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Abstract—Theory of scattering by conducting, lossy dielectric, ferrite
and/or pseudochiral cylinders is investigated using a combination of a
modified iterative scattering procedure and the orthogonal expansion
method. The addition theorems for vector cylindrical harmonics,
which transform harmonics from one coordinate system to another,
are presented. The scattered field patterns for open structures and
frequency responses of the transmission coefficients in a rectangular
waveguide describing the resonances of the posts on the dominant
waveguide mode are derived. The validity and accuracy of the method
is verified by comparing the numerical results with those given in
literature.
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1. INTRODUCTION

Considering the electromagnetic wave scattering from two-dimensional
arbitrary obstacles we can observe two areas of active research. The
first area concerns open problems — obstacles in free space, where the
far scattered field patterns can be investigated [1–6], while the second
— closed problems — presents the frequency responses of described
structure in a rectangular waveguide [7–13].

For open structures, different techniques e.g. integral equation
formulation, partial differential equation, hybrid techniques combining
the partial differential equation method with the eigenfunction
expansion method have been developed for plane wave and line source
excitations [1–4]. In the last decade, a recursive algorithm has
been developed for the scattering by arbitrarily shaped obstacles [5].
Elsherbeni et al. [6] proposed an iterative solution for the scattering
by I different parallel circular cylinders. The scattered field from each
obstacle has been transferred to infinity by far field approximations.

For closed problems authors distinguished an interior area, which
can be matched with other external fields. A lot of methods have been
applied to analyze closed structures. Nielsen in [7] used the modal
expansion method. Sahalos and Vafiadis [8] presented multifilament
current model and for the first time applied circular interaction region
instead of rectangular used by Nielsen. The boundary- and finite-
element methods have also been utilized in [9, 10]. Gesche and Löchel
applied the orthogonal expansion method for one [11] and two [12] posts
positioned in one cross section of a rectangular waveguide. Recently,
Valero and Ferrando [13] presented the method, which segments
the problem into regions that are characterized by their generalized
admittance matrices.

The purpose of this paper is to develop the method, that allows
to investigate both open and closed problems. To solve this, it is
convenient to separate cylindrical interaction region ξ (see Fig. 1), on
the surface of which, a total scattered field from all cylinders can be
found. Presented approach forced modification of iterative scattering
procedure [6], where excitations in form of plane wave or Gaussian
beam were known, but they limited investigations to open structures.



Scattering by an array of cylinders 285

X

Y

R

Contour R 

Interaction
region   ξ

Figure 1. Cylindrical obstacles in the interaction region excited by
Ez-wave.

The main difference between proposal method and the method in [6], is
that the cylinders are excited by an unknown incident fields defined as
an infinite series of Bessel functions of the first kind with an unknown
coefficients an. These unknown coefficients an determine a total
scattered field from all cylinders on a contour R. It allows to match it
with other known incident fields and consequently to define scattering
matrix of considering structure. In this case, presented approach
allows to solve both scattering and waveguide problems. Proposed
method has been developed to analyze scattering by conducting, lossy
dielectric, ferrite and/or pseudochiral cylinders and can be applied to
research a waveguide structures where incident fields are the TEn0

modes and open structures, to define scattered field patterns at any
distance from investigating configurations of cylinders for Ez-wave
excitation.

2. BASIC FORMULATION

2.1. Interaction Region

Consider harmonic Ez-wave excitation in global coordinates as infinite
series of Bessel functions of the first kind with unknown coefficients
an, where the electric field has a z component only with all vectors
independent of z of the cylindrical coordinates (ρ, φ, z).

Einc(0)
z =

∞∑
n=−∞

anJn(k0ρ)ejnφ (1)

where k0 is the wave number in free space.
Now it is assumed that field (1) excites number of I homogeneous,

conducting, lossy dielectric, ferrite or pseudochiral cylinders (see
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Fig. 1) and has to be defined in their local coordinates. For the ith
cylinder using an addition theorem for Bessel functions [14] one has

E
inc(0)
zi =

∞∑
n=−∞

an

∞∑
m=−∞

Jm(k0ri)ejmφiJm−n(k0dio)ej(n−m)φio (2)

where dio, φio are defined in Fig. 2.
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Figure 2. Notation used for a change of coordinate system for Bessel
functions.

In response to our excitation, a zero order scattered field is created
from each of I cylinders by forcing the tangential components of both
the electric and magnetic fields, on the surface of each cylinder, to be
continuous.

E
inc(0)
zi (ri, φi) + E

s(0)
zi (ri, φi) = E

d(0)
zi (ri, φi) (3)

H
inc(0)
φi (ri, φi) +H

s(0)
φi (ri, φi) = H

d(0)
φi (ri, φi) (4)

where ri is the radius of the ith cylinder.
The scattered electric field component for the ith cylinder can be

expressed as

E
s(0)
zi (ρi, φi) =

∞∑
n=−∞

c0inH
(2)
n (k0ρi)ejnφi (5)

while transmitted field component inside the ith cylinder is given by

E
d(0)
zi (ρi, φi) =

∞∑
n=−∞

b0inJn(kiρi)e
jnφi (6)
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where c0in and b0in are the unknown coefficients, Jn(kiρi), H
(2)
n (k0ρi)

denotes Bessel and Hankel functions respectively.
Applying (2) into (3) and (4), orthogonalizing by e−jmφi and taking
into account n = N and m = M harmonics the solution is obtained
from the point of view of the unknown coefficients c0in of the ith cylinder.

[c0i ] = [Gi] · [Tio] · [a] (7)

where the forms of matrix [Gi], Hφ and ki for dielectric, ferrite and
pseudochiral cylinder are given in Appendix.

Transformation of Bessel functions from global coordinates to the
local coordinates of the ith cylinder is expressed by matrix:

[Tio] =
[
Jm−n(k0dio)ej(n−m)φio

]M,N

m=−M,n=−N
(8)

and m, n are rows and columns indexes respectively, while [a] defines
a vector

[a] = [ a−M . . . a−1 a0 a1 . . . aM ]T (9)
In the next interaction, we use scattered fields from I-1 cylinders
obtained in the previous interaction, as a new incident field on the
ith remaining cylinder.

E
inc(1)
zi = E0

I∑
j=1
j �=i

∞∑
n=−∞

c0jnH
(2)
n (k0ρj)ejnφj (10)

To transfer the scattered fields from I-1 cylinders to the local
coordinate of the ith cylinder the Graf’s addition theorem for Bessel
functions is used [14].

H(2)
n (k0ρj) ejnφj =



∞∑
m=−∞

H
(2)
m−n(k0dij)ej(n−m)φijJm(k0ρi)ejmφi for dij ≥ ρi

∞∑
m=−∞

Jm−n(k0dij)ej(n−m)φijH(2)
m (k0ρi)ejmφi for dij < ρi




(11)

In response to our new excitation, the first order (p = 1) scattered and
transmitted field is created from each of I cylinders like in (5) and (6)
but with new unknown coefficients c1in and b1in. Using (3) and (4) with
the first order fields the following solution is obtained.

[
c1i

]
= [Gi]

I∑
j=1
j �=i

[
THij

]
·
[
c0j

]
(12)
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where [
THij

]
=

[
H

(2)
m−n(k0dij)ej(n−m)φij

]M,N

m=−M,n=−N

and m, n are rows and columns indexes respectively. The matrix
[THij ] provides transformation of Hankel functions of the second kind
located in the coordinates of the jth cylinder to the ones located in the
coordinates of the ith cylinder.

This approach gives us a next order scattered field and repeated
for each individual cylinder leads us to an iterative scattering procedure
where the coefficients of the pth interaction depend only on the
coefficients of the (p− 1)th interaction.

[Cp] = [T ij ] · [Cp−1] · [a] (13)

where

[Cp] =




[cp1]
·

[cpi ]
·

[cpI ]




[
T ij

]
=




[0] · [T1,j ] · [T1,I ]
· [0] · · ·

[Tj,1] · · · [Tj,I ]
· · [Ti,j ] [0] ·

[TI,1] · [TI,j ] · [0]




for p = 2, 3, . . . and [cpi ], [0], [Ti,j ] are square sub-matrices where

[Ti,j ] = [Gi] ·
[
THij

]
(14)

Iterative procedure gives us the scattered field from the ith cylinder in
its local coordinates as follows

[ES
zi] = [Hρ

i ] · [Ci] · [a] (15)

where

[Ci] =
P∑
p=0

[cpi ], [Hρ
i ] = diag

(
H(2)
m (k0ρi)ejmφi

)M
m=−M

and P is the number of interactions.
Using transformation (11) for dij < ρo the scattered field from

each cylinder is transferred to global coordinate system. Therefore
the scattered electric field from the ith cylinder on the surface of the
interaction region (see Fig. 2) is given as

[ESG
zi ] = [HR

i ] · [TGoi ] · [Ci] · [a] (16)
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where

[HR
i ] = diag

(
H(2)
m (k0R)ejmφ

)M
m=−M

,

[TGoi ] =
[
Jm−n(k0doi)ej(n−m)φoi

]M,N

m=−M,n=−N

and m, n are rows and columns indexes respectively.
Writing (16) for electric and magnetic field for each of I cylinders

the following matrix equations is obtained:

[ESG
z ] = [HR] · [TG] · [C] · [a] (17)[

HSG
φ

]
=

1
jωµ0

[H ′R] · [TG] · [C] · [a] (18)

where

[ESG
z ] =

[
[ESG

z1 ] . . [ESG
zi ] . . [ESG

zI ]
]T
,

[HSG
φ ] =

[
[HSG

φ1 ] . . [HSG
φi ] . . [HSG

φI ]
]T

and

[HR] =




[
HR

1

]
· [0] · [0]

· · · · ·
[0] ·

[
HR
i

]
· [0]

· · · · ·
[0] · [0] ·

[
HR
I

]



,

[
TG

]
=




[
TGo1

]
· [0] · [0]

· · · · ·
[0] ·

[
TGoi

]
· [0]

· · · · ·
[0] · [0] ·

[
TGoI

]



, [C] =




[C1]
·

[Ci]
·

[CI ]




Matrices [HR
i ], [TGoi ], [Ci] and [0] are square sub-matrices. The total

scattered electric and magnetic field from all cylinders, can be easy
obtained from [

ESGT
z

]
= [I] ·

[
ESG
z

]
(19)[

HSGT
φ

]
= [I] ·

[
HSG
φ

]
(20)
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where matrix [I] consists of diagonal sub-matrices [Ii] = diag(1)M−M as
shown [I] = [[I1] . . . [Ii] . . . [II ]].

Now the total field on the surface of the interaction region can be
defined as

[ET
z ] = [Einc(0)

z ] + [ESGT
z ] (21)

[HT
φ ] = [H inc(0)

φ ] + [HSGT
φ ] (22)

where [Einc(0)
z ] and [H inc(0)

φ ] are diagonal matrices based on (1). To
eliminate unknown coefficients (9), a relation between electric and
magnetic field on the surface of the interaction region is defined:[

ET
z

]
= [Z] ·

[
HT
φ

]
(23)

Hence, the matrix [Z] is given as

[Z] =
([
Einc(0)
z

]
+

[
ESGT
z

])
·
([
H
inc(0)
φ

]
+

[
HSGT
φ

])−1
(24)

The formulation of the problem in form of [Z] allows to consider both
open and waveguide problems assuming the proper excitations.

2.2. Open Structures

For open problems it is appear to be interesting to describe a total
scattered field at any distance ρ from investigating configurations of
cylinders. As a source of excitation I plane waves from any φ direction
(25) are considered. One can assume an excitation, which is located
along the negative x-axis at a contour R and can be shifted by an
angle θoi (e.g., see Fig. 6). Total incident and scattered field on our
interaction region is defined as

Ei
z =

I∑
i=1

Eoi

∞∑
n=−∞

j−nJn(k0R)ejn(φ−θoi) (25)

Es
z =

∞∑
n=−∞

rnH
(2)
n (k0ρ)ejnφ (26)

The corresponding magnetic field along φ direction can be established
from

Hφ =
1

jωµ0

∂Ez
∂ρ

(27)

Orthogonalizing the sets of eigenmode functions of the incident and
scattered field (25)–(26) on the surface of cylindrical interaction region
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ξ using eigenfunctions e−jmφ of the field in interaction region and
taking into account n = N harmonics the following matrix equations
are obtained [

ET
z

]
=

[
KET

]
+

[
KER

]
· [r][

HT
φ

]
=

[
KHT

]
+

[
KHR

]
· [r]

(28)

where the nth element of vector

[KET ] =
[
KET
−N . . . KET

−1 KET
0 KET

1 . . . KET
N

]T
has the form KET

n =
∑I

i=1Eoij
−nJn(k0ρoi)e−jnθoi , [KER] =

diag(H(2)
n (k0ρ))Nn=−N , [r] = [r−N . . . r−1 r0 r1 . . . rN ]T and

[KHT ], [KHR] formulate vector and square matrix respectively for
magnetic field Hφ.

Using relation (23) with [ET
z ], [HT

φ ] defined in (28) and assuming
known amplitudes Eoi the scattering coefficients rn can be investigated.

[r] =
([
KER

]
− [Z] ·

[
KHR

])−1
·
(
[Z] ·

[
KHT

]
−

[
KET

])
(29)

Finally, the total scattered field at any distance ρ from interaction
region can be obtained from (26). Moreover, the solution for Hz-plane
incident wave can be obtained by using the duality principle [15].

2.3. Waveguide Structures

It seems to be interesting to apply the solution (24) in order to combine
an equivalent scattered field from cylinders described on the surface of
a separated interaction region ξ (contour R) with incident fields from
each waveguide’s port.

Consider field components of TEn0 modes in waveguide port i in
its local Cartesian coordinate system (xi, yi, z) as follows

Ei
z =

√
2
aib

Ni∑
n=1

sin
[
nπ

ai

(
yi +

ai
2

)] (
tine

jkixnxi + rine
−jkixnxi

)
(30)

where kixn =
√
ω2ε0µ0 −

(
nπ
ai

)2
, i = 1, 2, . . . ,K and K denotes

number of waveguide ports while magnetic fields can be obtained from
H i
x = j

ωµ0

∂
∂yi
Ei
z, H

i
y = 1

jωµ0

∂
∂xi

Ei
z.

The field components in each port i are rewritten in basic
coordinate system (x, y, z) using the following transformation
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equations
xi = x cosφi + y sinφi
yi = y cosφi − x sinφi

(31)

and φi represents rotation angle between coordinate systems (x, y, z)
and (xi, yi, z) (see Fig. 3).

O X

Y

φi

Xi
Yi

1

i

K

a1

ai

aK

Interaction
region ξ

∆φi

Contour R

Figure 3. Schematic representation of the investigating structure.

To define the scattering matrix of our investigating structure the
continuity conditions between tangential electric and magnetic fields
on contour R and fields from waveguide ports described in equation
(30) and written in cylindrical coordinates (32) must be satisfied

Ez = Ez

Hφ = −Hx sinφ+Hy cosφ
(32)

for ρ = R, φ = (0, 2π), x = R cosφ, y = R sinφ.
Orthogonalizing the sets of eigenmode functions of the field in each

waveguide port using eigenfunctions e−jmφ of the field in cylindrical
interaction region one has[

ET
z

]
=

[
KET

]
·
[
t11t

1
2 . . . t

i
1t
i
2 · · · tK1 tK2 . . .

]T
+

[
KER

]
·
[
r1
1r

1
2 . . . r

i
1r
i
2 . . . r

K
1 r

K
2 . . .

]T
[
HT
φ

]
=

[
KHT

]
·
[
t11t

1
2 . . . t

i
1t
i
2 · · · tK1 tK2 . . .

]T
+

[
KHR

]
·
[
r1
1r

1
2 . . . r

i
1r
i
2 . . . r

K
1 r

K
2 . . .

]T
(33)
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where [KET ], [KER], [KHT ], [KHR] are the square matrices as shown
[KAB] = [[KAB1 ] . . . [KABi ] . . . [KABK ]] for A = E or H and B = T or
R. The size of sub-matrix [KABi ] is (2M + 1) by Ni and its elements
have the form

KET (R)i
m,n =

√
2
aib
·
φi+∆φi∫
φi−∆φi

e−jmφ · sin
[
nπ

ai

(
yi +

ai
2

)]
· e+(−)jkixnxidφ

(34)

KHT (R)i
m,n =

1
ωµ0

·
√

2
aib

φi+∆φi∫
φi∆φi

e−jmφ
{
+(−)kixn ·sin

[
nπ

ai

(
yi +

ai
2

)]
·cosφ

−j nπ
ai

cos
[
nπ

ai

(
yi +

ai
2

)]
· sinφ

}
· e+(−)jkixnxidφ (35)

where ∆φi = arc sin(ai/2R).
In order to obtain quadratic matrices in (33) the number of

eigenfunctions in all waveguide ports should equal K(2M+1) where M
is the number of eigenfunctions in the cylindrical interaction region and
K is the number of ports. As a result, the numbers of eigenfunctions
in one of the port should have one more eigenfunction.

Relation between tangential electric and magnetic field of
interaction region defined on the contour R (see Fig. 3) can be written
as

[ET
z ] = [Z] · [HT

φ ] (36)

where the matrix [Z] is given in (24).
Finally, introducing the relation (33) into (36) the modal

scattering matrix of the circuit is obtained.

[S] =
([
KER

]
− [Z] ·

[
KHR

])−1
·
(
[Z] ·

[
KHT

]
−

[
KET

])
(37)

3. ESTIMATION OF NUMERICAL ERRORS

In general the number of eigenfunctions and interactions between
cylinders should be infinity. For numerical investigation, infinite set
of equations, written in matrix form, must be proper truncated. This
operation provides to numerical errors which quantities should be
estimated both for open and closed structures.
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3.1. Open Structures

Plane wave excitation is represented by an infinite sum of cylindrical
wave functions as follows

Ez = Eoe
−jkox = Eoe

−jk0R cosφ = Eo

∞∑
n=−∞

j−nJn(k0R)ejnφ (38)

Here, the infinite sum has to be truncated to n = N . The choice of
the number of harmonics N strongly depends on R. Table 1 shows
percentage error for the convergence of plane wave described as sum
of cylindrical wave functions for R = 1λ, R = 2λ, R = 3λ evaluated
with the following criterion

δ =

√√√√√√√√ 1
K

K∑
k=1


∣∣∣e−jk0R cosφk

∣∣∣−
∣∣∣∣∣∣

N∑
n=−N

j−nJn(k0R)ejnφk

∣∣∣∣∣∣



2

|e−jk0R cosφk |2
· 100%

(39)
where φk represents the angle for which the plane wave electric field is
obtained, φk = 2πk/K and K is the number of points at the contour
R where the field is defined.

Table 1. Comparison of percentage error δ for the convergence of
plane wave for different radii R of interaction region and different
numbers of harmonics N .

  N 8 9 

R = 1 K = 360  [%] 3.078 1.08 0.321 0.094 0.023 0.005 0.001 

    N 15 

R = 2 K = 360  [%] 2.545 1.09 0.434 0.159 0.056 0.018 0.006 

    N 22 

R = 3 K = 360  [%] 1.974 0.917 0.409 0.172 0.068 0.026 0.009 

16 17 18

10 11 12 13 14

19 20 21

23 24 25 26 27 28

λ

λ

λ

δ

δ

δ

As shown in Table 1, if the radius R of the region ξ is increased,
the more harmonic functions are needed to describe excitation with
required error δ. From numerical results, it has been observed that
further increasing of the value K (K > 360 gives angle increment less
than 1◦) does not change the value of error.

Having established the number of harmonics, it is necessary to
obtain the proper number of interactions between cylinders. The
root mean square value of the difference between magnitudes of the
total scattered tangential field component Es

z at the distance ρ (see
26) should not exceed 0.1% for P and P − 1 interaction. Hence, it
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is assumed that, in mathematical form, the percentage error can be
described as follows

δs =

√√√√√√ 1
K

K∑
k=1

(∣∣∣Es(P )
z (φk)

∣∣∣− ∣∣∣Es(P−1)
z (φk)

∣∣∣)2

∣∣∣Es(P )
z (φk)

∣∣∣2 · 100% (40)

where φk represents the angle for which the scattered electric field is
calculated and φk = 2πk/K and K is the number of points where the
field is defined. The smallest φk is, the more accurate representation of
the error can be established. Table 2 shows comparison of percentage
error δs for configuration of cylinders from Fig. 4 for different numbers
of points K and different numbers of interactions between cylinders
P . For presented configuration one can use P = 16 and K = 720 to
obtain scattered field with an error less than 0.1%.

Table 2. Comparison of percentage error δs for configuration of
cylinders from Fig. 4 for different numbers of points K and different
numbers of interactions between cylinders P (R = 2λ, ρ = 100λ, N =
19).

  P 10 

K = 360 s [%] 1.078 0.463 0.319 0.275 0.172 0.109 0.083 0.055 
K = 720 s [%] 1.095 0.499 0.372 0.322 0.192 0.109 0.078 0.051 

K = 1440 s [%] 1.1202 0.5198 0.3856 0.333 0.197 0.108 0.076 0.049 

K = 3600 s [%] 1.1222 0.521 0.386 0.333 0.198 0.108 0.076 0.049 

δ
δ
δ
δ

11 12 13 14 15 16 17

It is important to point out that the choice of P strongly depends
on the posts configuration. Table 3 presents comparison of percentage
error δs and the computation times (MATLAB, 800 MHz Pentium
III PC) for configurations of cylinders from Figs. 6a, 6b, 7a and 7b
for different numbers of interactions P between cylinders. Significant
difference can be observed for these two configurations and different
angles of excitations. For Fig. 6b one need about 30 interactions
between cylinders to obtain error on the level less than 0.1% while
for the same level of error, configuration from Fig. 7b, needs about 13
interactions.

Taking into account a lot of numerical investigations, it can be
assumed that K = 720 and P > 30 protects in most of configurations
δs < 0.1%.
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Table 3. Comparison of percentage error δs and the computation
times for configurations of cylinders from Figs. 6a, 6b, 7a and 7b for
different numbers of interactions between cylinders P (R = 2λ, ρ =
100λ, N = M = 19, K = 720).
                

  P 10 

Fig. 6a s  [%] 4.896 1.158 0.277 0.026 0.002 < 0.001 

  Time [s] 3.79 

Fig. 6b s  [%] 23.744 9.412 1.694 0.102 0.01 0.001 

  Time [s] 3.73 

  P 3 11 13 

Fig. 7a s  [%] 2.599 0.203 0.019 0.003 0.001 < 0.001 

  Time [s] 2.47 

Fig. 7b s [%] 14.818 6.098 1.423 0.377 0.135 0.031 
  Time [s] 2.47 

15 20 30 40 50

4.01 4.28 4.89 5.28 5.99

4.01 4.31 4.83 5.27 5.93
5 7 9

2.59 2.64 2.69 2.74 2.86

2.58 2.64 2.69 2.75 2.91

δ

δ

δ

δ

3.2. Waveguide Structures

To evaluate the accuracy of the scattering coefficients of TE10-mode
for waveguide structure and select the proper number of harmonics N1,
the following error criterions are used.

δS11 =

∣∣∣SN1
11

∣∣∣− ∣∣∣SN1−1
11

∣∣∣∣∣∣SN1
11

∣∣∣ · 100%, δS21 =

∣∣∣SN1
21

∣∣∣− ∣∣∣SN1−1
21

∣∣∣∣∣∣SN1
21

∣∣∣ · 100%,

∆ =
1−

(∣∣∣SN1
11

∣∣∣ +
∣∣∣SN1

21

∣∣∣)2

1
· 100%, (41)

Table 4 shows the comparison of percentage errors δS11, δS21 and
∆ for configurations of lossless cylinders from Fig. 11 for different
numbers of harmonics N1 and interactions P . The proper number
of harmonics N1 can be chosen, by controlling the values of errors
δS11, δS21 at the required level. It is important to notice that error
δS21 significantly increases near resonant frequencies, which is due to
changes at the low level of signal. The error ∆ helps to evaluate the
sufficient number of interactions between cylinders P . For small values
of P (P < 10) it is seen that energetic condition (|S11|2 + |S21|2 = 1)
is not satisfied despite the lossless structure. From the physical
interpretation of scattering phenomena one can suppose that when the
numbers of interactions P is not sufficient then the part of energy
has been stored inside the region ξ. With increasing the number
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Table 4. Comparison of percentage errors δS11, δS21 for configurations
of cylinders from Fig. 11 (f/fc = 1.7, tan δ1 = tan δ2 = 0) for different
numbers of harmonics N1 and different numbers of interactions
between cylinders P .

  N1 9 10 11 15 16 

S11 [%] -1.6178 -1.1863 -0.7397 -0.5314 -0.3470 -0.2462 -0.1644 -0.1158 
P = 3 S21 [%] 2.4447 1.7483 1.0219 0.7306 0.4617 0.3281 0.2151 0.1521 

 [%] 16.3310 16.2400 16.2019 16.1625 16.1420 16.1241 16.1137 16.1053 

S11 [%] -1.6995 -1.2673 -0.7816 -0.5668 -0.3678 -0.2625 -0.1745 -0.1234 
P = 5 S21 [%] 2.4142 1.6991 1.0008 0.7087 0.4502 0.3180 0.2093 0.1474 

 [%] 3.0231 3.0027 2.9942 2.9854 2.9808 2.9769 2.9745 2.9727 

S11 [%] -1.7149 -1.2833 -0.7896 -0.5737 -0.3718 -0.2656 -0.1765 -0.1249 
P = 10 S21 [%] 2.3970 1.6806 0.9919 0.7008 0.4458 0.3144 0.2071 0.1457 

 [%] 0.0027 0.0022 0.0020 0.0019 0.0018 0.0017 0.0017 0.0016 

S11 [%] -1.7152 -1.2834 -0.7898 -0.5738 -0.3719 -0.2657 -0.1765 -0.1249 
P =20 S21 [%] 2.3966 1.6804 0.9918 0.7007 0.4457 0.3144 0.2071 0.1457 

 [%] -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

δ
δ

δ
δ

δ
δ

δ
δ

∆

∆

∆

∆

12 13 14

Table 5. Comparison of the second resonance frequency for
configurations of cylinders from Fig. 11 (tan δ1 = tan δ2 = 0, P = 30)
for different numbers of harmonics N1.
                  

N1 9 10 14 15 16 

fr2 [GHz] 11.678 11.691 11.698 11.703 11.707 11.709 11.711 11.712 

fr2 [%]  0.290 0.179 0.120 0.077 0.043 0.026 0.009 0.000 

11 12 13

δ

of interactions the energy becomes lower because it is passed to the
scattered field. For lossy structures the condition |S11|2 + |S21|2 < 1
so the value of ∆ will be stabilized at the level ∆ > 0 (e.g., for Fig. 11,
∆ = 0.22%). In presented examples fc denotes cutoff frequency of the
TE10 mode for rectangular waveguide.

From Table 5 one can notice that for N1 = 13 it is possible to
obtain the resonant frequency with the error δfr2 = 0.043% which
gives 50 MHz difference in relative to fr2(N1 = 16).

Taking into account a lot of numerical investigations, the following
number of eigenfunctions: interaction region: M = 13, waveguide
regions: N1 = 13, N2 = 14 is sufficient to obtain δS21 < 1% for
signal |S21| ≥ −10 dB. Numerical investigations also proved that the
sufficient number of P changes for different configurations and numbers
of cylinders. Hence, the number of P should be chosen individually in
dependence on configuration of the considered junction.
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Figure 4. Scattering by an array of 5 identical metallic cylinders
located along y-axis. Plane wave excitation in x-axis direction, posts
configuration and parameters are described in text (R = 2λ, P =
16, δs < 0.1%, M = N = 19, CPU time = 4.07 s).

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Open Structures

A few known examples have been chosen from the literature to test
the validity of the method. Fig. 4 shows scattering by a linear array
of five metallic cylinders of equal radii (r = 0.1λ) along y-axis in near
area ρ = 3λ and at a distance ρ = 50λ where λ is the length of the
wave in free space. The separation distance between the centers of the
cylinders is 0.75λ. For the distance ρ = 50λ results agree very well
with those obtained by Elsherbeni et al. [6].

Fig. 5 presents comparison of scattered field from dielectric
cylinders described in Fig. 6 and calculated for different distance ρ
from the origin. One can observe that for ρ > 15λ the pattern of the
scattered field has been stabilized. Numerical investigation allowed to
assume that the distance ρ > 50λ can be treated in this case as far
zone.

The following problem where dielectric posts (εr = 5) are excited
by Ez-plane wave from different angle of excitation has been described
in Figs. 6 and 7. The radius of the center post is 0.15λ while the radii
of the rest posts equal 0.1 and are at a distance of 1.5λ from the origin.
The radius of interaction region is R = 2λ. The second structure has
been obtained by removing the center post. Comparing Figs. 6 and 7
it is noticeable that presence of the center post strongly indicates the
direction of the incident wave.
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Figure 5. Normalized energy characteristics for scattering by an array
of 5 dielectric cylinders (see Fig. 6) for different distance ρ from the
origin. Plane wave excitation for θO1 = 0◦ (R = 2λ, P = 30, δs <
0.1%, M = N = 19, CPU time = 4.89 s).

X
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R

Interaction
region   

Contour R 

a) b)

Figure 6. Normalized energy characteristics for scattering by an array
of 5 dielectric cylinders for different angle of excitation: a) θO1 = 0◦,
b) θO1 = 45◦ (R = 2λ, ρ = 100λ, P = 30, δs < 0.1%, M = N = 19,
CPU time = 4.89 s).
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Y

R

X

a) b)

Figure 7. Normalized energy characteristics for scattering by a
structure shown in Fig. 6 after removing center post for different angle
of excitation: a) θO1 = 0◦, b) θO1 = 45◦ (R = 2λ, ρ = 100λ, P =
13, δs < 0.1%, M = N = 19, CPU time = 3.18 s).

a) b) c)

Figure 8. Normalized energy characteristics for scattering from one
ferrite cylinder. Plane wave excitation in x-axis direction θO1 = 0◦.
Ferrite post parameters: r = 2.6 mm, εf = 15, Ms = 218 kA/m,
Hi = 0, f = 10 GHz, R = 1λ, ρ = 100λ, M = N = 13, CPU time =
0.73 s. a) dielectric cylinder ε = εf , b) ferrite cylinder Ms = 218 kA/m,
c) ferrite cylinder Ms = −218 kA/m.

Fig. 8 shows calculated far field (ρ = 100λ) patterns for one
cylinder. The radius of cylinder (r = 2.6 mm) is similar to radii of
cylinders used in ferrite circulators for X band. Scattering properties
of dielectric (Fig. 8a) and ferrite post (Fig. 8b and 8c) have been
compared. For dielectric cylinder symmetric characteristic is observed
with respect of plane of excitation. When dielectric is replaced by
magnetized ferrite post, squinting characteristic from the direction
of excitation is noticed. Squinting effect makes the structure to
concentrate energy along ±48◦ direction for opposite magnetization.

Fig. 9 presents normalized energy characteristics for scattering
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a) b) c)

Figure 9. Normalized energy characteristics for scattering from
configuration of five ferrite cylinders located along y-axis. Plane wave
excitation in x-axis direction θO1 = 0◦. Ferrite posts parameters:
r = 4.8 mm, εf = 5, Ms = 348.8 kA/m, Hi = 0, f = 10 GHz, R = 3λ,
ρ = 100λ, P = 40, δs < 0.1%, M = N = 26, CPU time = 10.23 s.
a) dielectric cylinder ε = εf , b) ferrite cylinder Ms = 348.8 kA/m, c)
ferrite cylinder Ms = −348.8 kA/m.
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Figure 10. Normalized energy characteristics for scattering from
one pseudochiral cylinder. Plane wave excitation for θO1 = 0◦.
Dimensions: r(1) = 0.4λ, r(2) = 0.8λ, R = 1λ, ρ = 100λ, M =
N = 13, CPU time = 0.84 s. a) dielectric cylinder: layer (1) ε(1) = 1,
layer (2), (host medium) ε(2) = 4, ε(2)z = 4, b) pseudochiral cylinder:
layer (1) ε(1) = 1, layer (2) ε(2) = 4, ε(2)z = 9, µ(2) = 1, µ(2)

ρ = 1.5.

from linear array of five ferrite cylinders of equal radii (r = 4.8 mm)
along y-axis at a distance ρ = 100λ (see configuration in Fig. 4).
The separation distance between the centers of the cylinders is 1.35λ.
Similar squinting properties like in Fig. 8 are observed, but the main
beam narrows significantly. This effect strongly depends on the
distance between cylinders.



302 Polewski and Mazur

It seems to be interesting to notice that different phenomena
decide about squinting properties of examined structures. In the case
of one ferrite cylinder µeff > 0 and resonance effect occurs in post.
For configuration of five ferrite cylinders µeff < 0 and we can suppose
that squinting properties depends on field displacement effect.

Numerical experiments have also been carried out for pseudochiral
cylinder. Considering Fig. 10 one can observe that the level of
side lobes of the pseudochiral cylinder characteristic (Fig. 10b) in
comparison with the one of dielectric cylinder (Fig. 10a) decreases
significantly.
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Figure 11. S21 parameter for a two dielectric cylinders located in
a rectangular waveguide versus f/fc : r1 = r2 = 0.03 · a, ε1 = ε2 =
38.5, tan δ1 = tan δ2 = 2 · 10−4, x1 = 0, y1 = 0.3 · a, x2 = 0, y2 =
−0.425 · a, where a denotes waveguide width and r1, r2 is the radius
of the cylinder 1 and 2 respectively (N1 = 13, N2 = 14, M = 13, P =
30).

4.2. Waveguide Structures

Scattering parameters are compared with results obtained by Gesche
and Löchel [12] (see Fig. 11) and practically no difference can be
observed. Other configurations of posts from [9] and [13] have also
been tested and results give very good agreement.

Fig. 12 shows frequency responses for two configurations of three
posts located in a rectangular waveguide. The first configuration is
presented in Fig. 12 while second one has been obtained after rotation
all the structure by an angle φO = 45◦. With rotation the tuning of
the resonance frequencies is observed.
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Figure 12. S21 parameter for a set of three cylindrical dielectric
posts located in a rectangular waveguide versus f/fc. (N1 = 13, N2 =
14, M = 13, P = 55). Configuration 1: r1 = r2 = r3 = 0.03 · a, ε1 =
ε2 = ε3 = 38.5, tan δ1 = tan δ2 = 2 · 10−4, x1 = 0, y1 = 0.35 · a, x2 =
0.375 · a, y2 = 0, x3 = 0, y3 = −0.35 · a, where a denotes waveguide
width. Configuration 2: structure rotated by an angle φO = 45◦.

Numerical experiments have also been carried out for 4-port
waveguide junction containing two ferrite cylinders inserted in bi-
directional magnetic field along z axis (see Fig. 13). In addition,
posts have been placed in dielectric (εr = 4.8) and this structure
represents interaction region ξ in investigated junction. The purpose of
this procedure was reduction of the reflection coefficients. Considering
the first configuration (Fig. 13a), transmission from port 1 to port 2
is observed. When directions of magnetized fields are reversed, input
signal from port 1 is divided equally between ports 3 and 4 (Fig. 13b)
and slightly signal appears in port 2.

The transmission frequency characteristics of a rectangular
waveguides with two-layered dielectric and pseudochiral cylinder are
respectively presented in Figs. 14a and 14b. It is evident that the
pseudochirality effect had the influence on the shift of resonance
frequency.

Finally, it is worth mentioning that presented method is fast and
easy to implement on personal computer. For open problems execution
time in MATLAB on an 800 MHz Pentium III PC for one cylinder was
about 1 s (M = 13) and 5 s (M = 19) for five cylinders. For closed
problems numerical aspects of S matrix computations are collected in
Table 6, which shows the number of eigenfunctions in the cylindrical
interaction region and the computation times in MATLAB on an
800 MHz Pentium III PC for one, two and three cylinders in 2-port
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Figure 13. Frequency dependent S-characteristics of the 4-port
waveguide junction containing two ferrite posts in dielectric cylinder:
N1 = 14, N2 = N3 = N4 = 13, M = 26, P = 30, r1 = r2 =
4.7 mm, ε1 = ε2 = 16.3, εr = 4.8, x1 = 0, y1 = 0.38 · a, x2 = 0, y2 =
−0.38 · a, a) Ms1 = 218 kA/m, Ms2 = −218 kA/m, Hi1 = 73.21 kA/m,
Hi2 = −73.21 kA/m, b) Ms1 = −218 kA/m, Ms2 = 218 kA/m,
Hi1 = −73.21 kA/m, Hi2 = 73.21 kA/m.
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Figure 14. Transmission characteristics S21 versus f/fc of a
rectangular waveguide lossless dielectric (a) and psedochiral (b)
cylinder located at x1 = 0, y1 = 0, N1 = 13, N2 = 14, M = 13.
Dimensions of the cylinder (see Fig. A1) r(1) = 0.05 · a, r(2) = 0.16 · a,
where a denotes waveguide width. Material parameters: a) dielectric
cylinder ε(1) = 1, ε(2) = 20, b) pseudochiral cylinder ε(1) = 1, ε(2)z =
20, µ = 1, µ(2)

ρ = 1.5.



Scattering by an array of cylinders 305

Table 6. S matrix computation time in seconds.
                

         2-port junction              4-port junction   

  One post Two posts Three posts  One post Two posts Three posts 

M P  = 1 P = 30 P = 60 M P  = 1 P = 30 P = 60 

11 0.22 s 0.38 s 0.88 s 22 0.71 s 1.37 s 3.18 s 

13 0.27 s 0.49 s 1.21 s 26 0.88 s 1.92 s 4.61 s 

15 0.33 s 0.66 s 1.48 s 30 1.09 s 2.53 s 6.32 s 
 
 

waveguide junction (dielectric posts) and 4-port waveguide junction
(ferrite posts).

5. CONCLUSION

The analysis for Ez-wave scattering by an array of conducting, lossy
dielectric, ferrite and/or psudochiral cylinders has been developed
using a combination of modified iterative scattering procedure and
the orthogonal expansion method. This approach is convenient for
investigations of the open and waveguide problems. Presented method
is fast, accurate and allows to simulate different structures, which can
be interesting in microwave design. The validity and accuracy of the
method has been verified by comparing the numerical results with those
given in literature. The analysis given above allowed to investigate
number of novel structures.

For open structures, interesting effects of changing characteristics
have been noticed for different configurations of dielectric cylinders.
For ferrite posts squinting characteristic from the direction of
excitation has been shown. One pseudochiral cylinder has been
analysed and the reduction of the level of side lobes has been observed
in comparison to the dielectric one. Presented approach is convenient
to describe a total scattered field at any distance from investigating
configurations of cylinders.

The usefulness of the presented approach have been performed
by investigation of the waveguide structures. The tuning of the
resonance frequencies has been observed with the rotation of the
cylinders configuration located in rectangular waveguide. Waveguide 4-
port junction containing two ferrite cylinders inserted in bi-directional
magnetic field has been investigated showing its switching properties.
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APPENDIX A.

Description of cylindrical Ez-wave in the post made of following
materials.

A.1. Dielectric
4D = ε0εr 4E

4B = µ0µr 4H
(A1)

where εr, µr are scalars.

ρ
∂

∂ρ

(
ρ
∂Ez
∂ρ

)
+ k2

0εrµrρ
2Ez +

∂2Ez
∂ϕ2

= 0 (A2)

The solution of wave Equation (A2) is given by

Ez =
M∑

m=−M
amJm(kρ)ejmφ (A3)

The magnetic field along φ direction can be obtained from

Hφ =
1

jωµ0

∂Ez
∂ρ

(A4)

[G] matrix in (7) has the following form

[G] = diag




Jm(kr)J ′m(k0r)−
√
εr
ε0
J ′m(kr)Jm(k0r)√

εr
ε0
J ′m(kr)H(2)

m (k0r)− Jm(kr)H(2)
m

′
(k0r)



M

m=−M

(A5)

where k = k0
√
εr, εr is relative electric permittivity and for metallic

cylinder we assume εr = −j∞.

A.2. Ferrite

For ferrite cylinder magnetized along z direction material equations
are defined as [16]

4D = ε0εf 4E

4B = µ0µ
↔ 4H

(A6)

where εf is a scalar and µ↔ have the following dyadic form as

µ↔ = µ (4aρ4aρ + 4aφ4aφ) + jµa (4aφ4aφ − 4aρ4aρ) + 1 · 4az4az (A7)
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The wave equation is given by

ρ
∂

∂ρ

(
ρ
∂Ez
∂ρ

)
+ k2

0εfµeffρ
2Ez +

∂2Ez
∂ϕ2

= 0 (A8)

The solution of wave Equation (A8) has the form

Ez =
M∑

m=−M
amJm(kρ)ejmφ (A9)

and magnetic field component Hφ is written as

Hφ =
1

jωµ0µeff(i)

(
∂Ez
∂ρ

+ j
µa
µρ

∂Ez
∂φ

)
(A10)

The matrix [G] is defined as

[G] = diag
k0Jm(kr)J ′m(k0r)− Jm(k0r)

[
k

µeff
J ′m(kr)−m µa

µeffµr
Jm(kr)

]
H

(2)
m (k0r)

[
k

µeff
J ′m(kr)−m µa

µeffµr
Jm(kr)

]
−k0Jm(kr)H(2)

m
′
(k0r)



M

m=−M
(A11)

where k = ω
√
εfµeff , εf -relative ferrite permittivity and µeff =

(µ2−µ2
a)/µ denotes effective ferrite permeability where µ, µa are tensor

elements.
For µa = 0 and µeff = µ = 1 (dielectric structure) Equation (A5)

is obtained.

A.3. Pseudochiral

Constitutive equations for structure described in Fig. A1 are as follows
[17, 18]

4D = ε0ε
↔ 4E + jΩzρ

4Bρ

4B = µ0µ
↔ 4H − jµ0µ

↔Ωρz
4Ez

(A12)

where ε↔, µ↔ and Ω are given in dyadic forms as

ε↔ = ε4aρ4aρ + ε4aφ4aφ + εz4az4az

µ↔ = µρ4aρ4aρ + µ4aφ4aφ + µ4az4az
(A13)

and
Ωzρ = Ω4az4aρ
Ωρz = Ω4aρ4az

(A14)
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Figure A1. Psudochiral cylinder geometry.

Ω denotes pseudochiral admittance, εz > ε, µρ > µ and ε, µ are
the parameters of a host medium where εz, µρ depend on Ω. For
Ω = 0, εz → ε and µρ → µ.

For configuration from Fig. A1, the following wave equation is
obtained

ρ
∂

∂ρ

(
ρ
∂Ez
∂ρ

)
+ k2

0εzµρ
2Ez +

µ

µρ

∂2Ez
∂ϕ2

= 0 (A15)

It is important to note that the element εz 	= ε and µρ 	= µ indicate
the pseudichirality effect in the considered cylinder. The solution of
wave Equation (A15) is

Ez =
M∑

m=−M
(amJv(kρ) + dmYv(kρ)) ejmφ (A16)

where v = m
√
µ/µρ and magnetic field component Hφ can be

established from
Hφ =

1
jωµ0µ

∂Ez
∂ρ

(A17)

Solution of Equation (A15) requires noninteger values v of order of
Bessel functions defining the field inside the pseudochiral cylinder. To
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take into account practical applications, we cover with the pseudochiral
material the inner core, which can be dielectric or metallic. Presented
considerations provide to minimum two-layered cylindrical structure
with external pseudochiral layer, which gives the following matrix [G]

[G] = diag


 Jm

(
k0r

(2)
)
·X ′v − k0J

′
m

(
k0r

(2)
)
·Xv

k0H
(2)
m
′ (
k0r(2)

)
·Xv −H(2)

m
(
k0r(2)

)
·X ′v



M

m=−M

(A18)

where

Xv = Jv
(
k(2)r(2)

)
+Av · Yv

(
k(2)r(2)

)
,

X ′v = k(2)J ′v
(
k(2)r(2)

)
+Av · k(2)Y ′v

(
k(2)r(2)

)
and Av has the following form for dielectric and metallic inner core
respectively

Av =
k(1)Jv

(
k(2)r(1)

)
J ′m

(
k(1)r(1)

)
− k(2)J ′v

(
k(2)r(1)

)
Jm

(
k(1)r(1)

)
k(2)Y ′v

(
k(2)r(1)

)
Jm

(
k(1)r(1)

)
− k(1)Yv

(
k(2)r(1)

)
J ′m

(
k(1)r(1)

) ,

Av = −
Jv

(
k(2)r(1)

)
Yv

(
k(2)r(1)

)
The prime symbol denotes the derivative with respect to argument.
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