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Abstract—An analytical model of a grid composed of small S-shaped
conducting particles located on the surface of a dielectric slab is
presented. This approach replaces the original one-layer structure with
metallic particles printed on the interface by a multilayered structure
with homogenized permittivities for each layers. This way one can
homogenize the arrays of small resonant particles. The analytical
model is verified by numerical simulations for the case of normal
incidence of the plane wave. The homogenization is possible due to
the small sizes of S-particles compared to the resonant wavelength in
the substrate and due to the small thickness of the whole structure.
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1. INTRODUCTION

In [1, 2], the authors presented the study of coplanar waveguide
isolators (CPWI) containing a magnetized ferrite slab. In order to
improve the performance of the CPWI, it was proposed to add to the
structure a thin layer of dielectric with high permittivity. Without
this layer, the spatial distribution of the field of the guided mode gives
a weak interaction between the field and the ferrite. The addition
of a dielectric layer with εeff � 1 under the ferrite layer leads to
the re-distribution of the field, so that the influence of the ferrite
becomes dramatically higher. Finally the performance of the CPWI is
improved. The use of a very thin piezoelectric layer for this purpose
(as it was suggested in [1]) is possible but very expensive. On account
of this problem, we come to the idea of a small artificial dielectric layer
(composite) instead of a piezoelectric one.

Artificial dielectrics have been known for a long time (see e.g., [3]
and [4]). Conventional artificial dielectric materials are obtained with
simple inclusions like disks, spheres, ellipsoids or needles in a dielectric
matrix. These inclusions (that we will often name “particles”) have
small sizes compared to the wavelength. The distance between them is
also small enough with respect to λ. Such materials can be represented
by an effective permittivity εeff . Generally this effective permittivity
can reach values of 4–10 within a wide frequency band. In some
applications, however, one needs to obtain higher values of εeff , at
least within a narrow frequency band. A solution to this problem is to
prepare resonant artificial dielectrics.

At ultrashort waves resonant dielectric composites can be prepared
with interrupted wires [5]. For microwave applications planar
technology is preferable. One way to design artificial dielectrics at
microwave frequencies is to put conducting strips with complex shape
on a dielectric interface. In many works the problem of self-resonant
grids (meshes) was studied. For example, in [6] a grid composed of
Jerusalem crosses has been presented. However, such grids used as
artificial dielectrics have a serious disadvantage. For self-resonant grids
the cell size is close to λ/4 [6]. This makes the size of the whole
structure be rather large and as a consequence it is not applicable in
microwave devices like CPWI.

In [7], an artificial dielectric is realized using a set of electronically
controlled self-resonant grids (wires containing PIN-diodes inserted
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Figure 1. S-shaped particle geometry and grid unit cell parameters.

periodically). This leads to an active artificial dielectric but this is
a very complicated device. Finally its size is also larger than λ).

Another way to design resonant artificial dielectric is to use
isolated resonant particles. For this kind of materials, the resonance
is given by the resonance of individual particles. Classically, these
inclusions are called bianisotropic particles and their size is of the
order λ/10 (see for example papers on Ω-shaped conducting particles
[8, 9]). A huge body of literature is devoted to these microwave
composites (named bianisotropic composites) which possess resonant
material parameters (permittivity, permeability and magnetoelectric
coupling resonances). An overview is presented in book [10].

Considering the problem of CPWI [1], it is obvious that the
self resonant grids and the active artificial dielectrics give too big
thicknesses for the required layer and that the solution is to turn toward
composites with resonant particles. In the present paper we suggest
using S-shaped conductive particles in order to compose an artificial
dielectric layer. These particles have been first proposed to create
photonic crystals with unusual frequency properties in the microwave
frequency range [19]. Particles are printed on one side of a dielectric
film and arranged in a grid (Fig. 2). The grid periods dx, dy are much
smaller than the wavelength of the particle resonance in the medium
of the substrate.
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Figure 2. Structure under consideration: a square grid of S-particles.

For our purpose, we do not need a structure with bianisotropic
properties. The scatterer we suggest in order to create an artificial
dielectric is equivalent to a resonant electric dipole. By the way it
has also bianisotropic and paramagnetic properties but at frequencies
higher than those of our interest. The goal of our present work is
to show that an array of S-shaped particles printed on a dielectric
interface can be successfully interpreted as a bulk structure with
an effective anisotropic permittivity. For this purpose we develop
the homogenization model for a such structure and validate it by
comparison with the numerical study of the normal reflection and
transmission of a plane wave in the needed frequency range.

Quasi-static model of homogenization of dipole lattice of finite
thickness (with a few dipoles over the thickness) has been developed
[12]. The theory originates in very old classical works by Ewald
and Oseen. The frequency bounds of validity for this quasi-static
approximation have been studied analytically [13] and numerically
[14]. However, the case of resonant dipoles is still weakly studied.
Meanwhile, it can be noted that these kinds of structures are of
increasing interest. Thus, in [16], grids of resonant dipoles have been
suggested in order to obtain, in microwave band, an effective magnetic
wall at distances much smaller than λ/4 over a metal ground planes.
However, in [16], the question of the effective dielectric properties of
such grids was not discussed.

In the current paper we present a model for evaluating the effective
constitutive parameters of a structure that is equivalent to a grid of
resonant electric dipoles. Following [17] and [14], a planar grid of
dipoles embedded in a dielectric host medium is presented as a layer of
effective bulk medium. This can be done under two conditions. Firstly,
the grid of particles must be square. Secondly, the period of the grid
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must be much smaller than λ. In [18] the theory has been modified
for the special case when the particles are located on the dielectric
interface.

The main question that appears when one tries to homogenize
an array of resonant particles is the following. At the resonance the
effective permittivity εeff becomes high. So, the wavelength in the
effective medium λ/

√
εeff is getting smaller than the array period. So,

the homogenization model should become internally inconsistent.
Actually, in our case, it is not so and the homogenization is

possible for arrays of resonant dipoles even if their sizes are larger
than λ/

√
εeff . The reason is that the value λ/√εeff has no physical

meaning for a single 2D array of resonant particles illuminated by
a plane wave (we do not consider the grazing incidence). Our goal
is to interpret the structure as an anisotropic dielectric in order to
predict properly the reflection and the transmission of plane waves.
For this purpose a small number of layers of particles across the
structure is favorable for the bulk homogenization procedure. In order
to represent a grid of particles as a layer of a bulk medium one needs
only to define the procedure of averaging the microscopic field and
the polarization in a self-consistent way so as to obtain the correct
boundary conditions at the two effective interfaces (continuous normal
component of D and continuous tangential component of E). Then we
can nicely introduce the effective permittivity of a single layer (or of
a few layers) of particles. Both averaged field and local field acting
on each inclusion will not differ significantly from the incident wave
field. So, the crucial requirement for the homogenization in this case
is the smallness of the array period d compared to λ and not with
λ/
√
εeff . Of course, the situation will change dramatically in the case

with many layers of particles. When there are many layers and when
εeff is high, the effects of spatial dispersion appear even in the case
d� λ since both averaged and local field will vary from layer to layer
with respect to the small wavelength. At a given frequency within the
particle resonance band the disagreement with the numerical data will
increase proportionally to the number of layers N . So, our case when
N = 1 is the best in order to neglect the spatial dispersion.

2. DESCRIPTION OF THE ARRAY

The S-shaped particle geometry is shown in Fig. 1. This particle can
be considered at low frequencies, i.e., in the case when its size is small
compared to λ, as a resonant electric dipole. Hence, the magnetic
dipole moments of the two broken loops cancel out.

The polarizability of a particle is the tensor that relates the dipole
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moment to the local electric field as

p = a ·Eloc (1)

The main difficulty with the S-particle is due to the existence of a cross
component in the electric polarizability tensor of the particle: a y-
polarized electric field produces an x-component of the dipole moment
and vice versa. This effect also turns out to be resonant. To model
an artificial dielectric layer we must take into account all the non-
zero components of the polarizability tensor: axx, ayy and axy = ayx.
However, an appropriate choice of the particle parameters can give
a much higher resonant frequency for ayy and axy than the resonant
frequency of axx.

As an example, we have chosen the following parameters (see
Fig. 1): a = 0.62 mm, 2w = 0.03 mm, φ1 = 345◦, φ2 = −10◦.
The particle is assumed to be perfectly conducting and it is put
on a dielectric substrate with permittivity ε = 10.2 and thickness
h = 0.635 mm (this corresponds to the fluoropolymer composite film
R01030 delivered by Rogers Corporation).

With these particular choices, in the frequency range of our
interest 8 < f < 12 GHz we can neglect the contribution of both
ayy and axy into the effective permittivity of the composite layer. This
significantly simplifies our analytical model.

3. HOMOGENIZATION OF THE STRUCTURE

In this section we briefly explain the theory of homogenization using the
model of [17] which has been developed also in [14, 15, 18]. This model
replaces the square grid of parallel identical dipoles with polarizability
a and period d by an effective layer of thickness dp and bulk dielectric
susceptibility κp. This susceptibility, which has in our case only an
xx-component, must be calculated using the laws of electromagnetic
interaction between dipoles in a 2D grid. These equations give the
relation between the local field and the bulk averaged field; both are
calculated at dipole centers. This relation, as the usual Clausius-
Mossotti relation, allows to find the constitutive parameters of the bulk
structure which is equivalent to the original 2D grid (in the meaning
explained above). This equivalence has been confirmed and has been
used to calculate the reflection and transmission coefficients for various
frequencies [14] and angles of incidence [17, 15] for the case of non-
resonant particles.

Let us assume that we know the polarizability axx of the electric
dipoles that compose the square grid with period d. Following [17] and
[18], we must calculate the averaged field at any position. To do this,
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we must average the true electric field (which is the addition of the
field of incident wave with the field generated by the grid of dipoles
and the dielectric substrate). The averaging is done over a cubic cell
of volume V = d × d × d which is centered at the observation point.
The averaged field E (calculated at the center of an arbitrary dipole)
is related with the local field Eloc (acting on this dipole) by [18]:

E = Eloc − 0.359
p

ε′ε0V
(2)

Here the factor 0.359 is called interaction constant of a 2D dipole grid
[4] and it is denoted ε′ = (ε+ 1)/2 where ε is the relative permittivity
of the substrate†. Equation (2) is approximate but the accuracy is
sufficient if kd < 1, where k is the wave number in the host medium. In
this section we consider the x-components of the fields and polarization,
since the y- and z-component of the array polarization are negligible.

Using the equation p = axxEloc with relation (2) allows to express
the dipole moment of the bulk cell V as a function of the averaged
field:

p =
axxE

1− 0.359
ε′ε0V

axx
(3)

Suppose that the dipole moment is located at the observation
point, that is to say at the center of the averaging volume. In this
case (see Fig. 3, case (1)) the bulk polarization is equal to Pp = p/V
and the effective bulk susceptibility κp is equal to Pp/ε0E. If the
observation point is not exactly at the center of the dipole but even so
there is a particle in the averaging cell (as it is shown in Fig. 3, case
(2)), the dipole moment of this volume is still equal to p and the bulk
polarization is still equal to Pp = p/V . Hence, κp is non-zero within
the interval −d/2 < z < d/2.

It must be noticed also that the averaging volume includes part
of the dielectric substrate. So, in order to obtain the total averaged
polarization, we should add to Pp the bulk polarization due to the
dielectric substrate which we will denote as Pd. If d > h the substrate
occupies a part Vd of the averaging cell. Furthermore Vd depends on
the vertical coordinate z. Since the substrate susceptibility is equal to
κd = (ε − 1), we can write that Pd = ε0(ε − 1)(Vd/V )E. To calculate
Vd, we suppose that d > 2h.

The complete effective susceptibility of our structure is then equal
to κ = (Pp + Pd)/ε0E. Deriving from the usual definition:

D = ε0E + Pp + Pd = ε0εeffE (4)
† In [20] this formula has been derived for homogeneous host medium ε′ = ε.
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Figure 3. Averaging volumes V . Case (1) observation point coincides
with dipole center. Case (2) observation point does not coincide with
dipole center.

Figure 4. Equivalent 3-layered structure (side view).

where D is the x-component of the electric displacement vector, we
can obtain effective relative permittivity of the composite as

εeff = 1 + κ (5)

Using this method now becomes equivalent to replacing our array
on the substrate (see Fig. 2) by a 3-layered dielectric structure.
Permittivities of layers are different (see Fig. 4):

1. An effective layer of thickness d1 = h for d/2− h < z < d/2.

ε
(1)
eff = 1 + κp + (ε− 1)

(
1
2
− z

d

)
(6)
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2. An effective layer of thickness d2 = d− h for −d/2 < z < d/2− h.

ε
(2)
eff = 1 + κp + (ε− 1)

h

d
(7)

3. An effective layer of thickness d3 = d1 = h for −d/2 − h < z <
−d/2.

ε
(3)
eff = 1 + (ε− 1)

(
z + h

d
+

1
2

)
(8)

In these formulae we have

κp =
axx

ε0V

(
1− 0.359

ε′ε0V
axx

) (9)

To simplify, we average the z-dependence of the susceptibility in
the upper and lower layers. Considering that the contribution of the
substrate is rather small in these areas, we choose to use the value at
the center of the two layers. So, in (6) we substitute z = d/2 − h/2
and in (8) z = −d/2− h/2, and we obtain

ε
(1)
eff = 1 + κp + (ε− 1)

h

2d
(10)

and
ε
(3)
eff = 1 + (ε− 1)

h

2d
(11)

All these formulas are for the xx-components of the permittivity. For
other components the particle influence is absent and we have

ε(1),(3)yy,zz = 1 + (ε− 1)
h

2d
, ε(2)yy,zz = 1 + (ε− 1)

h

d

The reflection and transmission of the 3-layered structure (Fig. 4)
is a special case of a multi-layered dielectric stack which has been
considered in [22]. The reflection coefficient of a plane wave under
normal incidence is given by:

R =
t1R1e

−2jkn
(1)
eff

h − 1

t1 −R1e
−2jkn

(1)
eff

h
(12)

R1 is the reflection coefficient at the plane z = d/2− h:

R1 =
t2R2e

−2jkn
(2)
eff

(d−h) + 1

t2 +R2e
−2jkn

(2)
eff

(d−h)
(13)
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Figure 5. Permittivity ε
(2)
eff of the central layer versus frequency

(GHz). Solid line — real part. Dashed line — imaginary part.

and R2 is the reflection coefficient at the plane z = −d/2:

R2 =
t2e
−2jkn

(3)
eff

h − t3
t1t3 − e−2jkn

(3)
eff

h
(14)

where n(1,2,3)
eff =

√
ε
(1,2,3)
eff are the effective refracted coefficients of the

layers and:

t1 =
n

(1)
eff + 1

n
(1)
eff − 1

, t2 =
n

(1)
eff + n

(2)
eff

n
(1)
eff − n

(2)
eff

, t3 =
n

(3)
eff + 1

n
(3)
eff − 1

(15)

The transmission coefficient can be found with formula (18.60b)
from [22].

The frequency variations of polarizability axx of a single S-particle
printed on the surface of a dielectric layer has been found using the
ANSOFT code ENSEMBLE. This code gives a resonance frequency of
axx at 8.9 GHz.
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4. EFFECTIVE PERMITTIVITY OF AN
HOMOGENIZED LAYER AND COMPARISON WITH
NUMERICAL SIMULATION

To apply correctly the homogenization model we have presented, the
array of dipoles must be square, whereas the structure shown in
Fig. 1 is rectangular (dx = 3 mm and dy = 1.5). However, the
case dx = dy = 1.5 mm is physically impossible (particles would
overlap) and the case dx = dy = 3 mm is not very interesting since
it leads to values of |εeff | which do not exceed 14. This value of the
permittivity is not high enough for the desired applications. That is
why we keep the geometry of Fig. 1 with periods dx, dy which are
related by dx = 2dy = 3 mm. This relation allows to obtain a square
array easily, considering two adjacent S-shaped particles in a cell with
dimension dx × dx and containing one dipole with total polarizability
2axx. This approach gives for the equivalent permittivity of the central
layer −d/2 < z < d/2−h the frequency dependence presented in Fig. 5.

The maximum absolute value of permittivity at the resonance
is 29.5, whereas the real part attains values 12 and −15 within the
resonance band. This is not a very high value, but the effective
thickness of the 3-layered structure in our model is equal to 3.635 mm
which is higher than the real physical thickness of slab (h = 0.635 mm).
This big virtual thickness will significantly increase the effect of the
presence of our artificial dielectric.

To understand the applicability of our homogenization model we
compare its results with those obtained from numerical simulations of
the code described in [19] and [21]. This code uses Floquet’s expansion
for currents and fields and can simulate the reflection and transmission
coefficients for a dielectric layer covered by a doubly periodic array of
arbitrary planar particles. Numerical simulations give practically the
same result for the case where the particles are located on the upper
or lower surfaces of the dielectric layer. As for our analytical model, it
gives exactly the same results since it does not distinguish these two
cases of incidence.

The results of the comparison are presented in Figs. 6–8. It can
be noted that crosses represent the results for the same dielectric layer
without S-particles. We can see that the effect of the particles in both
analytical and numerical models is qualitatively the same. Yet, our
theory gives for the frequency of resonant reflection and transmission
a value which is approximately 18% lower than that obtained with
the numerical code. Nevertheless, we can consider that the agreement
between the two models is satisfactory. Actually, not only the resonant
frequency but also the shapes of all the curves given by the analytical
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Figure 6. Absolute value of the reflection coefficient of the layer with
S-shaped particles on its surface versus frequency (GHz). Solid line —
our analytical model (effective 3-layered composite). Dashed line —
numerical model [21]. Crosses — the same layer without S-particles.

model are extremely sensitive to input parameters. As an example, a
very small change in the particle geometry, in the slab thickness h or
in the permittivity ε of the substrate, dramatically changes the shape
of all analytical curves, so that any agreement between analytical and
numerical models disappears.

Another remark can be made. The lower virtual layer −d/2−h <
z < −d/2, though its permittivity ε(3)eff is not resonant and though its
thickness d3 = h is small, has a significant influence on the results and
especially on the phase curves. Indeed, if one removes this effective
layer from the analytical model, the agreement also disappears.

In Fig. 7, a second resonance of reflection appears in our frequency
band. It is predicted by our analytical model at 12.9 GHz. The
numerical model gives for the second resonance the value 16.5 GHz.
This great difference can be related with the cross-polarization effect.
Actually, at frequencies higher than 13 GHz, the cross-component of
particle polarizability axyee becomes significant (axyee has a resonance at
14 GHz). We do not take into account the influence of axyee in order
to present a very simple theory. So, our model is not valid at the
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Figure 7. Phase of the reflection coefficient of the layer with S-
shaped particles on its surface versus frequency (GHz). Solid line —
our analytical model (effective 3-layered composite). Dashed line —
numerical model [21]. Crosses — the same layer without S-particles.

Figure 8. Absolute value of the transmission coefficient of the layer
with S-shaped particles on its surface versus frequency (GHz). Solid
line — our analytical model (effective 3-layered composite). Dashed
line — numerical model [21]. Crosses — the same layer without S-
particles.
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frequencies higher than 12–12.5 GHz
The next comment is about the shape of the particle. The case

where angle φ1 is less than 345◦ has also been studied. If values of
φ1 are getting smaller than 300◦, the homogenization model is not
applicable any more, even for the first resonance. The reason is quite
simple. When φ1 is not high enough each loop of S-particle has a
large opened part. So, the particle cannot be modelled as a resonant
electric dipole. It is possible to show that the conducting broken loop
with a large opened part is the superposition of an electric dipole, a
magnetic dipole and an electric quadrupole. Hence, the dipole model of
S-particles we have presented, is valid for the cases where an S-particle
is close to an 8-particle (as in Fig. 1).

5. CONCLUSION

The starting point of study presented in this paper is the need for
materials with rather high permittivity, for applications in guided
planar structures like coplanar waveguide isolators. These materials
need to be thin and must be feasible with planar technology. To answer
this problem we propose to use a resonant artificial dielectric that is
able to give a high effective permittivity at resonant frequency. The
structure we have decided to study is a dielectric slab with metallic
shapes printed on one of its faces. The chosen shapes are called S-
particles.

We have proposed an analytical model that homogenizes a square
array of S-particles. This model replaces the study of the real structure
(dielectric slab and metallic particles) by an electromagnetic equivalent
structure. This effective structure is composed of 3 anisotropic
dielectric layers with different dyadic permittivities. The analytical
model has been validated by comparison with the results of a numerical
code and the results are in rather good agreement (though the array
under consideration was rectangular and we replaced it by a square
array referring the dipole moments of 2 adjacent particles to the square
unit cell).

In order to get analytical equations as simple as possible, our
modelling has been voluntarily restricted in the frequencies and in the
particle geometry. We have indicated its limitations. The model is
limited to the upper edge of the first resonance of S-particles and to
S-particles with a shape which is close to an 8-particle.

These results can be improved considering magnetic and cross
component polarizabilities for example. Nevertheless, our model is
very simple to use and the first results we have obtained are good
enough to begin the realization of this kind of media.
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Concerning the problem of losses in the structure, we can notice
that the resonant effective permittivity we have calculated contains
high imaginary part (satisfying to Kramers-Kronig relations). There
is no physical reason for these losses if the dielectric and metal are
perfect as it was in the simulations. However, if we voluntarily assume
the imaginary part of permittivity to be zero without changing the
real part, the model will become internally inconsistent and the results
for R and T will become absurd. So, we should remain these losses if
we want to have a consistent bulk homogenization model and should
keep in mind that this is significant problem of the model. However,
in our case when h = 0.635 mm the discrepancy in the condition of the
energy conservation‡ |R|2 + |T |2 = 1 turns out be close to 1%. This
is the consequence of the small thickness of the substrate. For more
thick structures our model will lead to big errors in the transmittance.
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