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Abstract—Nowadays, electrically large complex electromagnetic
problems exist in modern defence and communication industry.
Accurate and efficient calculation for such electromagnetic radiation
and scattering is a high computational complex task and a challenge
to conventional electromagnetic solvers such as Method of Moment
(MOM) where high memory and long computational time are required
owing to its large size compared to operating wavelength. This
paper presents the fast solution method with wavelet transform in the
computation of scattering from large scale complex objects. Because of
the vanishing moments, the moment matrices arising in these problems
are sparsified by wavelet, and consequently, the induced current and
equivalent magnetic current can be obtained quickly. Moreover, a
precondition method is postulated and implemented in the fast solution
of the transformed moment matrix equation with iteration methods.
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1. INTRODUCTION

The rapid growth in telecommunication and information systems over
the past years, including advances in high frequency telecommunica-
tions, navigation, radar systems and computer networks, have created
an enormous demand for modeling and simulation of more complicated
structures and systems. Except for very simple systems, the electro-
magnetic analysis required for electrical performance assessment and
for design of high performance telecommunication and information sys-
tems always results in large number of degrees of freedom, and there-
fore large number of unknowns in the electromagnetic model. Conse-
quently, these large scale problems generally are beyond the range of
applicability of many classical numerical algorithms due to computa-
tional complexity and huge memory requirements of these methods, as
well as inadequate approximation models applied in these methods. In
order to simulate complicated, large scale electromagnetic problems,
the complexity of the applied techniques has to be reduced. In recent
years a number of sophisticated fast numerical methods have been in-
vestigated at different stages of constructing an electromagnetic com-
putational solver, including mathematical problem formulation, finite
dimensional projection method and solving the discrete problem such
as fast multipole method, fast Fourier Transfer method, model order
reduction and etc.

For electrically large objects in radar cross section (RCS)
computation, moment methods [1] with conventional expansion and
testing functions results in large and dense matrix equations, direct
solving of which is exhaustive. The fast solution method, wavelet
transform, is applied to computing engineering to quickly sparsify
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dense matrices, and wavelet moment methods (WMM) is proposed
to solve such electrically large problems [2–5].

This paper, in particular, presents the study on the fast wavelet
transform method for computation of large scale electromagnetic
scattering problem, and it is organised in the following. In Section
2, for the sake of clarify, a complete wavelet moment methods is
introduced. In Section 3, the scattering from complicated objects is
quickly solved using wavelet transform. In Section 4, a precondition
method is proposed and implemented in reducing the condition
numbers of transformed moment matrices.

2. WAVELET MOMENT METHODS

The electromagnetic field integral equation can be discretized by
moment methods to the following matrix equation

Z · J = E (1)

where Z, J and E denote the N × N moment matrix, the induced
current to be solved and the excitation vector, respectively. Now
equation (1) is transformed by matrix T as following

Z′ = T ·Z · T t, J ′ = T−t · J, E ′ = T ·E (2)

where t denotes the matrix transpose, we can rewrite (1) as

Z′ · J ′ = E ′ (3)

Then (3) can be solved by iteration methods. This is the so-called
wavelet moment methods and the matrix T is called the wavelet
transform matrix. The cost of direct solvers such as gauss elimination
method for (1) is o(N3). In order that the wavelet moment methods
cost is less than it, T should satisfy the following criteria

1) The cost of transform Z′ = T ·Z · T t should be less than o(N3);
2) Z′ should be spare. In what follows, the elements of Z′ are

thresholded with the level α ·max
m,n

(|Z(m,n)|), where 0 ≤ α ≤ 1.

The sparsity rate is defined as the ratio of nonzero elements to
total elements in the matrix;

3) T should be at least reversible in order that (3) is equivalent to
(1), and the condition number of Z′ should not be larger than that
of Z .

In the following, we will find out wavelet sequences, then the T meeting
above criteria can be constructed by these sequences.
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2.1. The Construction of Wavelet Sequences

Firstly, we define following 2× 2 complex matrices M(z) and N(z)


M(z) =

[
P (z) Q(z)
P (−z) Q(−z)

]

N(z) =
[
A(z) A(−z)
B(z) B(−z)

]∗ (4)

where 


P (z) =
1√
2

∞∑
n=−∞

pn · zn

Q(z) =
1√
2

∞∑
n=−∞

qn · zn

A(z) =
1√
2

∞∑
n=−∞

an · zn

B(z) =
1√
2

∞∑
n=−∞

bn · zn

(5)

in which, z = e−jω, ω ∈ R, R represents the real assemble, j
denotes the square root of −1, * denotes the conjugate. Sequences
{pn}, {qn}, {an} and {bn} ∈ R, they are the wavelet sequences to be
solved and their length are finite.

Then we define N ×N real matrices WN and VN
1 N

WN =
N
2

N
2

+1

1

N




a0 a1 a2 · · · am 0 · · · · · · · · · · · · · · · · · · · · · · · · · 0
0 0 a0 a1 a2 · · · am 0 · · · · · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · 0 a0 a1 a2 · · · am
am−1 am 0 · · · · · · · · · · · · · · · 0 a0 a1 a2 · · · am−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a2 a3 a4 · · · am 0 · · · · · · · · · · · · · · · · · · · · · · 0 a0 a1
b0 b1 b2 · · · bn 0 · · · · · · · · · · · · · · · · · · · · · · · · 0
0 0 b0 b1 b2 · · · bn 0 · · · · · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · ·0 b0 b1 b2 · · · bn
bn−1 bn 0 · · · · · · · · · · · · · · · · ·0 b0 b1 b2 · · · bn−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
b2 b3 b4 · · · bn 0 · · · · · · · · · · · · · · · · · · · · · · · · · 0 b0 b1




(6)
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1 N

VN =
N
2

N
2

+1

1

N




p0 p1 p2 · · · pk 0 · · · · · · · · · · · · · · · · · · · · · · · · · 0
0 0 p0 p1 p2 · · · pk 0 · · · · · · · · · · · · · · · · · · · ·0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · 0 p0 p1 p2 · · · pk
pk−1 pk 0 · · · · · · · · · · · · · · · 0 p0 p1 p2 · · · pk−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
p2 p3 p4 · · · pk 0 · · · · · · · · · · · · · · · · · · · · · · · · 0 p0 p1
q0 q1 q2 · · · ql 0 · · · · · · · · · · · · · · · · · · · · · · · · · ·0
0 0 q0 q1 q2 · · · ql 0 · · · · · · · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · ·0 q0 q1 q2 · · · ql
ql−1 ql 0 · · · · · · · · · · · · · · · · ·0 q0 q1 q2 · · · ql−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
q2 q3 q4 · · · ql 0 · · · · · · · · · · · · · · · · · · · · · · · · · ·0 q0 q1




(7)

where, the row vectors of WN and VN are the cycle translates of
sequences {an}, {bn}, {pn} and {qn} with 2 as the step in the interval
[1, N ], the subscript N denotes the matrix rank.

So that, the conclusion is made that [3]

N(z) ·M(z) = I (8)

is equivalent to
WN · V t

N = IN (9)

Where IN denotes the N ×N real identity matrix.
We will use WN and VN to construct T . So {pn}, {qn}, {an} and

{bn} must satisfy Equation (8) in order that WN , VN , and T are at
least reversible. At the same time, in order that Z′ is sparse, {bn} and
{qn} should have some vanishing moments. We say that the sequence
{xn} has M -order vanishing moments if and only if

∞∑
n=−∞

xnn
i = 0, i = 0, 1, . . . ,M − 1 (10)

and
∑∞
n=−∞ xnn

M 
= 0.
When {bn} and {qn} have some vanishing moments, the

multiplication between these sequences and the matrix in which the
row and column vectors vary slowly yields a sparse vector. This is
the reason that the wavelet transform matrix T can make matrix Z′
sparse. On the other hand, these sequences length increase when
their vanishing moments increase. There is a relationship between
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the vanishing moments of wavelet sequences and their polynomials
P (z), A(z), B(z) and Q(z) as following [3].

P (z) (or A(z)) should include the factor (z + 1)M in order that
{bn} (or {qn}) has M -order vanishing moments.

There are two kind of wavelet sequences often used in
computation: for orthonormal wavelet sequences such as Daubechies
sequence and Haar sequence [6], they satisfy the Equations (8), the
additional conditions are that P (z) = A(z), and {qn}, {bn} both
have M -order vanishing moments; for double-orthonormal wavelet
sequences [7], they satisfy the Equation (8), the additional conditions
are that {pn} and {an} are symmetric sequences respectively, and {qn}
and {bn} haveM1-order andM2-order vanishing moments respectively.
With these additional conditions we can find out the solutions of (8).

2.2. The Construction of Wavelet Transform Matrix T

Now we can define following N ×N real matrices

T1 = WN , T2 =

[
WN

2
0

0 IN
2

]
, T3 =

[
WN

4
0

0 I 3N
4

]
, . . . ,

Tm =


 W N

2m−1
0

0 IN− N
2m−1


 (11)

Let T = Tm · Tm−1 . . .T1. If we use VN to take the place of WN in
(11), the daul matrix of T is obtained as T̃.

Provided the length of {an} and {pn} both are l, from (11) we
can see that in wavelet moment methods the total multiplication
number of those transforms (2) is 4l(1 − 1

2m )(N2 + N), which costs
only o(N2). Because of the vanishing moments of wavelet sequences,
the matrix Z′ is sparse. From the discussion above we can see that for
orthonormal wavelet matrix, T−1 = T t, while for double-orthonormal
wavelet matrix, T−1 = T̃ t, so Equation (3) is equivalent to (1). At
this moment, the wavelet matrix T obtained satisfies all the three
criteria above. It should be noted that, in [8], it is shown that the
condition number of Z′ may become worse than that of Z after double-
orthonormal wavelet transform. So we prefer to use orthonormal
sequences rather than using double-orthonormal sequences in this
paper.
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3. SOLUTION OF SCATTERING PROBLEMS

From above section, we can see that the wavelet transform can be taken
as a matrix transform. So it can be widely used in scattering problems.
In the following, it is used to solve linear equations in the scattering
from a cube, then, it is used to find out the inside admittance matrix
in the scattering from a cavity. Here, all scatters analyzed are assumed
as perfect electric objects. The dimension of scatters are uniformed by
λ (λ is the wavelength of the incident plane wave).

3.1. The Solution of Induced Current for a Cube

For the cube, electromagnetic field integral equation is

�E
i
(�r)t =

[
jω�A(�Js) +∇Φ(�Js)

]
t

�r ∈ s (12)

where, t denotes the tangential component to S, S is the surface
of the cube, and �A, Φ are the vector potential and scalar potential
respectively [9], �Js is the induced current to be solved, �E

i
(�r) is the

incident electric field.
Rao’s patches with the area of 0.005λ2 are used as expansion and

test functions to discretify (12) and generate moment matrices [9].
There are four cubes with different size to be considered as shown in
Figure 1.

x

z

y

E i

 

ly

lx lza b

cd

�

Figure 1. The cube and the TM incident wave.

Cube 1: lx = ly = 0.4λ, lz = 0.2λ;
Cube 2: lx = 0.6λ, ly = lz = 0.4λ;
Cube 3: lx = ly = 0.8λ, lz = 0.4λ;
Cube 4: lx = 1.2λ, ly = lz = 0.8λ.
It is well known that the integral kernel of (12) is the free-space

Green function and its differential, which are strongly singular. So
with the Rao’s patches, the magnitude of row and column vectors in
moment matrices Z have sharp pulses as shown in Figure 2. Because
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Figure 2. The first row of |Z| for cube 1.
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Figure 3. Distribution of the induced current of wavelet transform
method and conventional moment methods for cube 1.

most Daubechies sequences are longer than Haar sequence, Haar
sequence can generate more sparse Z′ in 3-D problems than Daubechies
sequences do, although it has lower order vanishing moments, which
can be verified in the following examples.

Now (12) can be discretized to Equation (1). After the
orthonormal wavelet transform, we can get Equation (3). In radar
cross section computation, since there are many incident vectors for
one moment matrix, it is convenient to find out the Z−1 rather
than to solve the Equation (1) each time when the incident vector
is changed. For the same reason, we will find out Z′−1 in (3). Because
Z′−1 = (T ·Z ·T t)−1 = T ·Z−1 ·T t, so Z′−1 is sparse also. The induced
current can be obtained by J = T t ·Z′−1 ·E′.

Figure 3 shows the induced current for cube 1, which is perpen-
dicular to the line abcd shown in Figure 1, by using wavelet transform
method (Haar sequence is used, WMM) and conventional moment
methods(MM). We can see that the results are well correlated.
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Figure 4. Percent of nonzero elements in Z and Z′.

Table 1. The CPU time and the error of wavelet transform method
and conventional moment methods for cubes.

Cubes 1 2 3 4
Generate Z  (Sec.) 0.44 1.65 5.11 18.78
MM(sec.) Find out

1−Z  and J
4.23 39.22 405.46 3276.20

Transform 0.05 0.16 0.71 2.96WM
M

(Sec.)
Find out 1−′Z

and J
2.53 28.23 293.85 2437.71

Relative error (%) 2.91 2.83 2.53 2.64

Figure 4 shows the variation of percent of nonzero elements in
Z, Z′ after 8-order Daubechies sequence transform and Z′ after Haar
sequence transform with the threshold value α. Here the scatter is the
cube 1. We can see that Z′ associated with Haar sequence is more
sparse than that associated with Daubechies sequence and the original
matrix Z. For other cubes the same results can be obtained.

Table 1 shows the CPU time required to obtain induced current
of cubes by using wavelet transform methods(Haar sequence is used)
and conventional moment methods. Where, the relative error refers to
||JMM − JWMM||2/||JMM ||2, JMM and JWMM denote the current
obtained by wavelet transform method and conventional moment
methods respectively. From table 1 we can see that the total CPU
time of wavelet transform method including transform and finding out
Z′−1 and J is less than that of conventional moment methods, and
the relative error between them are small. The outstanding advantage
of the Haar sequence is its less transform time which can be ignored
compared with the conventional moment methods time.
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Figure 5. Partially open cavities and the incident wave.

3.2. The Solution of Scattering from Partially Open Cavities

The scattering from partially open cavities recessed in an infinite
ground plane is analyzed with Haar sequence. The scatter and incident
wave are shown in Figure 5. This problem can be solved by using
equivalent magnetic current method [10]. As shown in Figure 5, the
geometry can be divided into an inside and an outside region with
the aperture as the common boundary. Then the equivalent magnetic
currents are placed on two sides of this aperture. By matching the
magnetic field over the aperture, an integral equation can be obtained.
The integral equation can further be discretized to the following matrix
equation

(Yout + Yin) · V = I (13)

where, I denotes the incident magnetic field over the aperture, V
denotes the unknown equivalent magnetic current, Yout and Yin are
the admittance matrices of the outside and inside region respectively.
These two matrices can be formulated independently. Yout can be
easily obtained by free-space Green function and Yin can be obtained
by boundary-integral equation. In order to find out Yin, we partition
the cavity internal walls and the aperture into square patches and get
the Yin matrix of the form

Yin = −
(
Aaa −Aac ·A−1

cc ·Aca

)−1
·
(
Baa −Aac ·A−1

cc ·Bca

)
(14)

where, the subscript c and a denote the cavity internal walls and the
aperture respectively, matrices Amn and Bmn are obtained by the
discretization of the boundary-integral equation, m, n = a or c. For
simplicity, here we do not give their complicated expressions which can
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Figure 6. Radar cross section for wavelet transform method and
conventional moment methods.

be found in [10]. A−1
cc is needed in order to get Yin from (14). The

size of Acc is 2(N −K)×2(N −K), where K is the number of patches
on the aperture, and N is the total number of patches on the aperture
and cavity internal walls. For these cavities in this problem, N is very
large and K is very small, so Acc is dense and large. It is exhaustive
to find out A−1

cc directly. Now we use Haar wavelet matrix T to make
Acc sparse, so Yin can be quickly got. With the help of T, (14) can be
rewritten as

Yin = −
(
Aaa −

(
AacT

t
)
·
(
TAccT

t
)−1
· (TAca)

)−1

·
(
Baa −

(
AacT

t
)
·
(
TAccT

t
)−1
· (TBca)

)

= −
(
Aaa−A′ac ·A′cc

−1 ·A′ca
)−1
·
(
Baa−A′ac ·A′cc

−1 ·B′ca
)
(15)

Because A′cc is sparse, the CPU time for A′cc
−1 is less than that for

A−1
cc .

There are four cavities to be examined with d = 0, 0.32λ, 0.64λ
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and 0.96λ respectively. Let b = c = 0.8λ, a = 1.28λ and the width
of square patches are 0.08λ for all cavities. Figure 6 shows the radar
cross section in θθ pattern obtained by using two methods: one get
Yin from Equation (15) (WMM) and the other get Yin from Equation
(14) (MM). Here θ and φ are the azimuthal and polar angles of the
view point. Let θ = 40◦ for all of these four cavities. It can be seen
from Figure 6 that the agreement between two methods are good.
The wavelet transform methods error only results from the numerical
approximation during Z′ is thresholded, it dose not result from the
physically approximation such as high frequency methods, so the error
arising in wavelet transform can be small when the threshold value α
is chosen to be small.

Table 2. The sparsity rate of A′cc and the CPU time of wavelet
transform method and conventional moment methods for cavities.

WMM

d
(λ )

Find out
1−

ccA
(Sec.)

Transform
(Sec.)

Find out
1−′ccA (Sec.)

Sparsity
rate of

ccA′  (%)

0 1 849.29 5.44 975.06 22.64
0.32 2 406.95 6.98 1 669.02 31.34
0.64 2 641.86 5.16 1504.85 33.85
0.96 3 905.64 5.38 2498.24 38.98

Table 2 shows the sparsity rate ofA′cc and the CPU time of wavelet
transform method and conventional moment methods. Again, we see
that the total CPU time of wavelet transform method is less than
that of conventional moment methods, and the transform time is less
because Haar sequence is used.

4. A PRECONDITION METHOD FOR WAVELET
MOMENT METHODS

As discussed in Section 2, the condition number of the moment matrix
does not change after the orthonormal wavelet transform. In order that
Equation (3) can be solved more quickly by such iteration methods as
the conjugate gradient method, Z′ with smaller condition number is
expected. As we can see from all literatures about wavelet moment
methods that the large elements of Z′, which strongly affect the
eigenvalue contribution of Z′, are located in the left-up and diagonal
of Z′ [2–5, 8]. According to this characteristic of Z′, Equation (3) can
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E i� E i�

Figure 7. Cylinders and the TM incident wave.

be transformed by using the precondition matrix P as following

Z′p · J′p = E′p (16)

where, Z′p = P−1 ·Z′ ·P−1, J′p = P·J ′, E′p = P−1 ·E ′. P is a diagonal
matrix, of which the elements are the square root of the elements at
the diagonal of Z′ (get the one which has less phase). P can make Z′p
more well-conditioned than Z′ and the transform time for (16) is less
because P and Z′ are very sparse, so (16) can be solved more quickly
by the conjugate gradient method than (3). The performance of the
precondition method is tested through the solution of the induced
current of ellipse cylinders and hexagon cylinders under TM incidence.
The scatters and incident wave are shown in Figure 7. The size of
moment matrices are 512× 512 for ellipse cylinders and 768× 768 for
hexagon cylinders. Moment matrices are generated with pulse base
and point matching. By changing the width of pulse functions, we
can obtain moment matrices for cylinders with different size. Here the
Daubechies sequence with the order 8 is used to generate Equation (3).

Table 3 and Table 4 show the improvement on the condition
number of Z′ and the conjugate gradient method convergence rate
for ellipse cylinders and hexagon cylinders respectively due to the
precondition. From tables we can see that after the precondition,
the condition number of Z′ becomes smaller and the iteration number
of the conjugate gradient method becomes less. So the CPU time
of precondition method can be reduced compared with the non-
precondition method. This improvement is more obvious when the
width of pulse functions is small. Because of the ill-posedness of
electrical field integral equation, when the width of pulse functions
becomes small, Z becomes more ill-conditioned, which greatly slows
down the conjugate gradient method convergence [11]. In this case, the
precondition method is very useful in reducing the condition number
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Table 3. The improvement on the condition number of Z′ and the
conjugate gradient method convergence rate for ellipse cylinders.

l (λ ) 3.84 6.4 8.96 11.52 14.08

Condition number of Z ′ 238.0
8

187.6
7

163.6
0

160.9
0

127.8
7

Iteration number for
solving (3):n1

147 162 172 206 194
Non-

precondition

Relative error(%) 2.73 3.00 3.31 3.47 4.76

Condition number of pZ ′ 46.61 43.73 66.86
209.5

0
64.76

Iteration number for
solving (16):n2

42 57 72 108 106Precondition

Relative error(%) 2.73 3.00 3.31 3.47 4.76
n1/n2 3.5 2.84 2.39 1.91 1.83

Table 4. The improvement on the condition number of Z′ and the
conjugate gradient method convergence rate for hexagon cylinders.

Width of pulse functions(λ) 0.02 0.04 0.06 0.08 0.1

Condition number of Z ′ 89.0
1

46.87
211.0

9
59.16

235.6
7

Iteration number for solving
(3):n1

130 116 177 125 256
Non-

precondition

Relative error(%) 7.36 5.40 6.73 6.00 8.06

Condition number of pZ ′ 14.9
7

12.47
242.4

1
57.35

210.3
6

Iteration number for solving
(16):n2

46 36 99 106 181
Precondition

Relative error(%) 7.36 5.40 6.73 6.00 8.06
n1/n2 2.83 3.22 1.79 1.18 1.41

of Z′ or improving the eigenvalue distribution of Z′. The relative error
in Tables 3 and 4 refer to the induced current error between the one
obtained by solving (1) directly and the one obtained by solving (3) or
(16) using conjugate gradient method. Because the acceptable relative
error for stopping iteration is the same for these two methods, their
relative error is the same.
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5. CONCLUSION

The fast wavelet transform method has been successfully implemented
in the scattering computation for large scale and complicated
objects. It has been shown through numerous examinations that the
computating time is dramatically reduced with the accelerating of the
fast wavelet transform. Also, a precondition method is provided to
reduce the condition number of transformed moment matrices.
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