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Abstract—For almost a century, velocity dependent scattering prob-
lems are solved in the context of Einstein’s Special Relativity theory.
Most interesting problems involve non-uniform motion, which is
heuristically justified by assuming the validity of the “instanta-
neous velocity” approximation. The present study attempts to pro-
vide a consistent postulational foundation by introducing boundary
conditions based on the Lorentz force formulas.

The methodology used here is dubbed “reverse engineering”:
Being aware of the relativistic results, we show that they are replicated,
(at least) to the first order in β = v/c by the present method. Specific
problems are discussed to demonstrate the power of the method, and
pave the way to future research in this problem area.

Specifically, by realizing that at the boundary we deal with signals,
which are derived from waves, only the latter being subject to the wave
equations, it is feasible to apply boundary conditions and construct
appropriately the scattered waves in space.

It is shown that the present approach is also consistent with
the Minkowski constitutive relations which are exploited for solving
problems where the medium moves parallel with respect to the bound-
aries.
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1. INTRODUCTION AND RATIONALE

It is almost a century since the publication of Einstein’s original paper
[1], which drastically changed our understanding of physics. For an
authoritative review see Pauli [2]. Instead of the Newtonian absolute
space and time trellis on which the physical world was until then
described, we have now an infinitum of inertial reference systems
related by the Lorentz transformation.

Against this new backdrop, many problems of physics have been
investigated. Of particular interest to the research at hand are elec-
tromagnetic scattering problems in the presence of moving objects and
moving media. In this respect it is interesting to note Abraham’s article
[3], because he has derived relativistic correct results even though
Einstein’s theory [1] was not yet published.

Over a period of many years, relativistic electromagnetic scat-
tering problems have been investigated. A comprehensive review of
various results, and an extended collection of references was given by
Van Bladel [4], many results are also described and referenced by Kong
[5]. These provide a link to the relevant literature. Many of these
investigations are attempts to enrich our catalog of solved problems,
and they indeed afford a deeper insight into the general problem area.

The aim of the present investigation is, more than to deal with
specific problems, rather to provide a unifying critical point of view
to the whole subject, in particular the approach based on the Lorentz
force formulas, as explained below.

Strictly speaking, Einstein’s Special Relativity theory [1] applies
to constant velocities only. For example, proper time, which is a
keystone concept of the theory, cannot be accounted for, for a particle
moving with a varying velocity on an arbitrary trajectory. For a
simple demonstration see Censor [6]. This is a well-known problem
in the postulational foundation of Special Relativity. See for example
Bohm [7, pp. 162–163]. Accordingly, the instantaneous velocity of the
accelerated object is considered in a local unaccelerated inertial frame
of reference moving with the object’s instantaneous velocity. Within
the short time interval for which this new frame is considered, until
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it is replaced by another instantaneous velocity frame, the laws of
Newtonian mechanics are claimed to be applicable in this frame.

At best, this makeshift heuristic approach is an empirically
adequate approximation, but does not stem from the initial postulates
of the Special Relativity theory. However, in the absence of better
tools, the instantaneous velocity approximation is adopted for many
analyses appearing in [4] and elsewhere. At the present time, we are
equipped with those results and can propose other approaches and
compare results with those derived exactly or approximately from
special-relativistic arguments. This “reverse engineering” approach
will be followed below. Accordingly, it is demonstrated that for
instantaneous velocities, at least the first order relativistic velocity
effects can be considered as valid, subject to the present approach.

Recently [8] the Doppler effect [9–11] and associated scattering
problems have been discussed. Without invoking special-relativistic
considerations, it has been shown that scattering of a plane wave
incident on a moving plane scatterer gives rise to frequency, wavelength
and direction of propagation of the reflected wave, commensurate with
the relativistic equations derived in [1]. It must be stressed that these
results were obtained neither by using the Lorentz nor the Galilean
coordinate transformations, as explained below. Based on the Lorentz
force formulas, these results are extended here to account for velocity
dependent amplitude effects as well.

2. THE LORENTZ FORMULA APPROACH AND
SPECIAL RELATIVITY

There exists a conceptual difference between the Lorentz force formula
in its classical form and the relativistic electrodynamics approach.
Let us start with the macroscopic Maxwell’s equations which are the
fundamental “law of nature” concerning us here, see [6] for notation

∂x ×E = −∂tB− jm
∂x ×H = ∂tD + je
∂x ·D = ρe
∂x ·B = ρm

(1)

In (1) the equations are given in the X = (x, ict) spatiotemporal
regime (in the Minkowski notation), e.g., E = E(X). Indices e-
(electric), or m- (magnetic) refer to electric and (virtual) magnetic
sources, respectively. In the context of the Special Relativity the-
ory this initial space is often referred to as the “laboratory frame



202 Censor

of reference,” from which moving objects are observed, in contra-
distinction to the “comoving frame” or “proper frame,” in which
an object is observed by the comoving observer as being at rest.
If the comoving frame is inertial, i.e., unaccelerated, then accord-
ing to Einstein’s postulate [1], “the same” (i.e., having the same
mathematical functional structure) Maxwell’s equations apply in it (see
also [12])

∂x′′ ×E′′ = −∂t′′B′′ − j′′m
∂x′′ ×H′′ = ∂t′′D′′ + j′′e
∂x′′ ·D′′ = ρ′′e
∂x′′ ·B′′ = ρ′′m

(2)

where in (2) E′′ = E′′(X′′), etc., with X′′ = (x′′, ict′′). The spaces are
related by the Lorentz transformation

x′′ = Ũ · (x− vt)

t′′ = γ(t− v · x/c2)
γ = (1− β2)−1/2

v̂ = v/v, β = v/c, v = |v|
Ũ = Ĩ + (γ − 1)v̂v̂,

(3)

where in (3) the tilde denotes dyadics and v is the velocity observed
from the laboratory frame. For brevity (3) can be denoted by X′′ =
X′′[X], and it is easily shown that (3) when solved for the un-primed
coordinates, yields X = X[X′′], which has the same structure as (3)
with interchanged double-primed and un-primed coordinates, and v
replaced by −v.

The fields in (1), (2) are related by the field transformation
formulas (see [6] for notation)

E′′ = Ṽ · (E + v ×B)

B′′ = Ṽ · (B− v ×E/c2)

D′′ = Ṽ · (D + v ×H/c2)

H′′ = Ṽ · (H− v ×D)

j′′e,m = Ũ · (je,m − vρe,m)

ρ′′e,m = γ(ρe,m − v · je,m/c2)
Ṽ = γĨ + (1− γ)v̂v̂

(4)
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where Ĩ is the idemfactor dyadic. What is crucial in (4) is that
E′′ = E′′(X′′) and E = E(X), etc., depend on their native space
coordinates, and the Lorentz transformation (3) X′′ = X′′[X] mediates
between the coordinate systems. In summary—here we deal with two
distinct but related spaces.

In contradistinction, the classical Lorentz force formula is given
by

fe = qeE′

E′ = E + v ×B
(5)

where in (5) E′ formally denotes a new effective E field, which includes
the velocity effect v × B, i.e., the velocity generated E field. All the
fields in (5), e.g., fe(X), E(X) etc., as well as the velocity field v(X)
are measured in the laboratory frame of reference, in terms of the
native spatiotemporal coordinates X. Unlike the relativistic notions,
nothing is assumed here regarding measurements in a comoving frame
of reference, and no assumptions are made on the constancy of v—as
far as we are concerned, it can be any nonuniform velocity field v(X).

To the first order in β, we have in (4) Ṽ = Ĩ, i.e., the idemfactor
dyadic, hence to this approximation, the first equation (4) becomes

E′′(X′′) = E′(X) (6)

and similarly for other equations in (4), but the two fields depend
on different spatiotemporal arguments. Multiplying (6) by qe on both
sides now tells us that (from the relativistic point of view) the Coulomb
force in the comoving frame is identical in magnitude, to the first order
in β, to the Lorentz force measured in the laboratory frame.

Therefore, in retrospect, (this is what is meant here by “reverse
engineering”), one could deduce (5) from (4), incorporating the
relativistic force four-vector properties (e.g., see [6] for a simple
discussion), This means that if magnetic point sources were physically
existent, one would be compelled, based on (4), to include in the theory
an analog magnetic Lorentz force of the form

fm = qmH′

H′ = H− v ×D
(7)

It is noted that Sommerfeld [13] defines the fictitious magnetic Lorentz
force formula by using the second equation in (4). The reason for
that, or the advantage compared to (7) is not clear. Of course (7)
must be understood as a postulate supplementing the existing theory
comprised of (1, 5). This paradigm does not include the theory of
Special Relativity, which we use here only as our “reverse engineering”
benchmark tool.
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3. BOUNDARY CONDITIONS FOR MOVING OBJECTS

An attempt will be carried out here to define adequate boundary
conditions for moving boundaries, using the Lorentz force formulas
(5), (7) and without invoking Special Relativity considerations. Only
in retrospect will our findings be compared to the relativistically exact
results.

The general boundary conditions are derived by invoking a
limiting process near a boundary, such that (1) is valid on both sides
of the boundary. The last two scalar equations in (1) then yield

n̂ · (B1 −B2) = ρmS (8)
n̂ · (D1 −D2) = ρeS (9)

i.e., in (8), (9) on the boundary between two regions (denoted “1”
and “2”), the normal components of vector B, D, are discontinuous,
indicated by the jump in the magnetic and electric surface charge
densities ρmS , ρeS , respectively. The unit normal vector n̂ points into
region “1”. The vector equations (1) yield

n̂× (E1 −E2) = −jmS (10)
n̂× (H1 −H2) = jeS (11)

indicating the discontinuity of E, H, across the boundary with the
magnetic and electric surface current densities, jmS , jeS , respectively.

When dealing with electrostatics and magnetostatics, in general
all the four relations (8)–(11) are needed, however, in dynamical (time-
dependent) systems, and in the absence of sources ρeS , ρmS , jeS , jmS ,
only two equations, e.g., (10), (11), are needed. This is well known
but seldom emphasized in textbooks. Inasmuch as the Lorentz force
formulas (5), (7) seem to suggest only two out of the four conditions for
moving boundaries, this point is reviewed here succinctly and in great
simplicity: For example, consider the first equation (1) in a current-less
domain. Multiplying the equation by n̂·, we obtain

n̂ · ∂x × (E1 −E2) = −∂tn̂ · (B1 −B2) (12)

The right hand side of (12) then vanishes according to (8), and the left
hand side involves only tangential field components, hence it agrees
with (11), and therefore we have here a redundancy. Multiplying the
second vector equation in (1) by n̂·, a similar redundancy in (9) and
(10) is revealed.

Boundary conditions for moving boundaries are discussed in the
literature, e.g., see [4, 5]. What we wish to do here is to derive the
essential expressions needed for scattering by moving objects, without
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invoking relativistic considerations. To that end we stipulate boundary
conditions based on (5), (7). Consider first a perfectly conducting
boundary, on which the tangential E field according to (10) must vanish
in the absence of imposed surface current density sources jmS . One way
to justify this boundary condition is to consider the Coulomb force
fe = qeE, i.e., (5) with v = 0, acting on free charges at the surface.
The field will “attempt” to separate the initially neutral charges, thus
causing a current. In a perfectly conducting material this would induce
infinite currents, hence the tangential component of the total field, Eto,
must vanish at the boundary. Consequently an excitation (ex-) field
will be associated with a scattered (sc-) field such that at the boundary
the total (to-) E field vanishes

n̂×Eto = n̂× (Eex + Esc) = 0 (13)

A perfect conductor produces the same effects as a material with
ε → ∞. In analogy to (13), we stipulate a magnetic Coulomb force
fm = qmH, i.e., (7) with v = 0. For such a “perfectly conducting”
magnetic material possessing µ→∞ we now have the analog of (13)

n̂×Hto = n̂× (Hex + Hsc) = 0 (14)

For perfect conducting media the two conditions (13), (14) are
mutually exclusive, otherwise the system would become over-deter-
mined. For a material with arbitrary finite µ, ε, even though we
cannot assume electric and magnetic conduction currents, there are
still polarization currents present, induced by the fields. At the
boundary, the conditions now involve the internal (in-) fields in the
form

n̂×Eto = n̂× (Eex + Esc) = n̂×Ein

n̂×Hto = n̂× (Hex + Hsc) = n̂×Hin
(15)

In view of the argument following (12), if there are no prescribed
surface sources on the scatterer, one of the boundary conditions (13),
(14), or the pair are necessary and sufficient for solving the scattering
problem.

An explicit solution (15) requires knowledge of the constitutive
relations involved, e.g., for simple media

Dex,sc = ε0Eex,sc,Bex,sc = µ0Hex,sc (16)
Din = εEin,Bin = µHin (17)

Following (5), (7), for moving boundaries the Coulomb force formulas
are to be replaced by the Lorentz force formulas. Accordingly, in (13)–
(15), the fields Eex, Esc, should be replaced by the effective values E′ex,
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E′sc, respectively. Similarly, replace Hex, Hsc by H′ex, H
′
sc, respectively

n̂×E′to = n̂× (E′ex + E′sc) = n̂×E′in
n̂×H′to = n̂× (H′ex + H′sc) = n̂×H′in

(18)

with the same constitutive relations as in (17) in the form

D′in = εE′in, B′in = µH′in (19)

and similarly effective primed fields in (16).
In view of (6), the basic limitation on (18), (19) is that they yields

correct relativistic results only to the first order in the velocity factor
β. Missing will be factors involving γ as in (4).

The results (18), (19) are different from the essentially non-
relativistic kinematical boundary conditions cited by [4, 5], which were
originally suggested by von Laue [14]. These replace (10), (11) in the
form

n̂× (E1 −E2)− (n̂ · v)(B1 −B2) = −jmS
n̂× (H1 −H2) + (n̂ · v)(D1 −D2) = jeS

(20)

The main difference seems to be in that (17), based on the Lorentz
force formulas (5), (7), contains a term

n̂× (v ×B) = (n̂ ·B)v − (n̂ · v)B (21)

and a similar term for D. The term (n̂ · B)v in (21) and the
corresponding (n̂ · D)v do not appear in (20). It is also noted that
the extra terms in (20) containing n̂ · v vanish identically and do not
feature in problems where the motion is parallel to the interface, as
discussed below in relation with the Minkowski constitutive relations.
In any event, it is not clear how a problem based on (20) could be used,
without further assumptions, to solve arbitrary problems and account
for Doppler effects involved.

Before leaving the subject of boundary conditions, we wish to
draw attention to the fact that Van Bladel (see [4, p. 313]), solving the
problem of scattering from an oscillating mirror, suggests the boundary
condition (18) for the electric fields, but not for the magnetic fields.
This point seems to be conflicting with the present results.

4. THE ROLE OF THE MINKOWSKI CONSTITUTIVE
EQUATIONS

For the basic theory and historical remarks see Sommerfeld [13],
referring to the original work by Minkowski [15], see also [6]. Minkow-
ski’s constitutive equations are pertinent to scattering problems where
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the interface is moving parallel to itself. These constitutive equations
relate the fields in the laboratory system in the presence of a moving
medium.

It will be shown that the boundary conditions (18), (19), based
on the Lorentz force formulas (5), (7), are consistent and equivalent to
the Minkowski constitutive equations approach. In order to illustrate
the principle, we adhere to the simplest situation of a homogeneous
isotropic medium.

Based on (4), in the laboratory system, the fields inside a moving
medium will be given by

Din + v ×Hin/c
2 = ε(Ein + v ×Bin)

Bin − v ×Ein/c
2 = µ(Hin − v ×Din)

(22)

where in (22) Ein = Ein(X) etc., are all measured in the laboratory
frame of reference where the moving medium is observed, and expressed
in terms of the native spatiotemporal coordinates X. But note that
the constitutive parameters µ, ε, in (22) are those measured in the self
or proper (comoving) frame where the medium is at rest.

From (4)–(7) it is clear that to the first order in β, (22) amounts to
(19). Scattering problems where the medium moves tangentially with
respect to the interface can be solved by assuming a medium at rest
with the boundary conditions given by (15), and with the constitutive
properties (16), (19), (22).

Problems of this kind are known to exhibit depolarization effects,
i.e., scattered field vector components in new directions. This phenom-
enon also happens for a cylinder moving along its axis [16], see also
references to related problems of scattering by media moving parallel to
the interface, e.g., planes, rotating spheres and cylinders, and cylinders
moving along the axis, in [4, 5].

To show that (15) coupled with (22) are compatible with (18),
(19), consider a boundary moving parallel to the interface of a medium
possessing arbitrary µ, ε. With this geometry we get from (18), (21)

n̂×E′to = n̂×Eto + n̂× (v ×Bto) = n̂×Eto + (n̂ ·Bto)v
n̂×E′in = n̂×Ein + n̂× (v ×Bin) = n̂×Ein + (n̂ ·Bin)v

(23)

But according to (8) n̂ · Bto = n̂ · Bin for the geometry at hand. An
analogous expression is obtained for the associated boundary condi-
tions for the H fields

n̂×H′to = n̂×Hto − n̂× (v ×Dto) = n̂×Hto − (n̂ ·Dto)v
n̂×H′in = n̂×Hin − n̂× (v ×Din) = n̂×Hin − (n̂ ·Din)v

(24)
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and now according to (9) n̂ ·Dto = n̂ ·Din. Thus it has been shown
that the two approaches, with their pertinent constitutive relations,
are consistent and compatible.

The question of the Minkowski constitutive relations goes beyond
the plane half-space, circular cylinder and sphere, indeed rigid bodies
moving or rotating such that the medium moves parallel to the inter-
face. One could envisage a fluid medium contained by some arbitrary
shaped boundary and at the boundary moving parallel to it. Although
we deal now with non-uniform motion and velocity, we can still ask
whether the Minkowski constitutive relations are valid, From the above
analysis it follows that at least to the first order in β the Lorentz force
formulas justify the relativistic Minkowski relations.

For media moving parallel to the interfaces, e.g., stratified plane,
cylindrical, or spherical motion, there are cases when other methods
can also be employed, e.g., see [17], using a Green function integral
approach.

5. NORMAL SCATTERING AT A PLANE INTERFACE

The simplest example of scattering by moving objects is the normal
reflection from a perfect conducting mirror moving in free space,
according to x = vt, v = x̂v along the direction of propagation of
the exciting wave. The plane harmonic exciting and scattered waves
are given by

Eex = ẑEexei(kexx−ωext), Hex = −ŷHexe
i(kexx−ωext)

Esc = −ẑEscei(−kscx−ωsct), Hsc = ŷHsce
i(−kscx−ωsct)

kex/ωex = ksc/ωsc = (µ0ε0)1/2 = 1/vph = 1/c

Eex/Hex = Esc/Hsc = (µ0/ε0)1/2 = ζ

(25)

respectively, where in (25) vph is the phase velocity, in the present case
the speed c of light in free space. As amply explained previously [8],
we first substitute x = vt in the incident wave in order to find the
time dependent signals at the instantaneous position occupied by the
moving surface at any given time. This is tantamount to saying that
we define a local coordinate xT

xT = x− vt (26)

parametrized by the time t, with the scatterer situated at xT = 0. Note
that we do not suggest a coordinate transformation in the Galilean or
Lorentz transformation sense, and thus we do not seek waves in a new
coordinate reference xT .
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Substituting from (26) into (25) yields a time dependent signal
field rather than a wave satisfying the wave equation

Eex = ẑEexe−iωT t, Hex = −ŷHexe
−iωT t

Esc = −ẑEsce−iωT t, Hsc = ŷHsce
−iωT t

ωT = ωex(1− β) = ωsc(1 + β)
β = v/vph = v/c

(27)

This step is part of the evaluation of the boundary conditions and
guarantees that the exciting and scattered signals have the same time
dependence at the boundary. In order to have proper waves satisfying
(1) and propagating at vph, it follows from (27) that

ωsc/ωex = ksc/kex = ξ, ξ = (1− β)/(1 + β) (28)

Although ωT is not the relativistically transformed frequency, we
obtain for ωsc the relativistically exact result obtained in [1], because
of the ratios in (28), see also [8].

The amplitudes are calculated by the first line of (18), with
E′in = 0

E′ex = Eex + µ0v ×Hex = −E′sc = −(Esc + µ0v ×Hsc)
|E′ex|/|H′ex| = |E′sc|/|H′sc| = ζ, Esc/Eex = Hsc/Hex = ξ

(29)

where ζ, ξ are defined above, in (25), (28), respectively. Once again,
(29) is the exact relativistic result obtained by Einstein [1].

For materials with arbitrary µ, ε, (18) is used. This amounts to
implementing the classical Fresnel formulas for scattering of a plane
wave at a plane interface (e.g., see [5]) , except that here the effective
fields E′ex, E′sc are involved, and the result is relativistically exact only
within the first order of the velocity factor β.

Note carefully that ωT in (27) is not the frequency exciting the
moving object as obtained from exact relativistic transformations.
Actually a factor γ, (3), is missing. However, for the scattered fre-
quency (28) this has no effect. But if we deal with dispersive media,
the present frequency ωT exciting the scatterer is correct only to the
first order in β.

The case of normal incidence and a plane scatterer moving
parallel to the interface yields vanishing cross terms, e.g., see (21).
Consequently there will be no velocity effect present, and no motional
effect of first order in β. Note, however, that relativistically we en-
counter the transverse Doppler effect involving second-order terms in
β in the frequency. Once again, this shows that for dispersive media
the results will be relativistically exact to within first order in β.
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6. OBLIQUE SCATTERING AT A PLANE INTERFACE

It is always possible to resolve an arbitrarily polarized plane wave
into two components, with one exciting field, E, or H, parallel to the
reflecting half space. Let us therefore take the exciting wave as

Eex = ẑEexeiϕex , Hex = k̂ex × ẑHexe
iϕex , ϕex = kex · r− ωext

kex · r = kexr cos(θ − αex) = kex,xx+ kex,yy

Esc = −ẑEsceiϕsc , Hsc = −k̂sc × ẑHsce
iϕsc , ϕsc = ksc · r− ωsct

ksc · x = kscr cos(θ − αsc) = −ksc,xx+ ksc,yy
(30)

The signal at the interface’s instantaneous position xT = 0, obtained
from (26) by substituting x = vt into the phases in (30), prescribes the
same phase ϕex = ϕsc at the surface, hence

ωT = ωex − kex,xv = ωsc + ksc,xv
= ωex(1− β cosαex) = ωsc(1 + β cosαsc)

kex,z = kex sinαex = ksc,z = ksc sinαsc
(31)

Based on (30), (31), it has already been shown in [8] that the scattered
frequency is given by

ωsc/ωex = γ2(1− 2β cosαex + β2) (32)

being the exact relativistic result obtained in [1], including the second
order velocity effects. Similarly, it is shown in [8] that in agreement
with [1], the directions obtained from (31) are related by

cosαsc = −[(1 + β2) cosαex − 2β]/[1− 2β cosαex + β2] (33)

and are therefore relativistically exact.
The aberration phenomenon described, e.g., by (33) is therefore

not contingent on the Special Relativity theory. In fact, astronomers
were aware of the aberration phenomenon (attributed to James
Bradley (1693–1762) who discovered the aberration of light in 1725–26
(published 1729)) even before the advent of the theory of relativity.

If the medium is dispersive, then ωT is involved in the results.
Once again we note that ωT , (31), differs from the exact relativistic
transformed excitation frequency. The present results, based on the
Lorentz force formulas (5), (7), lead therefore to results which are
correct within the first order in the velocity factor β.
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The calculation of the amplitudes requires (5), (7), (19), (30).
Similarly to (31–33) we obtain

E′ex = Eex + µ0v ×Hex = −E′sc = −(Esc + µ0v ×Hsc)
E′ex = Eex(1− β cosαex), E′sc = Esc(1 + β cosαsc)

(34)

Consequently (34) yields the same amplitude ratios as in (32)

Esc/Eex = Hsc/Hex = γ2(1− 2β cosαex + β2) (35)

and once again (35) is an exact relativistic result.

7. SCATTERING BY A LINEALLY MOVING CYLINDER

The relativistic problem of scattering by a cylinder, moving with con-
stant velocity x = vt, v = x̂v, perpendicularly to the cylindrical z
axis, has been discussed before [4, 18]. Recently the non-relativistic
treatment of the problem has been considered [8]. The method con-
sidered translation (as opposed to real motion involving effects as in
(5), (7)), which introduced phase differences and accordingly frequency
shifts, but did not take into account motional amplitude effects in the
manner presently pursued. We will show now that a careful application
of the Lorentz force formulas boundary conditions (18), (19) facilitates
a relativistically correct first order in β analysis. This is a crucial
observation, justifying the implementation of the method for general,
motional modes, involving non-uniform velocity, as discussed later.

The excitation wave is taken as in the first line (25). Similarly to
(26), (27), the signal at some special point on the scatterer is computed.
This can be any point in the local coordinate system of the scatterer,
since it only serves to provide a reference for the phase shift of the
excitation wave relative to this point. The simplest choice is to take
the cylinder’s center xT = 0 as the reference point, although it is
physically inaccessible to the incident wave. As in (27), we have

Eex = ẑEexe−iωT t, Hex = −ŷHexe
−iωT t

ωT /ωex = kT /kex = 1− β, ωex/kex = ωT /kT = c
(36)

Associated with the frequency ωT (36), we also consider a propagation
constant kT = ωT /c because the excitation wave propagates in the
initial space, with speed c in our example. This is a crucial point, as
mentioned below.

Define a local coordinate system

xT = x− vt = r cos θ − vt = rT cos θT
yT = y = r sin θ = rT sin θT

(37)
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whose origin xT = 0, yT = 0 is the center of the cross-sectional
circle. Note that (37) could be construed as a Galilean coordinate
transformation, and one is tempted to simply substitute (37) into the
plane wave Eex in (25), and consider it a wave in the comoving system
of reference. Of course this would not yield the relativistically correct
results to first order in β, as required. Instead, this would introduce
obsolete Galilean concepts like the rule of combining propagation
velocities, i.e., replacing c by c− v, which has no place in the present
context. Here there is no attempt to introduce moving observers, or to
perform measurements in a moving coordinate system: Conceptually
everything is considered in the initial reference system X. Time t in
(37) serves only as a parameter tracking the position of the circle in
question.

The phase difference between the origin xT = 0, yT = 0 and the
circumference of the circle is given by kTR cos θT , and the total phase
factor of the excitation signal at the boundary, recast in a Fourier-
Bessel integral, is therefore

eiϕex =
∞∑

m=−∞
imJm(kTR)eimθT−iωT t, ϕex = kTR cos θT − iωT t

(38)

Corresponding to (27) we define the effective excitation field

E′ex = ẑE′exe
ϕex , H′ex = −ŷH ′exe

ϕex

E′ex/Eex = H ′ex/Hex = 1− β (39)

From (5), (7), (34) the relation of the amplitudes is derived, as given
in (39).

Consider first the perfectly conducting circular cylinder. Based on
past experience in solving the classical problem of a cylinder at rest,
and the associated relativistic problem of a lineally moving cylinder
[8, 18], we choose for the effective scattered signal

E′ex = −ẑE′ex

∞∑
m=−∞

imamH
(1)
m (kTR)eimθT−iωT t (40)

where H(1)
m denotes the Hankel function of the first kind and order m.

The combination of H(1)
m and the time factor e−iωT t guarantees the

correct radiation condition for the scattered waves, introduced below.
Using the signals (36), (38)–(40) to satisfy (18) (with E′in = 0), and
exploiting the orthogonality of the Fourier-Bessel series prescribes

am = Jm(kTR)/H(1)
m (kTR) (41)
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which agrees with the problem of scattering by a cylinder at rest,
and in the relativistic context—in the comoving frame of reference, it
constitutes the correct relativistic result to first order in β, as computed
before, see [4, 18].

But suggesting the coefficients (41), which indeed satisfy the
boundary conditions for the signals at the boundary, constitutes only
one step in creating a full solution to the problem. Now we have to
find the corresponding scattered wave, which must be a solution of the
wave equation and simultaneously reduce to the signal (40), (41) on
the boundary. This is not trivial.

We start with an arbitrary plane wave as in the first line of (30),
polarized along the cylindrical axis ẑ and propagating in the direction
indicated by α

Eα = ẑEαeiϕα , Hα = k̂α × ẑHαe
iϕα ,

ϕα = kα · r− ωαt = kα,xx+ kα,yy − ωαt = kαr cos(θ − α)− ωαt
kα,x = kα cosα, kα,y = kα sinα

(42)

Computing the time signal for this wave at the local origin xT = 0,
yT = 0 as in (36), we find

Eα = ẑEαe−iωαT t, Hα = k̂α × ẑHαe
−iωαT t

ωαT /ωα = kαT /kα = 1− β cosα
ωα/kα = ωαT /kαT = c

(43)

In order to satisfy the boundary conditions, the frequencies in (36),
(43) must be equal on the circle rT = R, thus yielding

ωαT /ωT = kαT /kT = 1 (44)

and

ωα/ωex = kα/kex = (1− β)/(1− β cosα) (45)

The result (45), because it is a ratio, once again eliminates factors γ
involved in the relativistic transformations of frequencies, and turns
out to be relativistically exact.

The phase shift on the circumference rT = R relative to the
reference point xT = 0, yT = 0 is the phase incurred along the
projection of the radius R on the direction of propagation. Instead
of (38) we now have

eiϕα , ϕα = kαTR cos(θT − α)− ωαT t (46)
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Exploiting the Sommerfeld integral representations for the cylindrical
functions, e.g., see [5, 19], a superposition of functions shown in (45) is
constructed

E′sc = −ẑE′ex

∫ θT+(π/2)−i∞

θT−(π/2)+i∞
eikTR cos(θT−α)−iωT tg(α)dα/π

g(α) =
∞∑

m=−∞
ame

imα

(47)

which is consistent with (40). Note that in (47) the integration is
over a range of complex propagation angles α. This is a mathematical
consequence of the Sommerfeld integral representation for the Hankel
cylindrical functions.

According to (5) (see also (34) for similar considerations), in order
to find the scattered field for which (47) provides E′sc, we need to
supplement each signal in the integrand by a factor (1− β cosα)−1 ≈
1 + β cosα, exact to the first order in β. Consequently, the scattered
signal at the boundary is given by

Esc = −ẑE′ex

∫ θT+(π/2)−i∞

θT−(π/2)+i∞
eikTR cos(θT−α)−iωT tG(α)dα/π

= −ẑE′ex

∞∑
m=−∞

imAmH
(1)
m (kTR)eimθT−iωT t

G(α) = (1 + β cosα)g(α) =
∞∑

m=−∞
Ame

imα

Am = am + (β/2)(am−1 + am+1)

(48)

Recasting (48) in the form

Esc = −ẑE′ex

∞∑
m=−∞

imame
imθT−iωT t

·
[
H(1)
m + (iβ/2)(H(1)

m+1e
iθT −H(1)

m−1e
−iθT )

] (49)

where all the Hankel functions have the argument kTR as in (48),
emphasizes how an interaction of the cylindrical modes is created.
Thus for example, a cylinder at rest with a dominant monopole term
a0 �= 0, am = 0, m �= 0, e.g., for an E field polarized along the axis of
a thin perfectly conducting cylinder, scattering omni-directionally, the
velocity effect introduces additional dipole terms. See [18] for some
simulation graphical results.
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For a cylinder of arbitrary constitutive parameters, the coefficients
(41) are replaced by the appropriate coefficients involving the internal
material parameters (19). The same procedure can be applied to cyl-
inders of arbitrary cross section. All we need to know is the perti-

nent scattering amplitude function g(α) =
∞∑

m=−∞
ame

imα (e.g., as an

experimental result), from which the coefficients am of the Fourier
series can be derived. We do not elaborate on these aspects here.

The relativistic treatment of scattering by spheres and arbitrary
three-dimensional lineally moving objects has been discussed before
[18] in the relativistic context. The present approach based on the
Lorentz force formulas will lead to the relativistically correct results,
within the first order in β.

Finally, the scattered wave reducing to the signal (48), (49) at
the boundary must be discussed. The way the subject was devel-
oped above, each of the signals appearing under the integral sign
in (47) corresponds to a scattered plane wave given by (42), (43).
Consequently, the scattered wave can be represented in the form

Esc = ŷE′ex

∫ θT+(π/2)−i∞

θT−(π/2)+i∞
eikαr cos(θ−α)−iωαtG(α)dα/π (50)

where θT , θ are related by (37), and ωα, ωT , and the corresponding
kα, kT are related by formulas given in (44), (45).

The actual integration of (50) is complicated, and probably will
not be possible analytically, except for some limiting cases. However,
we can say a few things about the qualitative nature of the scattering
process: It is seen that (50) describes a continuous spectrum of ωα and
the corresponding kα. Moreover, if the saddle point approximation is
applied to (50), only a single instantaneous frequency appears. Thus
as the distance from the scatterer increases, the spectrum increasingly
narrows, and in the limit is described, similarly to the results (32),
(33), (35), by scattering by a plane moving in an arbitrary direction,
this direction changing with time.

8. SCATTERING BY AN ECCENTRICALLY ROTATING
CYLINDER

The general methodology introduced above is adequate for dealing with
arbitrary modes of motion. In order to focus on a concrete example, we
choose the eccentrically rotating cylinder. Problems involving periodic
motion of boundaries have been considered before in the relativistic
context, e.g., scattering by an oscillating plane reflector [4]. Another
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class of periodic motion, in the acoustical context, has also been
discussed [20], treating periodically perturbed scattering boundaries.

Problems of this kind are technically interesting because periodic
mechanical motion is found in many engineering applications, such as
vibrating or rotating objects, be it aircrafts or marine vessels, or on
smaller scales, equipment as found in the workshop. Acquiring spectral
signatures of such objects could assist in remote sensing, for various
applications.

The following is a computed example of the spectrum expected
from an eccentrically rotating scatterer. We would expect the periodic
motion to “modulate” the waves, and thus display a discrete spectrum
which contains the incident frequency and additional sidebands corre-
sponding to the motional frequencies and their harmonics. However,
things are more complicated, because we have seen from the lineally
moving object, analyzed above, that a continuous spectrum is created.
Hence the purely discrete spectrum will be manifested only in limiting
cases.

One such case involves eccentrically rotating, circular, thin (with
respect to wavelength) cylinders. In this example we do not attribute
rotation about some axis to the cylinder’s material itself, although
problems belonging to this class can also be considered. Rather we
refer to the motion of the cylindrical axis of the object, defined by a
local coordinate system xT , yT . Similarly to (37) we define

xT = x−Q cos θ, yT = y −Q sin θ, θ = Ωt (51)

where Q, Ω, are the radius and the frequency associated with the
rotation, respectively. Accordingly (51) prescribes

v = −x̂ΩQ sin θ + ŷΩQ cos θ = ΩQˆ̀e (52)

for the motion of the axis.
The incident wave is chosen as in (25), hence at the position of the

cylinder’s axis, xT = 0, yT = 0, the signal field is found by substituting
from (51)

Eex = ẑEexeiϕex , Hex = −ŷHexe
iϕex

ϕex = kexQ cos Ωt− iωext, eiϕex =
∞∑

m=−∞
imAme

−iωmt

ωm = ωex −mΩ, Am = Jm(kexQ)

(53)

We may call the effect demonstrated in (53) a “Doppler effect,” however
it does not follow the usual Doppler frequency shift formula, expressed
by the velocity, as in (27) for example.
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The effective field signal is obtained according to (5), (52)

E′ex = ẑE′ex = ẑEexeiϕex(1 + β sin Ωt), β = ΩQ/c (54)

and a similar expression for H′ex. Recasting (54) by redefining indices,
and exploiting the formula Jm−1(ρ) + Jm+1(ρ) = (2m/ρ)Jm(ρ) for
cylindrical functions (e.g., see [19]) yields,

eiϕex(1 + β sin Ωt) =
∞∑

m=−∞
imA′me

−iωmt

A′m = Am(1− Ωm/ωex)

(55)

Consequently (55) shows that the spectrum content remains the same,
although the amplitude of individual sidebands is changed.

For an arbitrary cylinder we need now to consider the additional
phase shift of the wave at the boundary, relative to the local origin
xT = 0, yT = 0 defined in (51). This calls for a procedure similar to
that effected in (38), etc. Accordingly each sideband of frequency
ωm will lead to a continuous spectrum. Instead of analyzing this
complicated problem, we consider here the case of the thin cylinder.
For each frequency ωm, the criterion for thinness is ωmR/c 	 1.
Obviously this can only be satisfied for a finite band of sidebands,
but for many practical problems of electromagnetic propagation and
feasible mechanical motion this seems to be a sound approximation for
cylinders satisfying ωexR/c 	 1. When the criterion is met, then the
cylinder’s boundary is considered to be excited by (54), (55).

In order to construct the scattered field we start with a legitimate
solution of the wave equation, this time we start with a cylindrical
outgoing wave

En = ẑEninH(1)
n (kvr)einθ−iωvt

= ẑEne−iωvt
∫ θ+(π/2)−i∞

θ−(π/2)+i∞
eikvr cos(θ−α)+inαdα/π

Hn = Hne
−iωvt

∫ θ+(π/2)−i∞

θ−(π/2)+i∞
eikvr cos(θ−α)+inαk̂v × ẑdα/π

En/Hn = ζ, ωv/kv = c

(56)

where in (56) Ĥn = k̂v × ẑ defines the mutually perpendicular vectors
associated with the plane waves in the superposition shown in (56).
The signal corresponding to (56), at the cylinder’s center is obtained
by substituting r = Q, θ = Ωt, into (56). This can be done now or
after computing the effective signal fields.
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The effective signal values associated with (56) are defined by (5),
(7), (52). For the E field, for example, this yields

E′n = ẑEne−iωvt
∫ θ+(π/2)−i∞

θ−(π/2)+i∞
eikvr cos(θ−α)h(α)dα/π

h(α) = einα(1 + β sin(Ωt− α))

= einα + (β/2i)(ei(n−1)α+iΩt − ei(n+1)α−iΩt)

E′n = ẑEne−iωvtineinθGn

Gn = H(1)
n (kvr)− (β/2)(H(1)

n−1(kvr)e
−i(θ+Ωt) +H(1)

n+1(kvr)e
i(θ+Ωt))

(57)

Note carefully that (57), being a signal at some location, does not
satisfy the wave equation any more.

For our scattered wave we choose an infinite sum of the waves
appearing in (56)

Esc =
∞∑

n=−∞
En = ẑ

∞∑
n=−∞

Eni
nH(1)

n (kvr)einθ−iωvt (58)

and the associated Hsc field. Accordingly the effective field expressed
in (57) becomes

E′sc =
∞∑

n=−∞
E′n = ẑ

∞∑
n=−∞

Ene
−iω′

vtinGn, ω′v = ωv − nΩt

Gn = H(1)
n (kvQ)− (β/2)(H(1)

n−1(kvQ)e−i2Ωt +H(1)
n+1(kvQ)ei2Ωt)

(59)

The two field signals (54), (55) and (59), must satisfy boundary
conditions as in (18), (19) at the surface of the cylinder. Before
material considerations are taken into account, the spectral compo-
nents must be identified, because the orthogonality of the spectral
exponentials prescribes that the excitation and scattered frequencies
at the scatterer’s surface must coincide. It follows from (53) that
each frequency ωm must be paired with each frequency ω′v, ω

′
v ± 2Ω

prescribed in (59). Only then the geometrical and material consider-
ations can be effected. Inasmuch as the present study is not interested
in solutions per se, but rather with their feasibility, the particulars are
not further pursued here.

However, by assuming a thin, perfectly conducting cylinder, the
salient characteristics of the solution become apparent: In such a case
we expect the spectrum to be discrete, displaying in the scattered
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wave the incident frequency and sidebands separated by the mechanical
frequency Ω. This only applies to thin cylinders (or to plane interfaces
and their ray approximation in the other extreme), as we have seen
that the finite cylinder, even moving with a constant velocity, creates
a continuous spectrum scattered field. Moreover, we are now confident
that the solution is physically correct to the first order in the velocity,
and agrees (to within first order in the velocity) with the quasi-
relativistic approach of assuming instantaneous velocities.

9. DISCUSSION AND CONCLUDING REMARKS

After almost a century since the appearance of Einstein’s monumental
paper [1], the subject area of scattering in velocity dependent systems
reached the stage where it can be re-examined and integrated into
the Maxwell electromagnetic theory in a fundamental manner. Until
now, the research in this area was mainly advanced by solving special
problems. Almost invariably, the tool to solve velocity dependent
problems relied on Einstein’s theory of Special Relativity, even though
for non-uniform motion the theory is not valid. It must be remembered
that this “instantaneous velocity” approach is heuristic.

The present approach uses special-relativistic results only as a
benchmark. What is attempted here is to directly tackle this class of
problems by invoking the Lorentz force formulas and derive from them
the boundary conditions (5), (7).

We have examined scattering by moving plane interfaces, moving
cylinders, and periodically moving objects.

The various problems discussed above show that the derived
results agree with the strictly relativistic and the “instantaneous
velocity” approach to at least within the first order in β = v/c. In
the case of plane interfaces and nondispersive media, exact relativistic
results are derived for the scattered waves. However, for arbitrary
shapes, where structural (geometric) dispersion is present, and/or
when macroscopic material dispersion is displayed, the excitation
frequency differs, with second order velocity factors γ (e.g., see (3))
involved.

With the new impetus imparted to the area of velocity dependent
scattering, and with the availability of strong numerical packages
for solving electromagnetic problems, one may hope that problems
involving moving and rotating scatterers will be considered.
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9. Doppler, C. J., “Über das farbige Licht der Doppelsterne und
einiger anderer Gestirne des Himmels,” Abhandl. königlich böh-
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