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Abstract—Integral equation formulation and magnetic potential
Green’s dyadics for multilayered rectangular waveguide are presented
for modeling interacting printed antenna arrays used in waveguide-
based spatial power combiners. Dyadic Green’s functions are obtained
as a partial eigenfunction expansion in the form of a double series over
the complete system of eigenfunctions of transverse Laplacian operator.
In this expansion, one-dimensional characteristic Green’s functions
along a multilayered waveguide are derived in closed form as the
solution of a Sturm-Liouville boundary value problem with appropriate
boundary and continuity conditions. A method introduced here is
based on the transmission matrix approach, wherein the amplitude
coefficients of forward and backward traveling waves in the scattered
Green’s function in different dielectric layers are obtained as a product
of transmission matrices of corresponding layers. Convergence of
Green’s function components in the source region is illustrated for a
specific example of a two-layered, terminated rectangular waveguide.
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1. INTRODUCTION

Dyadic Green’s functions (DGFs) play a significant role in integral
equation methods used in the analysis of various electromagnetic wave
propagation and scattering problems [1,2]. In the past few decades,
considerable amount of research has been devoted to the development
of DGFs of rectangular waveguides and cavities [1-14]. They are
traditionally constructed in the form of a double series expansion
using the Hansen vector wave functions [1-10]. Thus, electric and
magnetic DGFs for an infinite and semi-infinite rectangular waveguide
and rectangular cavity were obtained in [1-3]. In [4], several different
but equivalent representations of DGF's for a rectangular cavity were
obtained, and the mathematical relations between the DGF of the
vector (magnetic) potential type and that of the electric type were
shown in detail. A hybrid ray-mode representation of the Green’s
function in an overmoded rectangular cavity was developed in [5],
using the finite Poisson’s summation formula. DGF's for a rectangular
waveguide with an E-plane dielectric slab were derived in [6] based
the Ohm-Rayleigh method. In [7], rectangular waveguide Green’s
function involving full-wave discrete complex images was proposed for
the analysis of waveguide discontinuity problems. A rigorous Green’s
function analysis of rectangular microstrip patch antennas enclosed
in a rectangular cavity was developed in [8]. A rapid calculation
scheme based on the Ewald’s sum technique was proposed in [9] for
the potential Green’s functions of the rectangular waveguide. An
image-spectral approach was used in [10] to derive the computationally
efficient expressions of the DGFs for rectangular enclosures.

There has also been work on DGF's for a multilayered rectangular
waveguide [11,12]. In [11], the electric DGF for a rectangular
waveguide filled with longitudinally multilayered isotropic dielectric
was obtained using the method of mode expansion and scattering
superposition. Electric and magnetic Green’s functions for a semi-
infinite rectangular waveguide filled with arbitrary multilayered media
were presented in [12], where analytical expressions of the scattering
DGF coefficients were obtained in terms of transmission matrices using
the principle of scattering superposition.

An alternative method of developing Green’s dyadics for rectan-
gular waveguides and cavities utilizes a partial eigenfunction expansion
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Figure 1. Multilayered waveguide transition containing interacting
printed antenna arrays.

as a double series expansion over the complete system of eigenfunctions
of the transverse Laplacian operator [13,14]. The unknown coefficients
in this expansion represent one-dimensional characteristic Green’s
functions along the waveguide. The properties of completeness
and orthogonality of eigenfunctions in the waveguide cross-section
allow for reduction of the three-dimensional problem to a one-di-
mensional Sturm-Liouville boundary value problem for the unknown
characteristic Green’s functions. In [14], electric DGFs for a semi-
infinite partially filled rectangular waveguide are obtained for the full-
wave analysis of a waveguide-based aperture-coupled patch amplifier
array. The derived characteristic Green’s functions provide a physical
insight into resonance and surface wave effects occurring in overmoded
layered waveguide transitions.

The work presented here was motivated by the necessity to
develop a modeling environment for waveguide-based spatial power
combiners, wherein arbitrarily shaped printed antenna arrays are
placed at dielectric interfaces of an oversized multilayered rectangular
waveguide (Fig. 1). Narrowband resonant rectangular slot antennas
used in earlier designs [15,16] are replaced by meander-slot antennas
and their modifications [17, 18], in order to increase the frequency
bandwidth and efficiency of the system.

The paper is organized as follows. An integral equation formula-
tion is given in Section 2, where a coupled set of integral equations
is obtained for the induced electric and magnetic surface current
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Figure 2. A multilayered waveguide-based transition module.

densities. In this paper we primarily concentrate on the development
of magnetic potential DGF's for a multilayered rectangular waveguide
with an arbitrarily oriented point source. Thus, in Section 3 a
detailed analysis of DGF's is presented, which is based on the partial
eigenfunction expansion of Green’s function components in conjunction
with a proposed transmission matrix approach. In this method,
one-dimensional characteristic Green’s functions along a multilayered
waveguide are obtained in closed form as a product of transmission
matrices of corresponding layers. Numerical results for convergence
of Green’s function components are given in Section 4 for a specific
example of a two-layered, terminated rectangular waveguide.

2. INTEGRAL EQUATION FORMULATION

Consider a waveguide-based transition module with n dielectric layers
shown in Fig. 2. This is a generalized case of the module investigated
in [15,16]. An arbitrarily-shaped metallization S,, (electric layer)
and apertures S, (magnetic layer) in a ground plane are placed at
the interfaces of adjacent dielectric layers at z = 2z, and z = z,,
respectively. The incident electric and magnetic fields in the region V;
are generated by an impressed electric current source Jipmp (V X Jimp
for the magnetic field). The scattered electric and magnetic fields in
regions V; (for ¢ = 1,2,...,n) are generated by the electric current
induced on the metallization S, and by the magnetic current induced
on the surface of slot apertures S,. The electric and magnetic fields in
the region V), 1 are due to magnetic currents only, but the continuity
of tangential components of the magnetic field across the surface S,
provides the interaction of all regions and necessitates the formulation
of the problem in terms of coupled electric- and magnetic-field integral
equations.

A coupled set of integral equations is obtained by enforcing a
boundary condition for the tangential components of the electric field
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on the conducting surface S, at z = zg,
7 x (Egmc> (r) + Elsead) (r)) =0 (1)

and a continuity condition for the tangential components of the
magnetic field on the surface of the slot apertures S, at z = z,,

2 x (H{") (1) + B0 (1)) = 2 x HESY (x). (2)
The integral form of the boundary condition (1) is obtained by
combining the vector-wave equation formulation for the electric field
and the corresponding formulation for the electric DGF. The integral-

equation formulation of the second vector-dyadic Greens theorem [2]
with appropriate boundary and continuity conditions results in

it [ )G 0

imp

— juwpo? x / 3() -G8 (1) dS’ 3)
Sm,
—Ex/ M (r) - [V x G (v',r)]dS".
Sa

Here, the integral on the left-hand side of (3) is the incident electric
field due to an impressed electric current J;p, (r') and the integrals
on the right-hand side are the scattered electric fields due to induced
electric J (r') and magnetic M (r’) currents.

The continuity condition for tangential components of the mag-
netic field (2) is obtained in integral form using a similar procedure
as that described above for the electric-field vector resulting in the

magnetic-field integral equation for the unknown currents J (r') and
M (r'),

Do [T ()] -GE ()
€1 Vimp

e [ 3() 9 Gl (xS

~ jweo? x / M (r) - [eG5" (1) +£0n GG (.x)] s
) (4)

where ggg‘“) (r,r’) is the electric dyadic Green’s function of the second
kind for a semi-infinite rectangular waveguide filled with dielectric
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with permittivity ,+1 and terminated by a ground plane at z = z,
(obtained similar to that presented in [14]). The electric DGF's gg’f)

and gj{”) (for i = 1,...,s,...,m), serving as kernels of the integral
equations (3) and (4), are obtained from the magnetic potential Green’s

dyadics g(jj) and gﬁ;‘) as follows [19],

G (r,r') = <1 - %vv) G (r,r) (5)

7

where [ = s, n corresponds to r = 1,2, respectively. Magnetic potential
Green’s dyadics g(ﬁ) (r,r') used in the electric-field integral equation
formulation (3) will be obtained in the section to follow, and the
formulation for gg;) (r,r’) used in the magnetic-field integral equation
(4) is given in Appendix A.

3. MAGNETIC POTENTIAL GREEN’S DYADICS FOR A
SEMI-INFINITE MULTILAYERED RECTANGULAR
WAVEGUIDE

In this section we present a method of deriving the magnetic potential

DGF gf;j) (r,r’) for a semi-infinite multilayered rectangular waveguide
used in the electric-field integral equation formulation. The Green’s
function components are obtained as a partial eigenfunction expansion
with a complete basis of eigenfunctions in the waveguide cross-
section. Based on the properties of completeness and orthogonality
of eigenfunctions a three-dimensional Green’s function problem is
reduced to a one-dimensional Sturm-Liouville boundary value problem
for characteristic Green’s functions in the waveguiding direction.
Characteristic Green’s functions are represented as a superposition
of primary and scattered parts subject to appropriate boundary and
continuity conditions. In this formulation, scattered parts are obtained
in terms of traveling waves (forward and backward) with amplitude
coefficients expressed as a product of transmission matrices associated
with a multilayered waveguide.

The magnetic potential DGF for a semi-infinite multilayered
rectangular waveguide with a point source arbitrarily positioned in
region Vs (Fig. 3) satisfies the following dyadic differential equations
in regions of dielectric layers V;, (i = 1,2,...,n),

VZQE:‘;) (r,r') 4+ kfgfﬁ) (r,r') = —0;I6(r—1'), reV,r' eV,
(6)
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Figure 3. Multilayered semi-infinite waveguide with an arbitrarily
oriented point source located in the region V.

subject to boundary conditions of the first kind on the waveguide
surface Sy and surface of the ground plane Sg = S, U S,

A x G (r,1') =0, reSyuUSe o
V-G (r,r) =0, reSyuSe

and mixed continuity conditions of the third kind across the dielectric
interfaces S, (for ¢ =1,2,...,n — 1),

=2x GU™Y (rv), res,
2. GUHY (r,v), res,

(r,r')

(r,r)
éxVxQ%s)(r,r’):2><V><G(q+1s)(r,r), res,

(r,x')

— —V G(qﬂs (r,r ) , TES,.
Sq €q+1

The solution of the boundary value problem (6)—(8) yields nine
components of the magnetic Green’s dyadics expressed as a partial
eigenfunction expansion,

GS;?AI (‘T?yJZ?x/Jylvz = Z Z¢mn Z' y (ZS ( ) fﬂ?j’b)oc,@ (Z,Z/) ,

m=0n=0
(9)

for o, = x,y,z, where ¢%. (x,y) form a complete basis of ortho-
normal eigenfunctions of the transverse Laplacian operator in the
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waveguide cross-section (a X b),

xX 3 mE mn .
o (2,y) = [ cos (ko) sin (kyy)
y _ [EoméEon . 10
oY (z,y) = o sin (ky) cos (kyy), (10)
z 3 mE mn . .
¢mn (33, y) = 0 abo s (klx) S (kyy> )

with k; and k, being the transverse eigenvalues such that k, =

=r, ky = 5. Here, a and b are the waveguide dimensions in the z-

and y- dlrectlon respectively, and f RN B (z,2') are the one-dimensional
characteristic Green’s functions in the waveguiding direction. In (10),
€om and gg, are the Neumann indexes, such that egg = 1 and &gy, = 2
when m # 0.

The use of the eigenfunction expansion (9) reduces the three-
dimensional boundary value problem (6)—(8) to a one-dimensional
Sturm-Liouville boundary value problem for the characteristic Green’s
functions,

To1) (o) =21y () = —Bubagd (2= ).

Zi1 < z < %4, (11)
ns ns 0 ns
fr(nn,)xﬁ (Zn’ Z/) = fr(nn,)yﬁ (Zn’ Z/) = & ’r(nn,)zﬂ (Zﬂ? Z/) = 07 (12)

f’r(?gri?aﬁ (qu ZI) = fv(r?:i? (qu ZI) )

2 (as) (Z ’Z/) 2 (g+1s) (zq,z'),

Oz mn,x3 Oz mn,x3

(13)
2 (as) ( q’Z/) 3 (g+1s) (quz/)’

[t )~ s )+ Jﬁﬁ%ﬂ—

1 s B R
o [_kw 7(73:,91:5) (2q:2) =k f(q:;ﬁ (24, )+ f q:ig (anz’)] )
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where ¢ = 1,2,...,n, ¢ = 1,2,...n — 1, and ~; is the propagation
constant of propagating and evanescent waveguide modes in regions

v
j,/kf—k:%—kg, k§>k§+k§

Yi =
,/k%—i—kg—kf, ki2<k:§—|—k§

The solution of the system of differential equations (11) is obtained as
a superposition of the primary and scattered parts,

(is)
Frmas (2:7)
ef’ys|zfz/|
= 51'5504,6

5. (18) —vi(z—zi—1) (18) _~i(z—z)
5+ (1= 0) A ) 4 Bl (1a)

where the first term (primary part) is the one-dimensional Green’s
function of an infinite waveguide and two other terms (scattered part)
represent forward and backward traveling waves in waveguide regions

V;. The unknown coeflicients A(Of;) and BSS) will be determined in

closed form subject to boundary and continuity conditions (12) and
(13).
The use of the representation (14) and continuity conditions (13)
_ f(is) 5) (is)

giVGS f7(n2781)7xy (Z, Z/) = Jmn,xz (Z, Z/) = f?g'in,y:r: (Z, Z,) = Jmn,yz (2’7 Z/) = 0.
Therefore, only five out of nine magnetic DGFs components are non-
ZETO:

Gy 0 0
18 (zs)
giu) = 0 ny,Al 0

Giln Giyln Gl

The solution for characteristic Green’s functions f%}?m (2,2") and
f g}?zx (z,2") will be given first, followed by the solution for the function
f r(rlbz),zz (z,2").  For the sake of brevity, the solution for functions
f,(,i;?,yy (z,2') and f%fl)zy (z,2') is excluded. It can be obtained using a
similar procedure to that for functions fr(nlfl)’m (z,2') and fr(,ii),zx (z,2")
by interchanging x and y variables. ‘ A

By the representation (14), functions f}ﬁfl),m(z, 2') and f%f)zw (z,2")
are expressed in terms of coefficients [0 B ] and [aU® U ],
respectively. We now introduce vectors of unknown coefficients Cg(f ) =
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[ 4l Bl 4G gl T § =1, 2,....,n, where T denotes transpose opera-

tion. Note that ALY = AU = 0, such that cll®) = [0 B o B9 7.
This results in 4n — 2 unknown coefficients A and B introduced in
the characteristic functions ff(,i;?,m (z,2") and fr(,ii) 2z (2, 2"). Each of the
continuity conditions (13), for ¢ = 1,2, ...,n—1, provides four equations
for these coefficients, and the boundary condition (12) provides two
additional equations. Instead of solving the system of 4n — 2 equations
for 4n — 2 unknown coefficients by brute force, we propose a method
of reducing this system to a system of only four equations for the four
key unknown coefficients, B;g}ps), Bgis), Ag;s)and A,(ZZS), and expressing
all other coefficients in terms of these four. It is convenient to
group these four key coeflicients into vectors B{'Y = [ B g T

and A = [ A 4 )T, Coefficients C will then be expressed
in terms of B{'® )

i1 =38,8+1,...,n. Note that the coefficients C( %) have two different
s)

for i = 1,...,s — 1,5, and in terms of A(ns) for

representations. one in terms of ng and another one in terms of

A,

The representation (14) subject to the boundary and continuity
conditions (12), (13) results in the expressions for coefficients c) in
terms of the key coefficients B(ls)

cs) — ol. BSS),

(2
* ’ 278E5
where Ey = e~7(*~%) and matrices Ol and L are obtained as

o _[0 100"
+=10o 0 0 1] >

1 ~i—1,i—2 2,1 . 11,5 1 - ..
and LZ = @Z )= NS S I -@glc, with @471 being a transmission
matrlx such that

Tjrej (Vi1 +73) T Tivags (vie1 — )

oitti 1 | g =) T &5 (V41
‘ 2Tj+1€ﬂj+1 TJ’+1 (5j+1 - 51’) szj Tj+1 (5j+1 - Ej) K
—(gj+1 — &5) kT —(gj41 —€5) ks
0 0
0 0

Tjir (g5%i01 T €417) T Ty (657541 — €54175)
(e57j+1 — €j+175) T (e5%i+1 +€j+175)
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for j = 1,2,...,n — 1, where T; = e %i(zi=%-1)  The above form of
the transmission matrix ©57 is easily obtained by expressing the
continuity condition (13) in matrix form at dielectric interface at

z = zj, and the matrix ©! is obtained using the equation CE}S) =

[0 B4 0 BUI T
Similarly, the representation (14) with the boundary and continu-

ity conditions (12), (13) results in the representation of Cc in terms
of the key coeflicients Ag(cns),
Cg(cns) _ @Z . A:(L"ns)7
5B (16)
cls) —Ri . Alns) _ 575 11 g o
T T xT 2’}/5T5 [ ] ’

where matrices ©7 and R, are obtained in the form

1 -1, 0 01"
0 0 1 T,

and RE = (OLTH) 1. (@) ~1... (@2 1)~1.0". The above form
of the transmission matrix ©} is easily obtained by expressing the
boundary condition (12) in matrix form at the ground plane at z = z,.

Equating the two different expressions for ci, (15) and (16),
one obtains the following system of equations for the four key unknown
coefficients,

R;[L 1] 0 _Li[l, 1] 0 A’(”T"’LCS) %
R 0 ~Lapy 0 . ALY _ b _ELS (17)
Rx[4, 1] Ra:[4, 2] _L:c[4, 1] _Lz[4, 2] Bgcs)

where R;[i P and L;[i P (fori=1,2,3,4 and j = 1,2) denote elements

of matrices R? and L3, respectively.

Once the system (17) is solved for [a() Ao g9 (=) ]T the
remaining coefficients of the representation (14) are obtained from
(15) and (16). Note that the presented procedure holds for cavities
and infinite waveguides as well as semi-infinite waveguides terminated
from either side. Waveguide terminations are accounted for in the
procedure by matrices ©! and ©” which are easily obtained for any
of the termination cases by using the above approach for the case of a
semi-infinite waveguide.
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In addition, when the point source is located in the first dielectric
layer (s = 1), by making use of equations (16) and AQJ) = AQL«I) =0,
one obtains

R! 0 A 1 [&
1.1 Gl 1 Tl]. 8
R, 3,1] R, [3,2] Al 271 L0 (18)

Once this system is solved for the vector of key coefficients A( D -
[4(D) 4¢D )T the remaining coefficients are obtained from equatlons
(16).

When the point source is positioned in the last dielectric layer (s =

n), using the equations (15) and féﬁf?m (#n,2') = 52 fmn)zx (zn,2') =0,

we obtain
L3, o + 1 Lx[l 1] 0 } B _ 1 [E_n —EB, ]

(19)

Once the system (19) is solved for the key coefficients ngc") and BSC"),
the remaining coefficients can be obtained from (15).
In this part of the paper a procedure of deriving a longitudinal

component of the characteristic Green’s function, f,(,f;?,zz (2,2'), is

described. Corresponding boundary and continuity conditions (12),
(13) are obtained as follows,

fﬁ;‘sgz (2n,2') =0, (20)
f?SgrsL)zz (ZQ? Z/) = r(r(zlqjiz) (Zq? Z/) )
10 . s (21)
8 azfv(rgn)zz (zq?zl) 41 azfég:}:z (Z‘I’Z,) ’

where g =1,2,....n — 1.
By the representation (14), functions fr(,i;?,zz (z,2') are expressed

in terms of coeflicients Agzs) and Bﬁij). We now in‘qroduce vectors
of unknown coefficients CSS) containing coeflicients Agj) and Bg’j), as
CU) = [ a6 i |T. Note that ALY = 0 such that C'® = [ p» T

Coeflicients BQS), and A,(ZZS) are the most important coefficients to be
determined. All other coefficients will be expressed in terms of these

two. Specifically, coefficients CS'S) will be expressed in terms of Bgs),

(ns)

fori=1,...,s —1,s, and in terms of A;,”, fori=s,s+1,....n
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Using the representation (14) and boundary and continuity con-
ditions (20), (21), the coefficients C!) can be expressed in terms of
the key coefficients Bgis),

cl) — el
Sis (22)

Cls) — g( _s
275 Es

z ziS)L; - [0 1]T7
where ©L = [01]T and LI = @210 272, 020! with @l
being (for j =1,2,....n — 1),

: 2Tj118575+1
AT+ (v + e5017) T T (657741 = €54175)
(eivit1 — €i4175) T (e575+1 + €54175)

Similarly, we can express C,(ZS) in terms of the key coefficients

A,

ov = ater,

clis) _ gns)ygi _ OisEs
z ZZ z 2/_>/STS

)

- (23)

where @721 — [1 TN ]T and RZ — (@iJrl,i)—l‘(@iJrZ,iJrl)—l . (@g,nfl)—l‘
07, with (02717)~1 being (for j =1,2,..,n—1),

A 1
@ittt -+
(8:7) 2T5e417;
g1 g (ej+17 — €5vj+1) Tj41 '
T (ej+175 — €v+1)  Tj (€415 + €5v41) T

Equating the two different expressions for CSS), (22) and (23),
we obtain the following system of matrix equations for the coefficients

AS;S) and Bgi‘s) ,

RS LS A(ns) 1 |: Es :|
2[1,1] 2[1,1] zz | — = | T 24
[st[z 1] _Lz[2,1]] BY| T 2y g’ 24

where R 5[17 1] and R 25[27 ) are elements of the matrix R} and L 5[1’ 1] and

L are elements of the matrix L.

2,1)
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Once the system (24) is solved for Aé’;‘s) and B,Sf), the remaining
coefficients of (14) are obtained from equations (22) and (23).
When the point source is located in the first dielectric layer

(s = 1), ALY = 271T1E71%;[M]’ and in the case when the source is in
. . 5-+En
the last dielectric layer (s = n), Bzgn) = En

27n (LZ[Q, Tl 1])
A similar procedure has been implemented to obtain DGF's
(formulation is given in Appendix A) used in the magnetic-field integral
equation formulation (4). In this case, different expressions for the

eigenfunctions ¢%,, (x,y) and the transmission matrices ©7 and (SR
are used in the algorithm.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the behavior of the Green’s function components

GS;LH (r,r') and G(zi;l,ln (r,r’) is investigated numerically for a two-lay-
ered, terminated rectangular waveguide with a point source arbitrarily
located in region Vi, as shown in Fig. 4. One-dimensional character-
istic Green’s functions for this waveguide, derived using the procedure
presented in Section 3, are given in Appendix B. Using equation (5)
and the expressions of Appendix B, one can obtain the characteristic
Green’s functions for the DGF's of the electric type, published in [14].
Consequently, we were able to verify the accuracy of our new numerical
code by using it to obtain the same results as we previously obtained
in [14-16].

Swm
Sl SG
) & €;
»
Vi \A N
0 T i
Z'

Figure 4. Two-layered, terminated rectangular waveguide with an
arbitrarily oriented point source located in the region V7.

The results are obtained at the frequency of 10 GHz for the fol-
lowing geometrical and material parameters: ¢ = 46 mm, b =30.5 mm,
7 = 0.7874mm, ;1 = 1, and g9 = 2.2, with a point source located
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at (2/,y,2") = (0.5a,0.5b,0). Observation points are first taken along
the diagonal line y = zb/a at the dielectric interface of regions Vi
and Va2 at z = 0. In the double infinite series expansion (9) for the

Green’s function components GS;’)AP each of the indexes m and n
ranges from 0 to co. However, in a practical simulation, we truncated
this representation at a maximum value of m and n denoted by M.
Figs. 5(a) and 5(b) show the behavior of the real part of the Green’s

. 11 . .
function component Gix 241 (r,r') versus truncation variable M for

different observation point positions. Particularly, the observation
point (z,y,z) in Fig. 5(a) varies from the point (0.35a,0.35b,0) to
the point (0.46a,0.46b,0), while in Fig. 5(b) it varies further toward
the source point, starting at the position (0.48a,0.48b,0) and ending
at the position (0.497a,0.497b,0). Note that the y-axis values in
Fig. 5(b) are more than an order of magnitude larger than those in
Fig. 5(a). As can be seen from these figures, as the observation point
approaches the source point, the convergence of the Green’s function
component becomes slower. Specifically, we observe an oscillatory
behavior of the DGF component with the oscillations becoming slower
in the source region, requiring a larger value of M for an accurate
approximation. Similarly, the behavior of the real part of the Green’s

function component chllu (r,r’) versus M is shown in Figs. 6(a) and

6(b), for the same set of observation point positions. As can be seen,
the component 021,341 (r,r') shows a similar convergence behavior,
except that the curves in the Figs. 6(a) and 6(b) are more corrugated
than those depicted in Figs. 5(a) and 5(b).

Finally, observation points are taken along the line (z,y) =
(0.475a,0.475b) and convergence of the real parts of the Green’s

function components Ggpl,lu (r,r’) and Gg},?ﬂ (r,r’) is shown in Figs. 7
and 8, respectively, for different z-coordinate values. Again, it can be
seen, that convergence of the Green’s function components becomes
slower as the observation point approaches into the source region at
z = 0. Specifically, less than M? = 100? terms is needed for an
accurate approximation of the DGF components in the expansion (9)
for z < —0.57 (see the curves for z = —47, —37, —27,—17,—0.57 in
Figs. 7 and 8). However, the corresponding value of the variable
M increases drastically as the observation point approaches further
towards the source point (see the curves for z = —0.257,0 in Figs. 7
and 8).



140 Lukic and Yakovlev

25 , ~ " , - \ ' T
(x,y)=(0.46a, 0.46b)
20+ 4
— (%,y)=(0.45a,0.45b)
S (x,y)=(0.432,0.43b)
a‘é (x,y)=(0.402,0.40b)
<) _
— (%,5)=(0.352,0.35b
T ol (%:¥)~(0.353,0.35b) |
5 A e e P
\A
A T
e e )
0 A =
0 20 40 0 80 100 120 140 160 180 200
M
(a)
700
600 - Z (x,y)=(0.4972,0.497b)
500 |  (%,3)=(0.4963,0.496b)
e " (%,)=(0.4952,0.495b)
ok
2
5 %0f _ (x,)=(0.4932,0.493b)
200 | 7 (x,y)=(0.492,0.49b
100 | + (X,y)=(0.482,0.48b) —
0 I 1 ! 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

M
(b)
Figure 5. Convergence of the DGF component, GS;)AP for two-

layered, terminated rectangular waveguide for various positions of the
observation point (z,y) at dielectric interface (z = 0).
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Figure 6. Convergence of the DGF component, G for two-

zx,Al’

layered, terminated rectangular waveguide for various positions of the

observation point (z,y) at dielectric interface (z = 0).
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Figure 7. Convergence of the DGF component, ngl)Ap for two-

layered, terminated rectangular waveguide for various positions of the
observation point along the waveguide.
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Figure 8. Convergence of the DGF component, ng;lluv for two-

layered, terminated rectangular waveguide for various positions of the
observation point along the waveguide.
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5. CONCLUSION

A full-wave integral equation formulation and magnetic potential
Green’s dyadics for a multilayered rectangular waveguide are presented
for modeling printed antenna arrays used in waveguide-based spatial
power combiners. The Green’s functions are derived in the form
of a partial eigenfunction expansion as a double series over the
complete system of eigenfunctions of the transverse Laplacian operator.
The three-dimensional problem for DGF components is reduced to
a one-dimensional Sturm-Liouville boundary value problem for the
characteristic Green’s functions in the waveguiding direction. These
functions are then obtained in the closed form as a superposition of
primary and scattered parts. The amplitude coefficients of forward
and backward traveling waves in the scattered Green’s function in
different dielectric layers are obtained as a product of transmission
matrices of corresponding layers. Numerical results are shown for the
convergence of the Green’s function components for a two-layered,
terminated rectangular waveguide with an arbitrarily oriented point
source.

APPENDIX A. MAGNETIC POTENTIAL GREEN’S
DYADICS FOR A SEMI-INFINITE MULTILAYERED
RECTANGULAR WAVEGUIDE USED IN THE
MAGNETIC-FIELD INTEGRAL EQUATION
FORMULATION

The magnetic potential DGF for a semi-infinite multilayered
rectangular waveguide shown in Fig. 3 satisfies the system of dyadic
differential equations in dielectric regions V; (for i = 1,2, ...,n),

VQQXZ) (r,r') + kfg%’ (r,r) = =006 (r—1'), reVi (Al

subject to boundary conditions of the second kind on the waveguide
surface Sys and surface of the ground plane Sg,

Ax Vx G (rr)=0, reSyuSe
, (A2)
i (14 59V) -Gl (1) =0, re Sy USe
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and mixed continuity conditions of the third kind across the dielectric

interfaces S, (for ¢ =1,2,...,n — 1),

Z % G%L) (r,r') =2 x G%H") (r,r),
1 n 1 n
—2. G (rr) = —2-GYM (nr),
q q+1
]. n ]— ~ n
g—éxng%)(r,r’):g—szxg(X;l )(r,r’),
q q+1
1 n 1 n
—v- G (rr) = —v- G (nr),
q q+1

res,;

res,

APPENDIX B. CHARACTERISTIC GREEN’S
FUNCTIONS FOR A TWO-LAYERED, TERMINATED

RECTANGULAR WAVEGUIDE

re s,

For the special case of a two-layered, terminated rectangular waveguide
with a point source arbitrarily located in the first dielectric layer
(region V; in Fig. 4), one-dimensional characteristic Green’s functions

are obtained as follows,

f'r(r}%?xx (Z, Z,) = fgi?yy (Z, Z/)

Fhe (2,2') = ™

k, (3 - 1)
() (z,2) = en(z+2) ___\61 /.

mn,zy Zg‘EZcTM ’

g2

(11) 6_71‘2—2 | + 671(Z+Z/) (5—1

N —
mn,zz (Z,Z) -

27

™
Ze

2
2’}/1 ’

e sinh (72 (7 — 2))

f7(n27}07)xx (2, Z,) = fr(n?i,)yy (Z, Z/) =
€2

f(21)

ez e

ZTEginh (vyo1) ’

!
mn,zx (z? z

ZTEZTM cogh (yo71)

9

(B1)

(B2)
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k, (i—j - 1) cosh (72 (1 — 2))

(21) N _ m?
! (Z’Z) € ZTEZTM cosh (yo71) ’

mn,zy

(B7)

£2 cosh (72 (7 — 2))

(21) ) = en EL b
mn,zz (’27 z ) € ZeTM cosh (727') ’ ( 8)

where ZI'F and ZI'M represent the characteristic dispersion functions
of TE odd and TM even modes of a grounded dielectric slab of thickness
7 bounded with the electric walls at x = 0,a and y = 0, b,

Z3 " =l + 2l cothy ),

mn m

-7
£1 mn

(2,)1 tanh ’yﬁ%r

m
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