− 1

2

r(i,j,k)

)
Mn
r(i,j,k), where Mn

r(i,j,k) is the corresponding

magnetic current density.
The method does have some disadvantages. It will fail when there

is update equations for either E or H field that cannot be written in
the Canonical FDTD Form. Also the condition for ∆t is slightly more
rigid than CFL Criterion. Finally the effect of absorbing boundary
condition based on mathematical formulation such as Mur’s ABC have
not been established. Efforts will be made to include this as well in
future research.
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APPENDIX A. FINITE-DIFFERENCE POWER
RELATION AND V N

Consider Figure A1, three lump elements coincide withEx(i,j,k), Ey(i,j,k)
and Ez(i,j,k) in Cube (i, j, k). The current density for each element is
Jx(i,j,k), Jy(i,j,k), and Jz(i,j,k).

x
y

z

Cube(i,j,k)

Lump element

Ez(i,j,k)

Ex(i,j,k)

Ey(i,j,k)

Hy(i,j,k)

Hz(i,j,k)

Hx(i,j,k)

x
y

z

∆
∆

∆

Figure A1. Lump elements coincide with Ex(i,j,k), Ey(i,j,k) and
Ez(i,j,k).

The numerical power dissipation density (E ·J) at n+ 1
2 time step

for Cube (i, j, k) is taken as:

P
n+ 1

2

(i,j,k) =
∑

r=x,y,z

1
2

(
En+1
r(i,j,k) + Enr(i,j,k)

)
J
n+ 1

2

r(i,j,k)

= (E · J)
n+ 1

2
x + (E · J)

n+ 1
2

y + (E · J)
n+ 1

2
z (A1)

Consider the first term of (A1). Solving (1d) for J
n+ 1

2

x(i,j,k):

(E · J)
n+ 1

2
x =

1
2

(
En+1
x(i,j,k) + Enx(i,j,k)

)
·
[
−

(
En+1
x(i,j,k)−E

n
x(i,j,k)

)
+

∆t
εx(i,j,k)

∇×Hn+ 1
2

x(i,j,k)

](εx(i,j,k)
∆t

)

= −1
2

(εx(i,j,k)
∆t

) (
(En+1

x(i,j,k))
2 − (Enx(i,j,k))

2
)

+
1
2

(
En+1
x(i,j,k) + Enx(i,j,k)

) (
∇×Hn+ 1

2

x(i,j,k)

)
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Now let us introduce three new notations:(
En · ∇ ×Hn+ 1

2

)
(i,j,k)

=
∑

r=x,y,z

Enr(i,j,k)∇×H
n+ 1

2

r(i,j,k) (A2)

(
Hn+ 1

2 · ∇ × En
)

(i,j,k)
=

∑
r=x,y,z

H
n+ 1

2

r(i,j,k)∇× E
n
r(i,j,k) (A3)

∇ ·
(
En+1 ×Hn+ 1

2

)
(i,j,k)

= −
(
En+1 · ∇ ×Hn+ 1

2

)
(i,j,k)

+
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)
(A4)

In (A2)–(A4) the time-step is not critical, for instance we could replace
n with n + 1 without affecting the validity. Using (A2) and summing
up the x, y and z components, (A1) can be written in a more compact
form:

−Pn+ 1
2

(i,j,k) =
1
2




∑
r=x,y,z

εr(i,j,k)

∆t

(
(En+1

r(i,j,k))
2 − (Enr(i,j,k))

2
)

−
(
En+1 · ∇ ×Hn+ 1

2

)
(i,j,k)

−
(
En · ∇ ×Hn+ 1

2

)
(i,j,k)




(A5)

Adding and subtracting (Hn+ 1
2 ·∇×En+1)(i,j,k) and (Hn+ 1

2 ·∇×En)(i,j,k)
to the second and third terms on the right-hand side of (A5):(

En+1 · ∇ ×Hn+ 1
2

)
(i,j,k)

=
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)

−∇ ·
(
En+1 ×Hn+ 1

2

)
(i,j,k)

(A6a)(
En · ∇ ×Hn+ 1

2

)
(i,j,k)

=
(
Hn+ 1

2 · ∇ × En
)

(i,j,k)

−∇ ·
(
En ×Hn+ 1

2

)
(i,j,k)

(A6b)

Using (A3), (1a)–(1c), the first term on the right-hand side of (A6a),
(A6b) can be expanded as:

(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)
= −

∑
r=x,y,z

µ

∆t

(
−(H

n+ 1
2

r(i,j,k))
2 + (H

n+ 1
2

r(i,j,k))
2

)

+
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)
(A7a)
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Hn+ 1

2 · ∇ × En
)

(i,j,k)
= −

∑
r=x,y,z

µ

∆t

(
(H

n+ 1
2

r(i,j,k))
2 − (H

n− 1
2

r(i,j,k))
2

)

−
(
Hn− 1

2 · ∇ × En
)

(i,j,k)
(A7b)

Finally substituting (A7a), (A7b), (A6a) and (A6b) into (A5), we
obtain the desired expression for numerical power dissipation density
at Cube (i, j, k):

1
2∆t

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n+1
r(i,j,k))

2 + µ(H
n+ 1

2

r(i,j,k))
2

)

− ∆t
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)

]

− 1
2∆t

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µ(H
n− 1

2

r(i,j,k))
2

)

− ∆t
(
Hn− 1

2 · ∇ × En
)

(i,j,k)

]

+
1
2

{
∇ ·

(
En+1 ×Hn+ 1

2

)
(i,j,k)

+∇ ·
(
En ×Hn+ 1

2

)
(i,j,k)

}

= −Pn+ 1
2

(i,j,k) = −
{ ∑
r=x,y,z

1
2

(
En+1
z(i,j,k) + Enz(i,j,k)

)
J
n+ 1

2

r(i,j,k)

}
(A8)

Equation (A8) only applies to a single Yee’s cell at index (i, j, k).
Now we determine the form for (A8) when sum up over all the cells.
We could expand the expression in the third braces on the left-hand
side of (A8) using (A2)–(A4). For E and H field components at n and
n+ 1

2 time steps:

∇ ·
(
En×Hn+ 1

2

)
(i,j,k)

=∇·
(
En×Hn+ 1

2

)
(i,j,k)x

+∇·
(
En×Hn+ 1

2

)
(i,j,k)y

+∇ ·
(
En×Hn+ 1

2

)
(i,j,k)z

=
1

∆y

[
Enx(i,j,k)H

n+ 1
2

z(i,j−1,k) − E
n
x(i,j+1,k)H

n+ 1
2

z(i,j,k)

]

+
1

∆z

[
Enx(i,j,k+1)H

n+ 1
2

y(i,j,k) − E
n
x(i,j,k)H

n+ 1
2

y(i,j,k−1)

]

+
1

∆z

[
Eny(i,j,k)H

n+ 1
2

x(i,j,k−1) − E
n
y(i,j,k+1)H

n+ 1
2

x(i,j,k)

]
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+
1

∆x

[
Eny(i+1,j,k)H

n+ 1
2

z(i,j,k) − E
n
y(i,j,k)H

n+ 1
2

z(i−1,j,k)

]

+
1

∆x

[
Enz(i,j,k)H

n+ 1
2

y(i−1,j,k) − E
n
z(i+1,j,k)H

n+ 1
2

y(i,j,k)

]

+
1

∆y

[
Enz(i,j+1,k)H

n+ 1
2

x(i,j,k) − E
n
z(i,j,k)H

n+ 1
2

x(i,j−1,k)

]
(A9)

The total sum of
nz∑
k=1

ny∑
j=1

nx∑
i=1
∇ · (En ×Hn+ 1

2 )(i,j,k) can be obtained by

considering the sum of each component. The details are not difficult
but very tedious; it will not be shown due to lack of space. For a 3D
model consisting of (nxnynz) cubes, it can be shown that:

nz∑
k=1

ny∑
j=1

nx∑
i=1

∇ · (En ×Hn+ 1
2 )(i,j,k) =

1
∆x

nz∑
k=1

ny∑
j=1

(
Eny(nx+1,j,k)H

n+ 1
2

z(nx,j,k)
− Eny(1,j,k)H

n+ 1
2

z(0,j,k)

− Enz(nx+1,j,k)H
n+ 1

2

y(nx,j,k)
+ Enz(1,j,k)H

n+ 1
2

y(0,j,k)

)

+
1

∆y

nz∑
k=1

nx∑
i=1

(
Enz(i,ny+1,k)H

n+ 1
2

x(i,ny ,k)
− Enz(i,1,k)H

n+ 1
2

x(i,0,k)

− Enx(i,ny+1,k)H
n+ 1

2

z(i,ny ,k)
+ Enx(i,1,k)H

n+ 1
2

z(i,0,k)

)

+
1

∆z

ny∑
j=1

nx∑
i=1

(
Enx(i,j,nz+1)H

n+ 1
2

y(i,j,nz)
− Enx(i,j,1)H

n+ 1
2

y(i,j,0)

− Eny(i,j,nz+1)H
n+ 1

2

x(i,j,nz)
+ Eny(i,j,1)H

n+ 1
2

x(i,j,0)

)
(A10)

Equation (A10) is also valid when En is replaced by En+1. Finally by
summing equation (A8) for all the cubes in a 3D model, we obtain the
total numerical power relation:

1
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n+1
r(i,j,k))

2 + µ(H
n+ 1

2

r(i,j,k))
2

)

− ∆t
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)

]
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−1
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µ(H
n− 1

2

r(i,j,k))
2

)

− ∆t
(
Hn− 1

2 · ∇ × En
)

(i,j,k)

]

+
∆t
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

{
∇ ·

(
En+1×Hn+ 1

2

)
(i,j,k)

+∇ ·
(
En×Hn+ 1

2

)
(i,j,k)

}

= −∆t
nz∑
k=1

ny∑
j=1

nx∑
i=1

{ ∑
r=x,y,z

1
2

(
En+1
r(i,j,k) + Enr(i,j,k)

)
J
n+ 1

2

r(i,j,k)

}
(A11)

It is understood that (A10) will be used to expand the third
term on the left-hand side of (A11). Equation (A11) is the finite-
difference Poynting power relation for a 3D FDTD model with the
update equations for E and H fields fulfilling the canonical form of
(1a)–(1f). Both (A10) and (A11) are still formidable to apply. It will
be applied to a model with PEC boundary surfaces as shown in Figure
1. All the following E field components on the boundaries will be zero
regardless of time-step n:

Enx(i,1,k), E
n
x(i,ny+1,k), E

n
x(i,j,1), E

n
x(i,j,nz+1) = 0

Eny(1,j,k), E
n
y(nx+1,j,k), E

n
y(i,j,1), E

n
y(i,j,nz+1) = 0

Enz(1,j,k), E
n
z(nx+1,j,k), E

n
z(i,1,k), E

n
z(i,ny+1,k) = 0

Substituting these components into (A10), we observe that:

nz∑
k=1

ny∑
j=1

nx∑
i=1

{
∇ ·

(
En+1×Hn+ 1

2

)
(i,j,k)

+∇ ·
(
En×Hn+ 1

2

)
(i,j,k)

}
= 0

(A12)

Thus putting (A12) into the numerical power relation (A11) yields:

1
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n+1
r(i,j,k))

2 + µ(H
n+ 1

2

r(i,j,k))
2

)

− ∆t
(
Hn+ 1

2 · ∇ × En+1
)

(i,j,k)

]

−1
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µ(H
n− 1

2

r(i,j,k))
2

)



76 Kung and Chuah

− ∆t
(
Hn− 1

2 · ∇ × En
)

(i,j,k)

]

= −∆t
nz∑
k=1

ny∑
j=1

nx∑
i=1

{ ∑
r=x,y,z

1
2

(
En+1
r(i,j,k) + Enr(i,j,k)

)
J
n+ 1

2

r(i,j,k)

}
(A13)

We observe that the left-hand side of (A13) consists of two expressions
in similar form. The former expression contains E and H field
components at time-step n+1 and n+ 1

2 . The latter expression contains
E and H field components at time-step n and n− 1

2 . Multiplying left
and right-hand side with ∆V and calling the first expression on the
left V n+1 and the second expression V n, (A13) can then be written in
a compact form:

V n+1 − V n = ∆t · Pd (A14)

By expanding V n using the definitions of (A3) and (1g), we see that V n
is similar to the definition in (2a) and Pd is as given in (2b). This proves
Lemma 2.1. ✷

The following steps will derive the positive definite criteria for V n.
Consider the expanded expression for V n:

V n =
∆V
2

nz∑
k=1

ny∑
j=1

nx∑
i=1




∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µ(H
n− 1

2

r(i,j,k))
2

)

−Hn− 1
2

x(i,j,k)

[
by

(
Enz(i,j+1,k) − Enz(i,j,k)

)
− bz

(
Eny(i,j,k+1) − Eny(i,j,k)

)]
−Hn− 1

2

y(i,j,k)

[
bz

(
Enx(i,j,k+1) − Enx(i,j,k)

)
− bx

(
Enz(i+1,j,k) − Enz(i,j,k)

)]
−Hn− 1

2

z(i,j,k)

[
bx

(
Eny(i+1,j,k) − Eny(i,j,k)

)
− by

(
Enx(i,j+1,k) − Enx(i,j,k)

)]




(A15)

Where bx = ∆t
∆x , by = ∆t

∆y and bz = ∆t
∆z . We could see that (A15)

is a quadratic form, with the E and H field components constituting
the variables. A quadratic expression can be written in matrix form
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[14, 16], for example:

f(x1, x2, x3) = 2x2
1 + x2

2 + 3x2
3 + 4x1x2 − 6x1x3 + 11x2x3

= [x1 x2 x3]
T


 2 2 −3

2 1 11
2

−3 11
2 3


[

x1

x2

x3

]

The square matrix is symmetry. When f(x1, x2, x3) is positive definite,
f > 0 when x1, x2, x3 	= 0 and f(0, 0, 0) = 0. To show that f(x1, x2, x3)
is positive definite, one can analyze the eigenvalues of the square
matrix. Only when all eigenvalues are greater than 0 is f(x1, x2, x3)
positive definite. Another approach is to apply Sylvester’s Criteria
[14]. Sylverster’s Criteria states that all the principal minors of the
square matrix must be larger than 0 for f(x1, x2, x3) to be positive
definite. By examining the principal minors of the matrix:

P1 = |2| = 2, P2 =
∣∣∣∣ 2 2
1 1

∣∣∣∣ = −2, P3 =

∣∣∣∣∣
2 2 −3
2 1 11/2
−3 11/2 3

∣∣∣∣∣ = −141.5

Not all principal minors are positive, so this quadratic form is not
positive definite. Both approaches are extremely difficult to apply
directly to equation (A15) due to the large number of variables. The
square matrix will be extremely large and computing its eigenvalues
or principal minors will require huge computing effort. Furthermore
this brute force approach is not practical, as we have to recompute the
eigenvalues or principal minors every time we change the configuration
of the model.

Therefore we seek an alternative method. We consider breaking
the right-hand side of (A15) into groups consisting of a few variables,
with each group ideally also of quadratic form. Using Sylvester’s
Criteria, conditions for each group to be positive definite are derived
and by combining the conditions from all group, a general criterion
can be obtained. This criterion is general in that if ∆x, ∆y, ∆z, ∆t,
ε and µ of each cube fulfill the general criteria, the function V n on
the whole will be positive definite. The basis of choosing the group
is that we would like the positive definite criteria to hold when there
is variation of permittivity (or effective permittivity) ε(i,j,k) across the
model. Suppose we just pay particular attention to 4 cubes, which
are adjacent to each other, as shown in Figure A2. For simplicity we
assume the model to be non-magnetic µ(i,j,k) = µ = µo and all cells
to be similar in size. Expanding (A15) and just concentrating on the
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stored energy in the 4 cubes of Figure A2.

V n =
∆V
2

{
· · · · · ·+

∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + 4 · 1
4
µ(H

n− 1
2

r(i,j,k))
2

)

−Hn− 1
2

x(i,j,k)

[
by

(
Enz(i,j+1,k)−Enz(i,j,k)

)
− bz

(
Eny(i,j,k+1)−Eny(i,j,k)

)]
−Hn− 1

2

y(i,j,k)

[
bz

(
Enx(i,j,k+1)−Enx(i,j,k)

)
− bx

(
Enz(i+1,j,k)−Enz(i,j,k)

)]
−Hn− 1

2

z(i,j,k)

[
bx

(
Eny(i+1,j,k)−Eny(i,j,k)

)
− by

(
Enx(i,j+1,k)−Enx(i,j,k)

)]
+

∑
r=x,y,z

(
εr(i−1,j,k)(E

n
r(i−1,j,k))

2 + 4 · 1
4
µ(H

n− 1
2

r(i−1,j,k))
2

)

−Hn− 1
2

x(i−1,j,k)

[
by

(
Enz(i−1,j+1,k)−Enz(i−1,j,k)

)
−bz

(
Eny(i−1,j,k+1)−Eny(i−1,j,k)

)]
−Hn− 1

2

y(i−1,j,k)

[
bz

(
Enx(i−1,j,k+1)−Enx(i−1,j,k)

)
− bx

(
Enz(i,j,k)−Enz(i−1,j,k)

)]
−Hn− 1

2

z(i−1,j,k)

[
bx

(
Eny(i,j,k)−Eny(i−1,j,k)

)
− by

(
Enx(i−1,j+1,k)−Enx(i−1,j,k)

)]
+

∑
r=x,y,z

(
εr(i,j,k−1)(E

n
r(i,j,k−1))

2 + 4 · 1
4
µ(H

n− 1
2

r(i,j,k−1))
2

)

−Hn− 1
2

x(i,j,k−1)

[
by

(
Enz(i,j+1,k−1)−Enz(i,j,k−1)

)
−bz

(
Eny(i,j,k)−Eny(i,j,k−1)

)]
−Hn− 1

2

y(i,j,k−1)

[
bz

(
Enx(i,j,k)−Enx(i,j,k−1)

)
− bx

(
Enz(i+1,j,k−1)−Enz(i,j,k−1)

)]
−Hn− 1

2

z(i,j,k−1)

[
bx

(
Eny(i+1,j,k−1)−Eny(i,j,k−1)

)
−by

(
Enx(i,j+1,k−1)−Enx(i,j,k−1)

)]
+

∑
r=x,y,z

(
εr(i,j−1,k)(E

n
r(i,j−1,k))

2 + 4 · 1
4
µ(H

n− 1
2

r(i,j−1,k))
2

)

−Hn− 1
2

x(i,j−1,k)

[
by

(
Enz(i,j,k)−Enz(i,j−1,k)

)
−bz

(
Eny(i,j−1,k+1)−Eny(i,j−1,k)

)]
−Hn− 1

2

y(i,j−1,k)

[
bz

(
Enx(i,j−1,k+1)−Enx(i,j−1,k)

)
−bx

(
Enz(i+1,j−1,k)−Enz(i,j−1,k)

)]
−Hn− 1

2

z(i,j−1,k)

[
bx

(
Eny(i+1,j−1,k)−Eny(i,j−1,k)

)
− by

(
Enx(i,j,k)−Enx(i,j−1,k)

)]
+ · · · · · ·

}
(A16)

In (A16), the justification for writing the H components as 4 ·
1
4µ(H

n− 1
2

r(i,j,k))
2, (r = x, y, z) is because each H component is surrounded
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x

y

z

Ex(i,j,k)

Ey(i,j,k)

Ez(i,j,k)

Hz(i,j-1,k)
Hz(i,j,k)

Hx(i,j-1,k)

Hy(i-1,j,k)

Hy(i,j,k)

Hx(i,j,k)

Hz(i-1,j,k)

Hy(i,j,k-1)
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Cube (i,j,k-1)

Cube

x

y

z∆

∆

∆

Figure A2. Four adjacent cubes.

or ‘shared’ by four other E field components, as seen in Figure A2.
Also we want each group to center around an E field component. So
the H field component has to be divided into four parts, each part
is associated with an adjacent E field. Collecting and regrouping the
terms in (A16) around Enx(i,j,k), E

n
y(i,j,k), E

n
z(i,j,k):

V n = · · · · · ·+

∆V
2




εx(i,j,k)(Enx(i,j,k))
2 +

1
4
µ(H

n− 1
2

y(i,j,k))
2

+
1
4
µ(H

n− 1
2

y(i,j,k−1))
2 +

1
4
µ(H

n− 1
2

z(i,j,k))
2 +

1
4
µ(H

n− 1
2

z(i,j−1,k))
2

+Enx(i,j,k)

[
bz

(
H
n− 1

2

y(i,j,k)−H
n− 1

2

y(i,j,k−1)

)
−by

(
H
n− 1

2

z(i,j,k)−H
n− 1

2

z(i,j−1,k)

)]




+
∆V
2




εy(i,j,k)(Eny(i,j,k))
2 +

1
4
µ(H

n− 1
2

x(i,j,k))
2

+
1
4
µ(H

n− 1
2

x(i,j,k−1))
2 +

1
4
µ(H

n− 1
2

z(i,j,k))
2 +

1
4
µ(H

n− 1
2

z(i−1,j,k))
2

+Eny(i,j,k)

[
bx

(
H
n− 1

2

z(i,j,k)−H
n− 1

2

z(i−1,j,k)

)
−bz

(
H
n− 1

2

x(i,j,k)−H
n− 1

2

x(i,j,k−1)

)]



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+
∆V
2




εz(i,j,k)(Enz(i,j,k))
2 +

1
4
µ(H

n− 1
2

x(i,j,k))
2

+
1
4
µ(H

n− 1
2

x(i,j−1,k))
2 +

1
4
µ(H

n− 1
2

y(i,j,k))
2 +

1
4
µ(H

n− 1
2

y(i−1,j,k))
2

+Enz(i,j,k)

[
by

(
H
n− 1

2

x(i,j,k)−H
n− 1

2

x(i,j−1,k)

)
−bx

(
H
n− 1

2

y(i,j,k)−H
n− 1

2

y(i−1,j,k)

)]




+ · · · (A17)

In writing (A17) some irrelevant terms from (A16) have been excluded.
Each expression in the braces is a group. Call the first group V nxs since
its associated E field is along x axis, s is an integer enumerating the
E field index (i, j, k). Proceeding to group according to all E fields in
the model, (A17) can be written as:

V n = ∆V

(∑
s

V nxs +
∑
s

V nys +
∑
s

V nzs

)
, s = 1, 2, 3, . . . (A18)

By showing that each V nxs, V
n
ys, V

n
zs is positive definite, then V n is also

positive definite. Suppose we consider one of the groups centering on
Ez component. Writing this as:

Vz = εE2
1 +

1
4
µH2

3 +
1
4
µH2

1 +
1
4
µH2

2 +
1
4
µH2

4

+E1[by(H3 −H1)− bx(H2 −H4)]

= [E1 H1 H2 H3 H4]
T




ε −1
2by −1

2bx
1
2by

1
2bx

−1
2by

1
4µ 0 0 0

−1
2bx 0 1

4µ 0 0
1
2by 0 0 1

4µ 0
1
2bx 0 0 0 1

4µ






E1

H1

H2

H3

H4




= xTAx (A19)

Equation (A19) is only applicable for interior cells, i.e., when the cell
is not a boundary cell. In general to include boundary cells, the matrix
A should be generalized as:

A =




ε −1
2by −1

2bx
1
2by

1
2bx

−1
2by a2

1µ 0 0 0
−1

2bx 0 a2
1µ 0 0

1
2by 0 0 a2

3µ 0
1
2bx 0 0 0 a2

4µ




(A20)
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Where ai ∈ { 1√
2
, 1√

3
, 1√

4
}, i = 1, 2, 3, 4. The coefficient ai assumes

these values because at the boundary cell a H field component is
surrounded by two to three E field components only. This condition
is illustrated in Figure A3.

E

H

E

E E

E

E E

E

H

These E components
This E component is
zero

Corner Boundary
Surface Boundary

PEC on all
boundaries

are zero

Figure A3. H field components at surface boundary and corner
boundary.

For Vz to be positive definite, the matrix A of (A20) must fulfils
the Sylvester’s Criterion for positive definiteness. There are 5 principal
minors P1, P2 . . . , P5. We begin by computing the principal minors P1

and insisting that it is greater than zero, then repeating this for the
other principal minors. It is implicitly assumed that µ > 0.

P1 = ε > 0⇒ ε > 0 (A21a)

P2 =

∣∣∣∣∣ ε −1
2by

−1
2by a2

1µ

∣∣∣∣∣ = a2
1µε−

1
4
b2y > 0⇒ µε >

1
(2a1)2

b2y

Using by =
∆t
∆y

and c =
1√
µε
⇒ ∆t <

1

c

√
1

(2a1∆y)2

(A21b)

P3 =

∣∣∣∣∣∣∣
ε −1

2by −1
2bx

−1
2by a2

1µ 0
−1

2bx 0 a2
2µ

∣∣∣∣∣∣∣
= (a1a2µ)2ε−

µ

4
(a1bx)2 −

µ

4
(a2by)2 > 0

⇒ µε >

(
bx
2a2

)2

+
(
by
2a1

)2
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⇒ ∆t <
1

c

√
1

(2a2∆x)2
+

1
(2a1∆y)2

(A21c)

P4 =




ε −1
2by −1

2bx
1
2by

−1
2by a2

1µ 0 0
−1

2bx 0 a2
2µ 0

1
2by 0 0 a2

3µ




= (−1)1+4

(
1
2
by

) ∣∣∣∣∣∣∣
−1

2by a2
1µ 0

−1
2bx 0 a2

2µ
1
2by 0 0

∣∣∣∣∣∣∣+ (−1)4+4a2
3µP3 > 0

⇒ −
(a1a2

2
µby

)2
+

(
a2

3µ
)
P3 > 0

⇒ µε >

(
bx
2a2

)2

+
(
by
2a1

)2

+
(
by
2a3

)2

⇒ ∆t <
1

c

√√√√√√
1

(2a2∆x)2
+

1(
2

a1a3√
a2

1 + a2
3

)2

∆y2

(A21d)

P5 =

∣∣∣∣∣∣∣∣∣∣∣∣

ε −1
2by −1

2bx
1
2by

1
2bx

−1
2by a2

1µ 0 0 0
−1

2bx 0 a2
2µ 0 0

1
2by 0 0 a2

3µ 0
1
2bx 0 0 0 a2

4µ

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)1+5

(
1
2
bx

)
∣∣∣∣∣∣∣∣∣

−1
2by a2

1µ 0 0
−1

2bx 0 a2
2µ 0

1
2by 0 0 a2

3µ
1
2bx 0 0 0

∣∣∣∣∣∣∣∣∣
+(−1)5+5a2

4µP4 > 0

⇒ µε >

(
bx
2a2

)2

+
(
bx
2a4

)2

+
(
by
2a1

)2

+
(
by
2a3

)2

⇒ ∆t <
1

c

√√√√√√
1(

2a2a4√
a2

2 + a2
4

)2

∆x2

+
1(

2a1a3√
a2

1 + a2
3

)2

∆y2

(A21e)
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Table A1. Computation of coefficient for ∆x and ∆y.

a1 or a2 a3 or a4
2a1a3√
a21 + a23

or
2a2a4√
a22 + a24

ai i = 1, 2, 3, 4 2ai

1/
√

4 1/
√

4 1/
√

2 ∼= 0.70711 1/
√

4 2

1/
√

4 1/
√

3 1/
√

7 ∼= 0.75593 1/
√

3 2/
√

3 ∼= 1.15470

1/
√

4 1/
√

2 2/
√

6 ∼= 0.81650 1/
√

2 2/
√

2 ∼= 1.41421

1/
√

3 1/
√

3 2/
√

6 ∼= 0.81650

1/
√

3 1/
√

2 2/
√

5 ∼= 0.89443

1/
√

2 1/
√

2 1

From (A21a) to (A21e), we see that µ > 0, ε > 0 and ∆t needs to be
smaller than a certain limit. The smallest limit from (A21b) to (A21e)
for all combination of a1, a2, a3 and a4 will be taken as the constraint
for ∆t. Table A1 shows the values for the coefficient of ∆x and ∆y for
different combinations of a1, a2, a3 and a4.

Consider the expression:
1√

1
(c1∆x)2

+
1

(c2∆y)2

=
1√

1
c21

(
1

∆x2

)
+

1
c22

(
1

∆y2

)

The smallest value is obtained when the denominator is maximum. If
∆x and ∆y are fixed, then c1 and c2 must be as small as possible.
Using Table A1, we observe that:

1√
1

(2a1∆y)2

>
1√

1
(2a2∆x)2

+
1

(2a1∆y)2

>
1√√√√√

1
(2a2∆x)2

+
1(

2a1a3∆y√
a1 + a3

)2

>
1√√√√√√

1(
2a2a4∆x√
a2

2 + a4
2

)2 +
1(

2a1a3∆y√
a1 + a3

)2

(A22)

Also from Table A1, we observe that 2a1a3√
a21+a23

and 2a2a4√
a22+a24

are smallest

when a1 = a3 = a2 = a4 = 1√
4
. The corresponding coefficients for ∆x
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and ∆y are 1√
2
. We conclude that if ∆t satisfies:

∆t <
1

c

√√√√√
1(

1√
2

)2

∆x2

+
1(

1√
2

)2

∆y2

=
1

c
√

2
√

1
∆x2

+
1

∆y2

,

c =
1√
µε

(A23a)

Then all conditions of (A21b) to (A21e) will be fulfilled and Vz will
be positive definite. This procedure can also be applied to Vx and Vy,
whose details would not be provided:

For Vx : ∆t <
1

c
√

2
√

1
∆y2

+
1

∆z2

For Vy : ∆t <
1

c
√

2
√

1
∆x2

+
1

∆z2
(A23b)

Equations (A23a) and (A23b) apply to a single cell. To ensure that all
groups V nxs, V

n
ys and V nzs, s ∈ {1, 2, 3 . . . }, in the 3D model are positive

definite, these need to be enforced for every cell. This requirement can
be summarized as follows:

For a 3D FDTD model according to Yee’s formulation, suppose
the followings apply:

1. Update equations for E and H field components are given by the
Canonical FDTD Form (1a) to (1f).

2. Boundaries of the model are perfect electric conductor (PEC).
3. All cubes are similar in size with edges ∆x, ∆y and ∆z.

Then for all i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , ny}, k ∈ {1, 2, . . . , nz},
∆V = ∆x∆y∆z, the function:

V n =
∆V
2

nz∑
k=1

ny∑
j=1

nx∑
i=1

[ ∑
r=x,y,z

(
εr(i,j,k)(E

n
r(i,j,k))

2 + µ(H
n− 1

2

r(i,j,k))
2

)

− ∆t
(
Hn− 1

2 · ∇ × En
)

(i,j,k)

]

is positive definite if and only if:

• εx(i,j,k) > 0, εy(i,j,k) > 0, εz(i,j,k) > 0 and µ > 0.

• For ε = min{εx(i,j,k), εy(i,j,k), εz(i,j,k)} and cm = 1√
µε , let:
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∆t < min


 1

cm
√

2
√

1
∆y2

+ 1
∆z2

,
1

cm
√

2
√

1
∆x2 + 1

∆z2

,
1

cm
√

2
√

1
∆x2 + 1

∆y2




This proves Lemma 2.2.

APPENDIX B. STABILITY FOR 3D FDTD MODEL

We now prove Theorem 2.3. Suppose a FDTD framework satisfies all
the conditions of Lemma 2.1 and 2.2. Since V n is positive definite, it
can be written in the form [16]:

V n = X
T
P X, X ∈ RM (B1)

where M is as given by (5b) and P is a square symmetric matrix of
order M . Superscript T represents matrix transposition. Introducing
the linear transformation X = QY :

V n = Y
T

(
Q
T
P Q

)
Y (B2)

The matrix transformation Q
T
P Q of (B2) is a special form of

Similarity Transformation known as Congruence Transformation [16].
Since matrix P is positive definite, from linear algebra we know that
a nonsingular matrix Q exists such that [16, chapter 3]:

Q
T
P Q = diag(1, 1, 1, . . . , 1)

Thus

V n = Y
T

(
Q
T
P Q

)
Y = Y

T
Y = y2

1 + y2
2 + y2

3 + · · ·+ y2
M (B3)

Taking an arbitrary norm for Y = Q
−1
X:

∥∥Y ∥∥ =
∥∥∥∥Q−1

X

∥∥∥∥ ≤
∥∥∥∥Q−1

∥∥∥∥∥∥X∥∥ (B4)

Where
∥∥∥∥Q−1

∥∥∥∥ is a finite positive value called the matrix or operator

norm as defined in [16, chapter 2]. We thus have the following
implication from (B4):∥∥Y ∥∥→∞⇒ ∥∥X∥∥→∞ (B5)
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Observe that from (B3), V n = X
T
P X = Y

T
Y is radially unbounded

[13, chapter 3] in relation to elements of Y . This means that if
V n approaches infinity, at least one of the elements of Y must also
approaches infinity. Suppose we use the L2 vector norm:∥∥X∥∥ =

(
x2

1 + x2
2 + · · ·x2

M

) 1
2 and

∥∥Y ∥∥ =
(
y2
1 + y2

2 + · · ·+ y2
M

) 1
2

(B6)

Using (B5) we note that V n is also radially unbounded in relation to
elements of X. This implies that if V n is bounded, all the elements in
X must also be finite, i.e., all the E and H field components are finite.
For V n to be bounded for n = 1, 2, 3, . . . , a sufficient condition is Pd
be negative or zero. This completes the proof. ✷

APPENDIX C. NEGATIVE REGION FOR RESISTIVE
VOLTAGE SOURCE

We first note from [2] that to derive equation (17) the current of a
resistive voltage source is:

I
n+ 1

2
s =

∆t
2Rs

(
Enz + En+1

z

)
+
V
n+ 1

2
s

Rs
(C1)

From ∇× H̃ = J̃ + ε∂Ẽ∂t and using center difference scheme according
to Yee’s formulation [3], concentrating on z component of E field at
(i, j, k) (assuming the source to coincide with Ez(i,j,k)):

∇×Hn+ 1
2

z(i,j,k) =
I
n+ 1

2
s

∆x∆y
+
ε

∆t

(
En+1
z(i,j,k) + Enz(i,j,k)

)
(C2)

Let V
n+ 1

2
s be a constant, called it Vso and limiting the maximum

source current to Is(max) = Vso
Rs

. Let us also introduce the notations

x = Enz(i,j,k), x
n+1 = En+1

z(i,j,k), y = ∇ ×Hn+ 1
2

z(i,j,k), v = Vso
∆z . Then from

(C2):

∆t
ε
∇×Hn+ 1

2

z(i,j,k) −
(
En+1
z(i,j,k) + Enz(i,j,k)

)

=
∆tI

n+ 1
2

s

ε∆x∆y
< 2

∆t∆z
2ε∆x∆y∆z

· Vso
Rs

= 2Dzv

⇒ y <
2ε
∆t
Dzv +

ε

∆t
(
xn+1 − x

)
(C3)
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x

y

0

(y
t

= ε2
vx −=

C ∆
Dzv −x (

Figure C1. Intersection of Dn+ 1
2 (x, y, v) ≤ 0 and y < 2ε

∆t(Dzv − x).

Substituting (17) for xn+1 = En+1
z(i,j,k) into inequality (C3), and perfor-

ming some algebra:

y <
2ε
∆t
Dzv +

ε

∆t
1

1 +Dz

(
∆t
ε
y − 2Dz(x+ v)

)

⇒ y <
2ε
∆t

(Dzv − x) (C4)

The intersection of region described by (C4) and region A of Figure 5
is shown in Figure C1. We call this region C. From Figure C1, we
notice that in order for the resistive voltage source to be continuously
supplying energy to the model, the new value for xn+1 = En+1

z(i,j,k)

must be greater than −v. Otherwise there is no chance the elemental
dissipation can be negative. Thus enforcing this requirement from (17):

xn+1 =
1−Dz

1 +Dz
x+

∆t
ε(1 +Dz)

y − 2Dz

1 +Dz
v > −v

⇒ y > − ε

∆t
(1−Dz)(x+ v) (C5)

(C4), (C5) and Dn+ 1
2 (x, y, v) ≤ 0 corresponds to the (20a)–(20c).

Using these inequalities, the region of Figure 6a can be generated for
Dz < 1. Inequality (C5) will degenerate to y = 0 when Dz > 1,
allowing us to generate Figure 6b. ✷
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