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Abstract—The two-scale model provides a framework for explaining
the polarization and angular dependence of the microwave radiation
emitted from the ocean surface. In this model the surface is viewed
as a collection of randomly oriented facets. The emissivity of each
facet is calculated using the small perturbation method (SPM),
and that of the entire surface is obtained by integrating the local
emissivity over all possible surface slopes, weighted by the probability
of encountering these slopes. Since each SPM calculation involves a
double integral, the model requires in principle the evaluation of a four-
dimensional integral. This paper explores two methods for reducing the
computational time required by the two-scale model. In one version,
the azimuthal dependence of the local emissivity is represented by a
truncated Fourier series and slope integral is computed numerically.
In the second version the slope integral is carried out analytically,
after expanding the integrand as a Taylor series in the surface slope.
Hydrodynamic modulation effects are included in order to explain
the upwind-downwind asymmetry of the emissivity. The calculated
emissivities from the two versions of the model are compared with
each other and with airborne and spaceborne measurements.
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1. INTRODUCTION

The microwave emissivity of the ocean surface is influenced by both
the small-scale and the large-scale surface roughness. Many features
of the emissivity are accounted for by the geometric optics (GO)
model, which takes account of surface elements with length scales much
longer than the wavelength of the microwave radiation [1–4]. However,
several aspects of the emissivity also appear to require the small-
scale roughness to be accounted for. The two-scale model described
by Yueh [5] accounts for both length scales, but is computationally
intensive. The larger scales are accounted for by integrating the local
emissivity over all surface slopes, as in the geometric optics model. In
addition, small-scale surface roughness effects, which are ignored by
the GO model, are included by using the small perturbation method
(SPM) to compute the local emissivity. Unfortunately, since the
SPM involves a double integral for each local surface slope, a four-
dimensional integration is required for each Stokes parameter. The
large number of calculations required for a single evaluation of this
model limits it usefulness for wind speed inversion algorithms which
involve repeated model evaluations.

The efficiency of the model can be improved by using analytical
expressions for the angular dependence of the local emissivity. The
dependence of the emissivity on the local azimuthal angle is known to
be very well approximated by a second-order Fourier expansion. The
use of such an expansion allows a considerable reduction in computing
time with virtually no loss in accuracy. The dependence on the local
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incidence angle is more problematic, but we have explored the use of
a Taylor expansion to speed up the computation even further. These
approximations are described in the following sections, and the results
are compared with available measurements.

2. THE TWO-SCALE MODEL

In the two-scale model, the brightness temperature for each
polarization is given by

T b =

∞∫
−∞

∞∫
−∞

Tb(ηx, ηy)p(ηx, ηy)a(ηx)dηxdηy (1)

where Tb(ηx, ηy) is the brightness temperature for a surface element
with slopes ηx and ηy, p(ηx, ηy) is the slope probability density
function, and the factor

a(ηx) =
{

1− ηx tan θ ηx < cot θ
0 ηx > cot θ

(2)

accounts for the projected area of a facet in the line of sight direction
(the viewing direction is assumed to be in the positive x-z plane, at an
angle θ with respect to the z axis). The local brightness temperature
is a function of the surface slope because of two effects: (1) the change
in the local incidence and azimuth angles, and (2) the rotation of the
polarization basis vectors in the local coordinate system relative to
those in the global coordinate system.

The local incidence angle is given by cos θ′ = n̂ · k̂ where n̂ is
the local surface normal and k̂ is the unit vector in the direction of
observation. The local azimuth angle (relative to the wind direction)
is given by

tanφ′ =
nz sinφ sin θ + (nx sinφ− ny cosφ) cos θ
cosφ sin θ − (nx cosφ− ny sinφ) cos θ′

(3)

where nz is the vertical component of the surface normal, nx and ny are
the components in the plane of incidence and in the direction normal
to the plane of incidence, respectively, and φ is the global azimuth
angle or look direction relative to the wind direction.

The angle of rotation (α) between the polarization basis vectors in
the local and global coordinate systems is given by sinα = ny/ sin θ′.
Because of this rotation, electromagnetic radiation that is polarized
along one of the principal axes in the global coordinate system contains
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a mixture of polarizations in the local coordinate system, and vice
versa. Thus, the brightness temperature as measured in the global
coordinate system for a facet with slopes ηx and ηy can be written as

Tv(ηx, ηy) = T ′v cos2 α + T ′h sin2 α− U ′ sinα cosα.

Th(ηx, ηy) = T ′h cos2 α + T ′v sin2 α + U ′ sinα cosα (4)
and U(ηx, ηy) = U ′ cos 2α + (T ′h − T ′v) sin 2α.

where T ′v, T
′
h, and U ′ are the local Stokes parameters (the fourth Stokes

parameter, V , is invariant to rotations, and is therefore the same in
the global and local coordinate systems). The local Stokes parameters
may be considered as consisting of a geometric-optics component plus
a correction for small-scale surface roughness effects. The geometric-
optics temperatures can be written as and where and are the Fresnel
reflection coefficients and is the physical surface temperature. The
contributions due to small-scale surface roughness effects can be
written as

Tv0(θ′) = Ts

[
1−

∣∣Rv(θ′)
∣∣2] and Th0(θ′) = Ts

[
1−

∣∣Rh(θ′)
∣∣2]

where Rv and Rh are the Fresnel reflection coefficients and Ts is the
physical surface temperature. The contributions due to small-scale
surface roughness effects can be written as




Tv1
Th1
U1

V1


 = Ts




R
(1)
v + 2Re

{
RvR

(2)
vv

∗}

R
(1)
h + 2Re

{
RhR

(2)
hh

∗}

2Re
{
R

(1)
c + R

(2)
vhR

∗
h + RvR

(2)
hv

∗}

2Im
{
R

(1)
c + R

(2)
vhR

∗
h + RvR

(2)
hv

∗}




(5)

where

R(1)
p =

∫∫
Ω

g(1)
p (kx + kr, ky)W (kx, ky)dkxdky,

R(2)
pq =

∞∫
−∞

∞∫
−∞

g(2)
pq (kx + kr, ky)W (kx, ky)dkxdky,

W (kx, ky) is the wave height spectrum, and Ω is the region defined by
(kx + k sin θ)2 + k2

y ≤ k2 where k is the electromagnetic wavenumber
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(Yueh [5, 6]). The dependence of these terms on the look direction
or azimuthal angle is accurately represented by the truncated Fourier
series

Tv(θ, φ) = av0 + av1 cosφ + av2 cos 2φ,
Th(θ, φ) = ah0 + ah1 cosφ + ah2 cos 2φ,
U(θ, φ) = bU1 sinφ + bU2 sin 2φ, and
V (θ, φ) = bV 1 sinφ + bV 2 sin 2φ

(6)

where φ is the angle between the look direction and the wind direction.
Since this dependence is due entirely to the azimuthal dependence
of the wave spectrum, the Fourier coefficients can be obtained by
replacing the wave spectrum in the above expressions by

Wa0(kx, ky) =
1
2π

2π∫
0

W (kx, ky)dφ for av0 and ah0,

Wa2(kx, ky) =
1
π

2π∫
0

W (kx, ky) cos(2φ)dφ for av2 and ah2, (7)

and Wb2(kx, ky) =
1
π

2π∫
0

W (kx, ky) sin(2φ)dφ for bv2 and ah2.

Because of the symmetry of the wave spectrum, the first harmonics
(av1, ah1, bU1, and bV 1) are identically zero. Thus, only a few double
integrals are required for each local incidence angle. The slope integral
(1) is evaluated numerically by computing and storing the harmonic
coefficients (av0, ah0, av2, ah2, bv2, and bh2) for each local incidence
angle. For a given slope, the local incidence and azimuth angles are
computed, the harmonic coefficients are obtained by interpolating the
tabulated values, and the local emissivity is computed by evaluating
the Fourier series (7).

3. ANALYTICAL EVALUATION OF SLOPE INTEGRAL

The slope integral (1), can be evaluated analytically by first expanding
each of the local Stokes parameters as a Taylor series in the surface
slope, i.e.,

Tb(ηx, ηy) = Tb00 + Tb10ηx + Tb01ηy + Tb11ηxηy + Tb20η
2
x + Tb02η

2
y + · · ·

(8)
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where the coefficients are obtained by taking the derivatives of Tb
with respect to ηx and ηy. The derivatives of the geometric-optics
components can be readily found (up to second order), but the
derivatives of the SPM components are much more difficult to obtain.
Because the SPM contributions are much smaller in magnitude than
the geometric optics contributions, a fairly good approximation is to
neglect the derivatives of the SPM terms in this expansion. However,
these derivatives turn out to be important in conjunction with the
hydrodynamic modulation effects discussed in the following section.
We have therefore resorted to computing the first derivatives of the
SPM components numerically. Analytical expressions for the Fourier
harmonic coefficients obtained from this approximation are given in
Appendix A, and comparisons with numerical results are presented in
Section 5.

4. HYDRODYNAMIC MODULATION EFFECTS

The contributions to the brightness temperatures due to small-scale
surface roughness effects are proportional to the short wave spectral
density W (kx, ky). Spatial variations in this spectral density can
be described by means of the modulation transfer function (mtf)
m = mr + imi, which is defined such that the fractional change in
the short wave spectrum is given by

f(x, y) = Re
∫∫

mkψ(kx, ky)ei(kxx+kyy)dkxdky (9)

where ψ(kx, ky) is the one-sided Fourier transform of the surface
elevation. The surface slopes in the upwind and crosswind directions
can similarly be written as

ηu(x, y) = Re
∫∫

ikuψ(kx, ky)ei(kxx+kyy)dkxdky

and (10)

ηc(x, y) = Re
∫∫

ikcψ(kx, ky)ei(kxx+kyy)dkxdky

where ku = kx cosφ + ky sinφ and kc = ky cosφ − kx sinφ. Using the
properties 〈

ψ(kx, ky)ψ(k′x, k
′
y)

〉
= 0

and 〈
ψ(kx, ky)ψ∗(k′x, k

′
y)

〉
= S(kx, ky)δ(kx − k′x)δ(ky − k′y)
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where S(kx, ky) is the one-sided (large-scale) wave height spectrum, the
correlations between the short wave spectrum and the surface slopes
are then given by

〈fηu〉 =
1
2

∫∫
mikkuS(kx, ky)dkxdky

〈fηc〉 =
1
2

∫∫
mikkcS(kx, ky)dkxdky.

(11)

The second of these is zero because of the symmetry of the spectrum
about the wind direction. The expected value of the spectral
modulation can therefore be written as

f̂ = m′ηu where m′ = 〈fηu〉 /σ2
u =

∫∫
mikkuS(kx, ky)dkxdky∫∫
k2
uS(kx, ky)dkxdky

. (12)

This expression is readily incorporated into the slope integral (1) by
multiplying the SPM contributions by 1 + f̂(ηu).

5. COMPARISON OF NUMERICAL AND ANALYTICAL
RESULTS

Figure 1 shows a comparison of the analytical approximations discussed
in Section 3 with results obtained by the numerical integration
procedure discussed in Section 2. Both sets of calculations were made
using a Gaussian slope probability density function (pdf). The large-
scale slope variances and the SPM contributions were both calculated
using the wave spectrum of Durden and Vesecky [7]. The expression
m′ = −0.4/σu was used to produce a modulation transfer function
similar to that used by Yueh [1].

The numerical slope integration was done in polar coordinates,
with 90 angular and 50 slope subintervals, out to a maximum slope
of 5σ, where σ is the rms slope (i.e., the square root of the total
slope variance). The Stokes parameters were computed for 8 azimuth
angles, and the results were used to calculate the Fourier harmonic
coefficients by means of a least-squares fitting procedure. The time
required to calculate each set of harmonic coefficients for a single wind
speed was approximately 5 seconds on a 500 MHz Pentium processor,
as compared to about 0.2 seconds for the analytical approximation.

As can be seen in Figure 1, the numerical and analytical results
agree to within a few tenths of a degree K for low to intermediate wind
speeds but begin to diverge at higher wind speeds, especially for U
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Figure 1. Comparison of analytical and numerical two-scale model
results for a frequency of 19 GHz and an incidence angle of 55◦, using a
Gaussian slope pdf, the Durden-Vesecky spectrum, and a modulation
transfer function similar to that of Yueh [1].
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and Tv. This divergence presumably reflects the importance of higher-
order derivatives of the SPM contributions, which were neglected in
the analytical results shown here.

6. COMPARISONS WITH EXPERIMENTAL DATA

The measurements available for comparison with these calculations
include those from the JPL Windrad instrument, as represented by the
model functions reported by Yueh et al. [8], a large number of SSM/I
observations analyzed by Wick et al. [9], and the results reported by
Piepmeier and Gasiewski [10] using the airborne Polarimetric Scanning
Radiometer. Comparisons between these results and the numerical
predictions shown in Figure 1 showed differences in both the first
and second harmonics, especially at high wind speeds. We therefore
investigated various adjustments of the input parameters in order to
improve the agreement.

The first harmonics were found to be governed primarily by the
hydrodynamic mtf, while the second harmonics are dominated largely
by the SPM contributions. To improve the agreement in the first
harmonics, the imaginary part of the mtf was represented by the
equation

m′ = 0.1Uw − 2.5 (13)

where Uw is the wind speed in m/s. We also used the asymmetric
Gram-Charlier slope pdf, with the skewness coefficients reported by
Cox and Munk [11], instead of the Gaussian distribution.

Improving the agreement between the predicted and observed
second harmonics required a modification of the angular distribution
of the short wave spectrum. Recent observations of the azimuthal
dependence of the radar backscatter [12] also indicate that at high
wind speeds the second Fourier harmonic of the backscatter is smaller
than predicted by existing models such as Durden and Vesecky’s. We
therefore modified the Durden-Vesecky spectrum to produce a second
harmonic equal to that observed by Donnelly et al. [12] at Ku-band
and 50◦ incidence. Results using these parameters are compared with
the experimental data in Figures 2 and 3 for frequencies of 19 and
37 GHz, and an incidence angle of 55◦.
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Figure 2. Comparison of experimental data with analytical and
numerical two-scale model results for 19 GHz, using the modulation
transfer function and spectrum described in the text, and a Gram-
Charlier slope pdf with Cox and Munk’s skewness coefficients.
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Figure 3. Comparison of experimental data with analytical and
numerical two-scale model results for 37 GHz, using the modulation
transfer function and spectrum described in the text, and a Gram-
Charlier slope pdf with Cox and Munk’s skewness coefficients.
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7. CONCLUSIONS

The differences between the predicted and observed values of the first
and second harmonics of the Stokes parameters at 19 and 37 GHz
are on the same order as the differences among the measurements,
with the exception of the second harmonics inferred from SSM/I data
by Wick et al. [10] at wind speeds above 10 m/s. The differences
between the predicted second harmonics for Tv and the SSM/I values
are considerable, especially at 37 GHz. On the other hand, the
SSM/I values in this region are also much different from the aircraft
measurements and from the values obtained by Wentz [13] using a
different set of SSM/I observations.

It should be noted that our predictions do not include atmospheric
effects, and these effects may explain some of the differences between
the predictions and observations. Additional adjustment of various
parameters such as the modulation transfer function and the slope
probability density function may also improve the fit. Having
optimized these parameters, we expect the physically based models
described here to account for effects that are difficult to isolate using
available measurements, such as the effects of surfactants and of
atmospheric stability variations.
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APPENDIX A. ANALYTICAL EXPRESSIONS FOR
FOURIER HARMONICS

Using the approximations discussed in Section 3, the Stokes parameters
can be represented by the Fourier series

Tv(θ, φ) = Av0 + Av1 cosφ + Av2 cos 2φ,
Th(θ, φ) = Ah0 + Ah1 cosφ + Ah2 cos 2φ,
U(θ, φ) = BU1 sinφ + BU2 sin 2φ, and
V (θ, φ) = BV 1 sinφ + BV 2 sin 2φ

where

Av0 = Ts[1− ρv(θ)] + τvp0 + av0 −
(
a′v0p3 +

1
2
a′v2p4

)
tan θ
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Av1 =
Ts
4

[
ρv − ρh

sin θ cos θ
− 1

2
(ρ′v(θ) + 3ρ′′v(θ) tan θ)

]
p1

+ m′
[(

a′v0 +
1
2
a′v2

)
−

(
av0 +

1
2
av2

)
tan θ

]
σ2
u

Av2 = av2 +
Ts
2

[
ρh − ρv

sin2 θ
+

1
2

(
ρ′v(θ)

sin2 θ + 1
sin θ cos θ

− ρ′′v(θ)
)]

p2

− 1
2

(
a′v0p4 + a′v2p3

)
tan θ

Ah0 = Ts[1− ρh(θ)] + τhp0 + ah0 −
(
a′h0p3 +

1
2
a′h2p4

)
tan θ

Ah1 =
Ts
4

[
ρh − ρv

sin θ cos θ
− 1

2
(ρ′h(θ) + 2ρ′′h(θ) tan θ)

]
p1

+ m′
[(

a′h0 +
1
2
a′h2

)
−

(
ah0 +

1
2
ah2

)
tan θ

]
σ2
u

Ah2 = ah2 +
Ts
2

[
ρv − ρh

sin2 θ
+

1
2

(
ρ′h(θ)

sin2 θ + 1
sin θ cos θ

− ρ′′h(θ)
)]

p2

− 1
2

(
a′h0p4 + a′h2p3

)
tan θ

BU1 =
Ts
2

[
ρh − ρv
sin θ

+
ρ′v(θ)− ρ′h(θ)

cos θ

]
p1 +

1
2
m′

[
b′U2 − bU2 tan θ

]
σ2
u

BU2 = bU2Ts

[
ρv − ρh

sin2 θ cos θ
+

ρ′h(θ)− ρ′v(θ)
sin θ

]
p2 −

1
2
b′U2p3 tan θ

BV 1 =
1
2
m′

[
b′V 2 − bV 2 tan θ

]
σ2
u and BV 2 = bV 2 −

1
2
b′V 2p3 tan θ.

In these expressions, av0 etc. represent the SPM harmonic coefficients
discussed in Section 2 and a′v0 etc. represent the derivatives of these
harmonic coefficients with respect to the incidence angle. The pn
parameters are given by p0 = σ2

u + σ2
c , p1 = (c03σ2

u + c21σ
2
c )σu, p2 =

σ2
u−σ2

c , p3 = σ2
u+σ2

c+m′(c03σ2
u+c21σ

2
c )σu and p4 = σ2

u−σ2
c+m′(c03σ2

u−
c21σ

2
c )σu where σ2

u and σ2
c are the upwind and crosswind slope variances

and c03 and c21 are the Cox and Munk skewness coefficients. Finally,
ρv(θ) = |Rv(θ)|2 and ρh(θ) = |Rh(θ)|2 are the Fresnel reflectivities,
and τα = 1

2 [ρα(θ)−ρβ(θ)

sin2 θ
+ 1

2(ρ′α(θ) 3 sin2 θ−1
2 sin θ cos θ − ρ′′α(θ))]Ts where α = v or

h and β = h or v.
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