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Abstract—A Rigorous Coupled Wave Analysis (RCWA) algorithm
for electromagnetic (EM) scattering from radially and azimuthally
inhomogeneous material elliptical systems based on State Variable
(SV) techniques and based on circular-cylindrical Hankel-Bessel
expansion modes is developed for the first time. The algorithm in
conjunction with the elliptical system RCWA algorithm [1], which was
based on SV techniques and Mathieu expansion modes, is used to
validate and study numerical convergence of both elliptical RCWA
algorithms. The formulation of the SV, Hankel-Bessel elliptical
algorithm is presented. Two numerical elliptical examples are studied
in detail by both algorithms, a homogeneous one which consists of
three different uniform materials located in three elliptical regions
and an inhomogeneous one which consists of an azimuthal, dielectric,
step profile which is located between two uniform material elliptical
regions. In this paper EM field scattering from a step profile which
possessed a much larger dielectric step profile difference than was
studied in [1] is presented. Validation and numerical convergence data
of the Hankel-Bessel and the Mathieu [1] RCWA algorithm is presented
for the first time, both in plot figures and in tables, when different
numbers of expansion modes were used, when different number of
layers were used, and when different numbers of SV harmonics were
used. Validation of the RCWA algorithms was further carried out
for the homogeneous case, by using Mathieu expansion modes in all
regions and was carried out by using Hankel-Bessel expansion modes
and Mathieu expansion modes in different regions. Validation of the
Hankel-Bessel and Mathieu [1] RCWA algorithms was observed to
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a high degree of accuracy. It was found for the numerical example
tested, that the number of modes used in the RCWA algorithms needed
to exceed a critical minimum value in order to obtain meaningful,
accurate results, and after this critical number of modes was exceeded,
that convergence occurred rapidly as the number of modes increased.
It was also found that as the number of layers used in the algorithm
increased that the numerical accuracy of the RCWA solution slowly
increased.
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2 Hankel-Bessel Rigorous Coupled Wave Analysis For-
mulation

3 Numerical Results

4 Summary and Conclusion
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1. INTRODUCTION

In a very recent paper [1] a spectral domain technique called Rigorous
Wave Coupled Analysis (RCWA) was used to study scattering from
an inhomogeneous material, elliptical cylindrical system (please see
Fig. 1, this paper). The elliptical system consisted of three, different
elliptical, dielectric-permeable regions, with Reg. R2 assumed to have
a permittivity which was a function of radial and angular position,
whereas Regs. R1 and R3 were assumed to be homogeneous materials.
The EM fields of the system were assumed to excited by an elliptical
surface current located in Reg. R1. The RCWA was carried out
by; (1) solving Maxwell’s equation in the interior region (Reg. R1)
and and exterior regions (Reg. R3) of the inhomogeneous system in
terms of radial and angular Mathieu functions, (2) solving Maxwell’s
equation (Reg. 2) in the inhomogeneous material region by using a
multi-layer state variable (SV) approach, (3) matching and enforcing
EM boundary conditions at the interfaces, and (4) solving the matrix
equation from the previous step to determine all of the unknowns of the
system. State variable equations arise from using Floquet harmonics
(Fourier series) to solve Maxwell’s equations in the inhomogeneous
material region. In [1] two cases were considered, the first when
Reg. R2 was taken to be a homogeneous material (or uniform profile)
and the second when Reg. R2 was taken to a dielectric permittivity,
step profile. The homogeneous case was analyzed both by using
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Figure 1. The geometry of the EM scattering system is shown where
ρ = 20, us = .3, ua = 0.602, and ub = 1.198. For Regs. R1 and R3,
ε1 = 1, µ1 = 1 and ε3 = 1.5, µ3 = 1.2. For the Uniform Profile case
(homogeneous case) in Regs. R2a and R2b, ε2a = ε2b = 2.9851786,
and µ2a = µ2b = 1.4. For the Step Profile case (inhomogeneous
case) in Regs. R2a, ε2a = 2.3851786, µ2a = 1.4, and in Reg. R2b

is ε2b = 3.5851786, µ2b = 1.4. The dielectric step difference is
ε2b − ε2a = 1.2. The plot, as in [1], is drawn to exact scale.

the RCWA method and was also analyzed expanding Regs. R1, R2,
and R3 in terms of radial and angular Mathieu functions and then
matching boundary conditions. The RCWA and Mathieu expansion
methods for the homogeneous case produced very close numerical
agreement. In [1] a comparison of radial and angular Mathieu functions
as obtained by solving the wave equation in elliptical coordinates
and the eigenfunctions obtained by using the SV techniques for the
homogeneous case were made and close agreement between the two
was found.

The analysis of [1] had several limitations. The first limitation
was that the analysis of [1] presented numerical results for an
inhomogeneous profile example for which the change in the dielectric
permittivity of the step profile in Reg. 2 was only a small amount rather
than a case for which a significant dielectric step difference existed. The
reason for this was that the main focus of the analysis in [1] was to
compare and validate the numerical results of the homogeneous case
as obtained by the RCWA method with those which were obtained by
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using a Mathieu function method, rather than the study of scattering
from highly inhomogeneous material. In [1] a case using only a small
change in the step profile was presented mainly to illustrate the use
of the RCWA method in solving inhomogeneous problems. A second
limitation of [1] was that for both the homogeneous and inhomogeneous
cases an analysis of the numerical convergence of the RCWA method
was not carried out. A third limitation of [1] was that, except for
validation of the homogeneous case by the the Mathieu expansion
method, no other validation of the homogeneous or inhomogeneous
cases was presented. A fourth limitation of [1] was the fact that for
both the uniform and step profile cases, only a relatively small number
of only propagating modes were used in the analysis. Scattering
from most EM systems requires the inclusion of both propagating and
evanescent (or non propagating) modes in order to meet EM boundary
conditions and thus obtain a complete and correct solution.

The purpose of the present paper will be to address all four of the
limitations just mentioned. These limitations will be addressed by;
(1) studying an EM scattering example having a large inhomogeneity
profile, (2) presentation of detailed numerical convergence of the
RCWA algorithm, (3) further validation of the RCWA method, and
(4) solution using a large enough number of modes to ensure that
both propagating and evanescent modes are present. Concerning the
first limitation, the dielectric step profile difference to be studied here
will use ε2b − ε2a = 1.2 rather than ε2b − ε2a = 0.1 as was done
in [1]. This example thus represents a large inhomogeneity profile.
The second limitation, numerical RCWA algorithm, will be addressed
by presenting numerical RCWA results as obtained when different
numbers of layers are used are used in the algorithm, when different
numbers of expansion modes are used in the algorithm, and when
different numbers of SV harmonics are used in the algorithm.

The third limitation of [1], namely, further validation of the
RCWA algorithm, will addressed by developing an RCWA algorithm
which is based on using circular cylindrical, Hankel-Bessel expansion
modes in Regs. R1 and R3 rather than on using Mathieu expansion
modes as was done in [1]. Hankel-Bessel modes which represent
solutions of the wave equation in circular cylindrical coordinates rather
than in elliptical coordinates, thus will provide an independent set of
basis functions (or modes) with which to expand the EM fields of
the system and thus provide further validation of the algorithm. The
author also believes that a RCWA algorithm which is based on using
circular-cylindrical Hankel-Bessel expansion modes in Regs. R1 and
R3 rather than on just Mathieu modes is a very useful one to carry
out because circular-cylindrical Hankel-Bessel function modes are by
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far the most common modes which are used in the solution of most
cylindrical EM scattering problems.

Sec. 2 of the paper will briefly review the RCWA equations and will
present the mathematical formulation of the RCWA algorithm which is
based on circular cylindrical, Hankel-Bessel expansion modes in Regs.
R1 and R3. Sec. 3 will present validation and numerical convergence
results for both the Hankel-Bessel RCWA developed herein and the
RCWA algorithm based on Mathieu functions which was developed in
[1]. Sec. 4 will present summary and conclusions.

We mention in conclusion of this section, that in addition to
elliptical, inhomogeneous, cylindrical systems [1], the RCWA algorithm
has been applied to study EM scattering from planar diffraction grating
problems [2, 3], circular cylindrical inhomogeneous problems [4, 5],
bioelectromagnetic systems [6], and inhomogeneous spherical systems
[7]. The textbook [8] gives a detailed description of the RCWA
algorithm and gives many additional references of its application to
EM scattering problems. We also mention as was done in [1], that
EM scattering from elliptical systems has been carried out by many
researchers, see, for example, references [9, 10]. In the present paper
Mathieu function calculations have been performed based on the
algorithms presented in [11, 12].

2. HANKEL-BESSEL RIGOROUS COUPLED WAVE
ANALYSIS FORMULATION

As in [1] this paper is concerned with the problem of determining the
EM fields that arise when an interior, elliptical surface current source
(located at u = us, us < ua) excites EM fields in an inhomogeneous,
elliptical system as shown in Fig. 1. The EM analysis will be carried
out by solving Maxwell’s Eqs. in Regs. R1, R2, and R3 and then
matching EM boundary conditions at the interfaces. It is convenient
to use elliptical coordinates as specified in [11] and then normalize
them. We let, ρ = k0ρ̃, x = k0x̃, y = k0ỹ, x̃ = ρ̃ cosh(u) cos(v), ỹ =
ρ̃ sinh(u) sin(v), etc. where unnormalized coordinates (ρ̃, x̃, ỹ, etc.) are
in meters and k0 = 2π/λ is the free space wavenumber (1/meters), and
λ is the free space wavelength. As in [1] we assume that the system is
symmetric with respect to the x and y coordinates.

The EM solution in Reg. R2 the middle inhomogeneous dielectric
region is obtained [1] by dividing the dielectric Reg. R2 into N` thin

elliptical shell layers of uniform value d`, ub − ua =
∑N`

`=1 d` (` = 1
is adjacent to u = ub and ` = N` is adjacent to u = ua) and
solve Maxwell’s equations in elliptical coordinates by a state variable
approach in each thin layer. Making the substitutions Uu(u, v) =
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η0h(u, v)Hu(u, v), and Uv(u, v) = η0h(u, v)Hv(u, v) where η0 = 377 Ω
and where Hu(u, v) and Hv(u, v) represent the magnetic fields in
each thin shell region, letting ε and µ be respectively the relative
permittivity and permeability in each thin shell region, we find that
Maxwell’s equations in an elliptical, cylindrical shell of coordinate value
u are given by [1]

∂Ez(u, v)

∂v
= −jµUu(u, v) (1)

∂Ez(u, v)

∂u
= jµUv(u, v) (2)

∂Uv(u, v)

∂u
−

∂Uu(u, v)

∂v
= jε(u, v)h2(u, v)Ez(u, v) (3)

h(u, v) =
(
ρ/

√
2
)

[cosh(2u)− cos(2v)]1/2 (4)

To solve Eqs. (1)–(4), we expand in the Floquet harmonics 0 ≤
v ≤ 2π [1]:

Ez(u, v) =
∞∑

i=−∞
Szi(u)ejiv, Uu(u, v) =

∞∑

i=−∞
Uui(u)ejiv,

Uv(u, v) =
∞∑

i=−∞
Uvi(u)ejiv,

εh(u, v)Ez(u, v) =
∞∑

i=−∞




∞∑

i′=−∞
ε̆h,i−i′Szi′


 ejiv ,

εh(u, v) ≡ ε(u, v)h2(u, v) =
∞∑

i=−∞
ε̆hi(u)ejiv

(5)

If these expansions are substituted in Eqs. (1)–(4), and after letting
Sz(u) = [Szi(u)], Uu(u) = [Uui(u)], and Uv(u) = [Uvi(u)] be column
matrices and εh(u) = [ε̆h,i−i′(u)], K = [iKδi,i′ ], K = 2π/Λv, Λv =

2π (Λv is the elliptical grating period and δi,i′ is the Kronecker delta)
be square matrices, we find after manipulation [1]

∂V

∂u
= AV , V =

[
Sz

Uv

]
, A =

[
A11 A12

A21 A22

]
(6)

where

A11 = 0, A12 = jµI, A21 = j

[
εh − 1

µ
K2

]
, A22 = 0 (7)
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After truncating and solving the SV equations given in Eqs. (6)–(7) it
is found that the EM fields in each thin layer in Reg. R2 associated
with Eq. (5) are given by ([1], Eqs. (14)–(15))

Ezn(u, v) = Ee
zn(v) exp(Qnu) (8)

Ee
zn(v) =

MT∑

i=−MT
(even i)

Szin exp(jiv), (9)

Uvn(u, v) ≡ η0h(u, v)Hvn(u, v) = Ue
vn(v) exp(Qnu) (10)

U e
vn(v) =

MT∑

i=−MT
(even i)

Uvin exp(jiv) (11)

where Qn, Szin, and Uvin represents the eigenvalue and eigenvector
coefficients of the nth mode in the lth layer in the system, and MT

represents a series truncation order. Let NSV represent the number
of nonzero, independent Fourier harmonics used in the state variable
calculation. The SV sums in Eqs. (8)–(11) from m = −MT ,−MT +
2, . . . ,−2, 0, 2, . . . , MT − 2,MT have NSV = MT/2 + 1 when the even
symmetry of the EM fields was taken into account. By summing the
eigensolutions of Eqs. (5)–(11) in each thin layer an overall solution at
any point in Reg. R2 may be found. Details are given in [1].

As mentioned in the Introduction one of the purposes of the
present paper is to provide an alternate formulation of the RCWA
algorithm which is based on using circular-cylindrical Hankel-Bessel
expansion modes in Regs. R1 and R3 rather than on using Mathieu
expansion modes in Regs. R1 and R3 as was presented in [1]. Hankel-
Bessel modes which represent solutions of the wave equation in circular
cylindrical coordinates rather than elliptical coordinates, thus will
provide an independent set of basis modes or functions with which to
expand the EM fields of the system and thus provide further validation
of the RCWA algorithm based on Mathieu modes which was presented
in [1]. As mentioned in the Introduction Hankel-Bessel modes are
the most common modes used to solve most cylindrical scattering
problems.

Using circular cylindrical Hankel-Bessel expansion modes in Reg.
R1 it is found that the total EM fields in Reg. R1 are given by

E(1)
z = EI

z1(u, v) + ES
z1(u, v) (12)

ES
z1(u, v) =

∞∑

m=0,2,4,...

Am1Jm(k1ρc) cos(mφc) (13)
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H(1)
v (u, v) = HI

v1(u, v) + HS
v1(u, v) (14)

HS
v1(u, v) =

1

jη0µ1h(u, v)

∂ES
z1(u, v)

∂u
(15)

∂ES
z1(u, v)

∂u
=

∂ES
z1(u, v)

∂ρc

∂ρc

∂u
+

∂ES
z1(u, v)

∂φc

∂φc

∂u
(16)

∂ES
z1(u, v)

∂ρc
=

∞∑

m=0,2,4,...

Am1k1J
′
m(k1ρc) cos(mφc) (17)

∂ES
z1(u, v)

∂φc
=

∞∑

m=0,2,4,...

Am1Jm(k1ρc)(−m) sin(mφc) (18)

where k1 =
√

µ1ε1, the quantities EI
z1(u, v), HI

v1(u, v) represent the
incident EM fields in Reg. 1 which are excited by the elliptical current
source assumed to be located in an infinite uniform region whose
relative permittivity and permeability value is that of Reg. R1 (please
refer to [1] for details), ρc and φc represent radial and angular circular,
cylindrical coordinates respectively, Jm refers to a Bessel function of
order m, and J ′

m refers to the derivative of the Bessel function of order
m with respect to its argument. The incident EM fields EI

z1(u, v) and
HI

z1(u, v) have been derived in [1] in terms of Mathieu function modes
and the reader may refer to [1] for the equations for these quantities.
The radial and angular circular, cylindrical coordinates ρc, φc and the
ρc, φc partial derivatives may be expressed in elliptical coordinates as

ρc =
ρ√
2
[cosh(2u) + cos(2v)]1/2 (19)

∂ρc

∂u
=

ρ2

2ρc
sinh(2u) (20)

φc = tan−1[tanh(u) tan(v)] (21)

∂φc

∂u
=

tan(v)

cosh2(u) + sinh2(u) tan2(v)
(22)

In Reg. R3 using outgoing circular, cylindrical Hankel functions
which satisfy the wave equation in circular, cylindrical coordinates it
is found that the total EM fields are given by

E(3)
z (u, v) =

∞∑

m=0.2.4,...

Am3H
(2)
m (k3ρc) cos(mφc) (23)

H(3)
v (u, v) =

1

jη0µ3h(u, v)

∂E
(3)
z (u, v)

∂u
(24)
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∂E
(3)
z (u, v)

∂u
=

∞∑

m=0,2,...

Am3

[
k3H

(2)
m

′
(k3ρc) cos(mφc)

∂ρc

∂u

+ H(2)
m (k3ρc)(−m) sin(mφc)

∂φc

∂u

]
(25)

where k3 =
√

µ3ε3, H
(2)
m refers to a Hankel function of the second kind

(outgoing) of order m and H
(2)
m

′
refers to a derivative with respect to

its argument of a Hankel function of order m of the second kind.
Now that the general form of the EM fields have been specified in

all regions, the next step in analysis is to match the tangential EM fields
at all interfaces of the system and determine all the unknowns in the
system. In this paper and in [1] the boundary matching step has been
carried out by; (1) equating the appropriate tangential electric and
magnetic field expansions as defined by Eqs. (1)–(25) at each interface,
(2) multiplying the resulting equations (both electric and magnetic) by
an electric field expansion function (also called a testing, weighting,
or enforcing function) which exists in a layer which is adjacent to
the interface, and (3) integrating the resulting equations over the
azimuthal elliptical region 0 ≤ v ≤ 2π (the radial angular elliptical
variable u is constant over this interval). When an RCWA solution
is being implemented the electric field testing expansion or testing
function used in this paper and [1] are the thin layer, eigenmode (or
eigenfunction) solutions of the SV equations of Reg. R2 defined in
Eqs. (8)–(11). Using the above procedure a matrix equation for the
overall system is formed and solved, and all of the unknowns of the
system are determined. Ref. [1] gives a detailed description of the
procedure which has just been described.

In addition to the RCWA solution presented here, two alternate
expansion mode methods have been developed to determine the
elliptical scattering problem for the homogeneous case. The first
method which was presented in [1] was based on using Mathieu
expansion modes in Regs. R1, R2, and R3 to expand the unknown
EM fields of the homogeneous system, and from these expansions,
after imposing boundary conditions, solving a matrix equation for the
unknowns of the system. The second expansion method which is being
implemented in this paper for the first time, is same as the first, except
that circular-cylindrical Hankel-Bessel modes are used in Regs. R1 and
R3 to expand the EM fields of the homogeneous system rather than
Mathieu function modes in Regs. R1 and R3 as was done in [1]. In
both of these methods, Mathieu function modes are used as testing
modes to form a matrix equation from which all of the unknowns of
the system are determined. The Mathieu mode and Hankel-Bessel
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mode expansion methods, which only apply to the homogeneous case,
have been developed in order to provide additional and independent
ways of validating the RCWA solutions.

3. NUMERICAL RESULTS

This section will present numerical convergence and validation results
for the RCWA algorithms. Two numerical examples or cases are
studied in detail by both algorithms, namely, a homogenous case
which consists of three different uniform materials located in three
elliptical regions and an inhomogeneous case which consists of an
azimuthal dielectric step-profile which is located between two uniform
material elliptical regions (please see Fig. 1). In this paper (and
[1]) the elliptic parameter ρ = k0ρ̃ was taken to have a value
ρ = 20, the inner Reg. R1-R2 interface was taken to have a value
u = ua = .602, and the outer Reg. R2-R3 boundary was taken to
have a value u = ub = 1.198. (In elliptic coordinates, x = k0x̃ =
ρ cosh(u) cos(v), y = k0ỹ = ρ sinh(u) sin(v), where k0 = 2π/λ.) The
material values of the relative dielectric permittivity and permeability
for both the homogeneous case and inhomogeneous case (please see
Fig. 1) in Regs. R1 and R3 respectively, are ε1 = 1, µ1 = 1 and
ε3 = 1.5, µ3 = 1.2. For the homogeneous case in Reg. R2 the
relative permittivity and permeability values in Regs. R2a and R2b

are ε2a = ε2b = 2.9851786, µ2a = µ2b = 1.4. For the inhomogeneous
case in Reg. R2 the relative permittivity and permeability values in
Reg. R2a is ε2a = 2.3851786, µ2a = 1.4 and in Reg. R2b is ε2b =
3.5851786, µ2b = 1.4. Electromagnetic fields are excited in the overall
system by an elliptical surface current source which was located at
u = us = .3, ρ = 20 (please see Fig. 1). This source (which is assumed
nonuniform in the angular v direction and is the same one as used in [1])
was chosen to excite a m = 0 Mathieu mode when it is located in an
infinite uniform region whose relative permittivity and permeability
value is that of Reg. R1. Ref [1] gives the details of this source.
The total, unnormalized power per unit length radiated from the

elliptical surface current source used in this paper and in [1] ( ~JS(us, v)
of Eq. (35) of [1]) when Reg. R1 is infinite and ε1 = 1., µ1 = 1.
is PJS = 6.816674 × 10−2/377 = 1.80813634 × 10−4 (Watts/m). (In
[1] PJS was misreported as PJS = 6.816674 × 10−2 (Watts/m) or
was reported before division by 377. The normalized power ratio
PNOR = PTOT/PJS of Table 1 and Fig. 8 specified in [1] has been
correctly reported.)

The inhomogeneous example chosen here uses the same geometry,
material constants, and excitation as was used in [1], except for the
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very important difference that a large, dielectric-step, difference profile
is used here (ε2b = 3.5851786, ε2a = 2.3851786, or ε2b − ε2a = 1.2)
whereas in [1] a small one was used (ε2b = 3.05, ε2a = 2.95, or
ε2b−ε2a = 0.1). In [1] and in the present paper, a step profile example
has been chosen to represent a dielectric inhomogeneity profile because
a step profile possesses a high azimuthal spectral content (being a step
function) and thus represents a good test of the RCWA algorithms
since many higher order harmonics must be included in the analysis
for accurate numerical results. As in [1] the step profile and the current
source excite are symmetric in the four quadrants of the xy plane and
thus excite an Ez electric field and an Hv magnetic field which is also
symmetric in both the x and y coordinates. The homogeneous case
for which numerical convergence and validation data will be presented
herein is the same case as was studied in [1].

At this point we would now like to discuss the determination,
labeling, and ordering of the SV modes which were used to study the
step profile case under consideration. The SV modes corresponding to
the step profile case have been determined by; (1) initially, solving
for the SV modes of the homogenous case using SV techniques
(the SV solutions are Mathieu modes corresponding to orders m =
0, 2, 4, . . .); (2) increasing, by a small increment, the dielectric step
profile difference between Regs. R2b and R2a; (3) solving the SV
equations for new eigenvalues for the new step profile difference of
Step (2); and (4) repeating Steps (1)–(3) many times, using each time
the new SV modes from Steps (2) and (3) as the new initialization for
Step (1), until the dielectric step profile difference reached is the final
value desired, which in this case would be ε2b−ε2a = 1.2. By following
this procedure in each thin layer for each mode, it was possible to see
a continuous change of the eigenvalue of a given mode from its value
when it corresponded to the homogeneous case (a Mathieu mode value)
to its final value when ε2b − ε2a = 1.2. The change of the eigenvalue
with dielectric step profile difference may be called an eigenvalue mode
branch. The inhomogeneous modes used in this paper were labeled
by associating each eigenvalue mode branch with the Mathieu mode
order which occurred at the start of the branch when the Reg. R2
was uniform (or homogeneous). Thus m = 0, 2, 4, . . . Mathieu modes
corresponded to n = 1, 2, 3, . . . Step Profile SV modes. In making the
mode branch association, it was checked that outgoing Mathieu modes
corresponded to outgoing SV modes and that incoming Mathieu modes
corresponded to incoming SV modes. It was not necessary to carry
out this procedure in [1], since only a small value of the dielectric step
profile difference and a small number of modes were used, and thus the
system eigenmodes did not differ greatly from the Mathieu modes of
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Figure 2. Plots of η0HvI where HvI is the imaginary part of the
magnetic field Hv are shown for the Uniform Profile R2 and Step Profile
R2 cases (see Fig. 1). The light solid lines, labeled Uniform Profile R2
(eight plots total) have been computed numerically at u = u±

a using the
expansion mode sets which are labeled on the figure. The heavy solid
and dashed lines, labeled Step Profile R2 (six plots total), have been
computed numerically at u = u±

a using the expansion mode sets which
are labeled on the figure. All expansion mode sets used 30 modes.

the homogeneous case.
In carrying out this procedure for the step profile case (ε2b−ε2a =

1.2) for the thin layer in Reg. R2 which was adjacent to the u = ua

boundary (or Reg. R1-R2 interface), using a SV analysis involving
54 harmonics (NSV = 54) to determine the first 30 modes (with the
mode orders labeled as described earlier), it was observed that the
first 19 outgoing SV modes were propagating (i.e., Qn in Eq. (8)
had an imaginary, negative value) and that the next 11 outgoing
SV modes were evanescent (i.e., Qn in Eq. (8) had a real, negative
value). A similar observation was made for the SV incoming modes
in this thin layer. It was also observed for the same step profile case
(ε2b − ε2a = 1.2), that in the thin layer in Reg. R2 which was adjacent
to the u = ub (or Reg. R2-R3 interface), that all 30 of the outgoing
SV modes or incoming SV modes were propagating. It is thus seen for
the present step profile numerical example (ε2b − ε2a = 1.2), that both
propagating and evanescent modes play a role in determining the final
EM fields of the system. One also sees for the present example, that
out of the thirty modes, that as one moves radially outward from one
thin layer to another, that gradually less modes are evanescent and
more modes become propagating.

We will now present plots in Figs. 2–8 of the EM fields as
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calculated by the Hankel-Bessel and Mathieu RCWA algorithms for
the Uniform Profile case (or homogeneous case) and Step Profile case
(or inhomogeneous case) which have been discussed earlier. Fig. 1
shows the geometry of the scattering system. Thirty expansion modes
in each region were used to make all the plots to be shown in Figs. 2–8.
By 30 expansion modes, it is meant that 30 outgoing expansion modes
were used in Reg. R3, 30 outgoing modes and 30 incoming expansion
modes were used in Reg. R2, and that 30 expansion modes in Reg. R1
which are finite at the origin were used.

Fig. 2 shows plots of η0HvI where HvI is the imaginary part
of the magnetic field Hv. In Fig. 2 HvI is evaluated at the inner
boundary u = u−

a (Reg. 1 side) and is evaluated at the inner boundary
u = u+

a (Reg. 2 side). HvI has been calculated at u = u±
a in the

cases when a homogeneous elliptical profile (homogeneous case) is
present in Reg. R2 and in the case when a step profile (inhomogeneous
case) is present in Reg. R2. As can be seen from Fig. 2, quite
different plots results occur for uniform or step profile cases. The
plots of Fig. 2 for the homogeneous case (all light solid line, labeled
Uniform Profile (or Homogeneous Case), eight plots total) have been
computed numerically at u = u−

a , (Reg. R1 side) and u = u+
a (Reg. R2

side) by using four different combinations of expansion modes in the
different regions, namely; (1) M(R1,R2,R3); (2) HB(R1,R3),M(R2);
(3) M(R1,R3),SV(R2), N` = 300; and (4) HB(R1,R3),SV(R2), N` =
300; where M refers to Mathieu modes, HB refers to Hankel-Bessel
modes, SV refers to State Variable modes, R1,R2, or R3 refers to
the region where the expansion mode was used, and N` refers to
number of layers used in the SV expansion method. The third
and fourth expansion sets represent the Mathieu and Hankel-Bessel
RCWA algorithms respectively. As can be seen from Fig. 2, the
four different sets of expansion modes for the homogeneous case all
produce numerical results which are very close to each other. Boundary
matching at u = u±

a , using the four different expansion mode sets,
produced such close results that the plots for each expansion set,
evaluated on the at u = u−

a (Reg. R1 side) and on the u = u+
a (Reg.

R2 side), could not be separated from one another. The homogeneous
case plots (light solid line) which have a slightly larger peak value,
corresponded to the two expansion sets which used Mathieu modes
in Reg. R2 (namely, M(R1,R2,R3) and HB(R1,R3),M(R2)), whereas
the plots (light solid line) which have the slightly lower peak values
lower, corresponded to the two expansion sets which used the Mathieu
and Hankel-Bessel RCWA algorithms (namely, M(R1,R3),SV(R2),
N` = 300 and HB(R1,R3),SV(R2), N` = 300). Overall it is felt that
the homogeneous case plots of Fig. 2 provide a good validation that
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the RCWA algorithms are working correctly.
The plots of Fig. 2 for the inhomogeneous case (heavy solid

and dashed lines, labeled Step Profile (or Inh. Case), six plots
total) have been computed numerically at u = u−

a (Reg. R1 side)
and u = u+

a (Reg. R2 side) by using; (1) the Mathieu RCWA
algorithm M(R1,R3),SV(R2) with N` = 2400 (2 heavy solid lines),
(2) the Mathieu RCWA algorithm M(R1,R3),SV(R2) with N` = 300
(2 heavy solid lines), and (3) the Hankel-Bessel RCWA algorithm
HB(R1,R3),SV(R2) with N` = 300 (2 heavy dashed lines). We
remind the reader the first two expansion sets (M(R1,R2,R3) and
HB(R1,R3),M(R2)) used for the homogeneous case cannot be used
to determine the EM fields for the step profile case because Mathieu
modes in Reg. R2 do not represent modal solutions of Maxwell’s
Equations. As can be seen from the Fig. 2 step profile plots, the
Mathieu and Hankel-Bessel RCWA algorithms produce results which
are all fairly close to each other. As in the homogeneous case, boundary
matching at u = u±

a using; (1) M(R1,R3),SV(R2), N` = 2400, (2)
M(R1,R3),SV(R2), N` = 300, or (3) M(R1,R3),SV(R2), N` = 300,
each produced such close boundary matching results that the plots for
each case evaluated on the u = u−

a (Reg. R1 side) and on the u = u+
a

(Reg. R2 side), could not be distinguished from one another. As can
be seen from Fig. 2, step profile plots using the Hankel-Bessel and
Mathieu RCWA algorithms using the same number of layers N` = 300,
produced close numerical results to each other. Also, as can be seen
from the Fig. 2 plots, the number of layers N` used did made a small
difference in the numerical results for the for the inhomogeneous case.
The plots of the Mathieu RCWA algorithm M(R1,R3),SV(R2) using
N` = 2400 layers, which must be considered the most accurate RCWA
calculation of the three RCWA step profile calculations presented, had
a slightly higher peak value than those of the other two which used
N` = 300. Overall all three expansion sets produced very similar
numerical results.

Fig. 3 shows plots of the real part of the electric field Ez, namely
EzR, when it is evaluated at the outer boundary at u = u−

b (Reg. R2

side) and when it is evaluated at the outer boundary at u = u+
b (Reg.

R3 side). The plots of Fig. 3 were calculated for the same numerical
cases and the same expansion mode sets as were described in Fig. 2.
As can be seen from Fig. 3 excellent agreement of numerical results
occurred between all the expansion sets for the homogeneous case
and for the inhomogeneous case being considered. As in Fig. 2 it
is observed that for the homogeneous plots, that the M(R1,R2,R3)
and HB(R1,R3),M(R2) expansion sets correspond to peak to peak
values which were slightly greater than the RCWA expansion sets
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Figure 3. Plots of EzR where EzR is the real part of the electric field
Ez are shown for the Uniform Profile R2 case and shown for the Step
Profile R2 case as calculated at u = u±

b (see Fig. 1). The plots are
calculated by the same expansion mode sets as were used in Fig. 2.

M(R1,R3),SV(R2), N` = 300 and HB(R1,R3),SV(R2), N` = 300,
respectively. Overall it is felt, that as in plots of Fig. 2, that the
homogeneous plots of Fig. 3 for EzR provide a good validation that
the RCWA algorithms are working correctly. It is also observed for the
inhomogeneous plots (heavy lines) in Fig. 3, that the number of layers
N` used did made a small difference in the numerical results for this
case. The Mathieu RCWA plots for M(R1,R3),SV(R2), N` = 2400,
which as in Fig. 2 must be considered the most accurate, had a slightly
lower value than those of the other two sets which used N` = 300. It
is interesting to note in Fig. 3, that when comparing the homogeneous
and inhomogeneous cases, that the real parts of the electric field for
the homogeneous case is nearly positive or zero for most values of
coordinate v, whereas of the electric field for the inhomogeneous case
is nearly negative or zero for most values of v. This is most likely
caused by the fact that the optical path length from u = ua to u = ub

in the step profile case is different from the optical path length in the
uniform profile case, thus causing a sign difference between the two
cases. As in Fig. 2, boundary matching in Fig. 3 at u = u±

b for the
homogeneous and inhomogeneous cases for each expansion set was so
close that the difference on the two sides of boundary could not be
observed in the plots.

Figs. 4, 5, and 6 show respectively, EzI the imaginary part of
the electric field, and the real and imaginary parts of the field η0Hv

as evaluated at u = u±
b . In these plots only the step profile (or

inhomogeneous case) numerical results are presented. The plots of
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Figure 4. Plots of EzI where EzI is the imaginary part of the electric
field Ez are shown for the Step Profile R2 case as calculated at u = u±

b
(see Fig. 1). The plots are calculated by the same expansion mode sets
as were used in Fig. 2 for the Step Profile.

Figure 5. Plots of η0HvR where η0HvR is the real part of the magnetic
field Hv are shown for the Step Profile R2 case as calculated at u = u±

b
(see Fig. 1). The plots are calculated by the same expansion mode sets
as were used in Fig. 2 for the Step Profile.

Figs. 4, 5, and 6 were calculated for the same inhomogeneous case and
the same expansion function sets as were described in Figs. 2 and 3. In
observing Figs. 4, 5, and 6 it is interesting to note that in Figs. 4 and 6
that the number of layers made almost no difference in the numerical
results displayed, but that in Fig. 5 a slight difference in the numerical
results with layer number was observed. Overall in Figs. 4–6, as in
Figs. 2 and 3, it is felt that all three expansion sets produced very
similar numerical results.
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Figure 6. Plots of η0HvI where η0HvI is the imaginary part of the
magnetic field Hv are shown for the Step Profile R2 case as calculated
at u = u±

b (see Fig. 1). The plots are calculated by the same expansion
mode sets as were used in Fig. 2 for the Step Profile.

Figs. 7 and 8 show, respectively, a three dimensional plot of the
EzR field for the uniform profile case and a three dimensional plot of
the EzR field for the step profile case, versus the normalized rectangular
coordinates X = x̃/λ, Y = ỹ/λ, where λ is the free space wavelength.
The three dimension figures were plotted over the first quadrant of the
XY plane and were calculated by using the Mathieu RCWA algorithm
M(R1,R3),SV(R2) using 300 layers and 30 modes. Because the electric
field is symmetric in the XY coordinates, only one quadrant has been
displayed. In Figs. 7 and 8, the dotted curves labeled u = ua and
u = ub shows, respectively, the Reg. R1-R2 and Reg. R2-R3 boundaries
in the XY plane of the elliptical system. In comparing the plots of
Fig. 7 (uniform profile, Reg. R2 (or homogeneous case)) and Fig. 8
(step profile, Reg. R2 (or inhomogeneous case)), the first feature that
one notices immediately, is that in Fig. 8 (step profile), in all elliptical
Regs. R1,R2,R3 (and particularly Reg. R1), that the electric field EzR

shows a high degree of interference in the angular (or azimuthal) v
direction, whereas in Fig. 7 (uniform profile) that there is almost no
interference in this direction. This is a very believable result since
one would expect in the step profile case (Fig. 8) that the incident
EM fields would be highly scattered by the step profile discontinuity
and the resulting scattered fields would then be multiply reflected in
the overall system, causing a complicated interference pattern in the
angular v direction. This is exactly what is seen in Fig. 8. When
viewing Figs. 7 and 8, it is further observed in both figures, that the
EzR field component is continuous at all material boundaries and thus
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Figure 7. A plot of the real electric field EzR (over the first quadrant
of Fig. 1) as resulted for the Uniform Profile R2 case (homogeneous
case) versus the normalized rectangular coordinates X = x̃/λ, Y =
ỹ/λ, (λ is the free space wavelength) is shown. The dotted curves
labeled u = ua and u = ub shows respectively the Reg. R1-R2 and
Reg. R2-R3 boundaries (see Fig. 1). The plot was made using 30
modes of the expansion set M(R1,R3),SV(R2) and using Nλ = 300
layers.

Figure 8. A plot of the real electric field EzR (over the first quadrant
of Fig. 1) as resulted for the Step Profile R2 case (inhomogeneous case)
versus the normalized rectangular coordinates X = x̃/λ, Y = ỹ/λ,
is shown. The plot was made using 30 modes of the expansion set
M(R1,R3),SV(R2) and using Nλ = 300 layers.
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satisfies proper the EM boundary conditions as it must in order to
be a valid EM solution. When viewing Figs. 7 and 8, it is further
observed that the approximate separation of the peaks of the EzR

field, as observed in the different material regions is, either is smaller
or larger according to whether the material’s index of refraction (

√
µε)

in that region (please see Fig. 1) is either larger or smaller as one would
expect of a correct EM field solution. This is clearly seen, for example,
in both Figs. 7 and 8 when comparing the field in Reg. R1 with the
EzR field in Reg. R2.

Tables 1 and 2, respectively, display the normalized power for the
homogeneous and inhomogeneous cases which is radiated through the
interfaces u = u−

a , u = u+
a , u = u−

b , and u = u+
b , when four different

expansion mode sets are used (described earlier for Fig. 2), when a
different numbers of modes are used, when a different number of state
variable harmonics are used, and when a different number of layers,
N` are used. The normalized power through a fixed u interface, is
found by integrating the real time averaged power (as calculated by
using the Poynting vector) over the interval 0 ≤ v ≤ 2π and then
dividing this quantity by the power which is radiated by the elliptical
current source when the elliptical current source is an infinite uniform
region having material constants equal to those of Reg. R1. The ‘#
Modes’ in Tables 1 and 2 means the number of outgoing expansion
modes that were used in Reg. R3, the number of outgoing and the
number of incoming expansion modes that were used in Reg. R2, and
the number of expansion modes which are finite at the origin that were
used in Reg. R1. The number of ‘# SV Harmonics’ in Table 2 means
the number of nonzero, independent harmonics that were used to make
the calculation, namely, NSV (NSV = MT

2 + 1 for Eqs. (8)–(11)). All
SV calculations in Table 1 used NSV = 54 state variable harmonics in
region R2.

In the first set of data presented in Table 1 (uniform profile case,
Reg. R2 (or homogeneous case)) 1,2,5,10,15 and 30 (Mathieu modes
have been used in Regs. R1, R2, and R3 to calculate the normalized
power. As one can observe, when only one mode (the m = 0 mode)
is used, different values of the normalized power as calculated at the
interfaces u = u−

a , u = u+
a , u = u−

b , and u = u+
b occurs. As the

number of modes used increases, however, the normalized power as
calculated at the interfaces u = u−

a , u = u+
a , u = u−

b , and u = u+
b

become increasingly close to one another. The normalized power
results for the cases when 15 and 30 modes were used, were very
close to each other and to all being the same value. In the second
set of data of Table 1, 30 Hankel-Bessel expansion modes were used
in Regs. R1 and R3 and 30 Mathieu modes were used in Reg. R2.
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Table 1. Numerical values of the normalized power for the Uniform
Profile R2 case (see Fig. 1) which is radiated through the interfaces
u = u−

a , u = u+
a , u = u−

b , and u = u+
b , when four different expansion

mode sets are used, when a different numbers of modes are used, and
when a different number of layers N` = 300 are used are displayed. All
normalized power results in Table 1 used 54 state variable harmonics.
By ‘# modes’, it is meant the number of outgoing modes in Reg. R3,
the number of outgoing mode or incoming modes in ReG. R2, and the
number of modes in Reg. R1 which are finite at the origin.

As can be seen, identical normalized power results occurred (for the
number of significant figures shown) as when 30 Mathieu modes were
used in all regions. The next set of data used the Mathieu RCWA
algorithm (M(R1,R3),SV(R2)) calculated using 1,2,5,15,30 modes and
using 300 layers (N` = 300). As in the first set of data, presented,
inaccurate power matching results occurred when only one mode was
used, but as the number of modes were increased, the power matching
accuracy increased. The normalized power results for the cases when
15 and 30 modes were very close to being the same. In the fourth
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Table 2. Numerical values of the normalized power for the Step
Profile R2 case (see Fig. 1) which is radiated through the interfaces
u = u−

a , u = u+
a , u = u−

b , and u = u+
b , when two different expansion

mode sets are used, when a different numbers of modes are used, and
when a different number of state variable harmonics are used, and
when a different number of layers are used are displayed. The same
designations as Table 1 are used.

set of data normalized power data calculated using the Hankel-Bessel
RCWA algorithm (HB(R1,R3),SV(R2)) with 30 modes and using 300
layers (N` = 300) was presented. As can be seen, identical results
occurred using 30 modes of either the Hankel-Bessel or Mathieu RCWA
algorithms. In the fifth set of data normalized power data calculated
using the Mathieu RCWA algorithm (M(R1,R3),SV(R2)) with 30
modes and using N` = 150, 300, 600, 1200 layers was presented. As
can be seen for a given number of layers, power matching at the
interfaces u = u−

a , u = u+
a , u = u−

b , and u = u+
b agrees exactly (to

the number of places shown), but, as the number of layers increases,
the normalized power changes value and approaches the 30 mode
values of the first and second normalized power data sets, respectively,
namely, M(R1,R2,R3) and HB(R1,R3),M(R2). We mention now that
the 30 mode values of the first and second data sets, respectively,
M(R1,R2,R3) and HB(R1,R3),M(R2), must be regarded as the most
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rigorously correct normalized power values of all of the homogeneous
case calculations since they use the largest mode sets, satisfies power
conservation most accurately, and are based on modal solutions in
Regs. R1,R2 , and R3 which are exact solutions of the wave equation
in all regions. Thus the fifth data set shows that as the number of
layers is increased, convergence of the RCWA Mathieu solution to the
correct solution is occurring. It is noticed in Table 1, overall, that the
number of layers N` is the most sensitive parameter as to establishing
an accurate solution.

In the first set of data presented in Table 2 (step profile case,
Reg. R2 (or inhomogeneous case)) 20,25,30, and 35 expansion modes
(M(R1,R3),SV(R2)) have been used to calculate the normalized power
using N` = 300 layers in Reg. R2. For this set of data, the number
of SV harmonics, NSV , was taken to be either NSV = 32 for the 20
mode case or NSV = 54 for the 25, 30 and 35 mode cases. We first
observe for the 20 modes case that the use of NSV = 32 or NSV = 54
SV harmonics produced very close normalized power results to each
other. We also observed from the 20 modes case (using either 32 or 54
SV harmonics) that a small error in power matching occurs between
the normalized power as seen at the interfaces u = u−

a , u = u+
a , and

u = u−
b and as seen at the u = u+

b interface. Continuing inspection of
the first set of data of Table 2, we see that as the number of modes used
increases, however, the normalized power as calculated at the interfaces
u = u−

a , u = u+
a , u = u−

b , and u = u+
b become increasingly close to one

another. The normalized power results for 25, 30, and 35 mode cases all
obeyed power conservation at the interfaces u = u−

a , u = u+
a , u = u−

b ,

and u = u+
b well and were all were very close to each other in value. In

the second set of data of Table 2, 20, 25, and 30 Hankel-Bessel, state
variable (HB(R1,R3), SV(R2)) expansion modes were used to compute
normalized power results using N` = 300 layers and NSV = 54 SV
harmonics. As can be seen, the normalized power results for these 20,
25, and 30 mode HB(R1,R3), SV(R2) cases was very close, respectively,
to the 20,25, and 30 mode M(R1,R3), SV(R2) cases presented in the
first data set. As in the first data power, the normalized power results
for 25 and 30 mode cases all obeyed power conservation at the interfaces
u = u−

a , u = u+
a , u = u−

b , and u = u+
b well and were all were

very close to each other in value. In computing the first and second
sets of data for Table 2, it was found for the step profile numerical
example tested, that the number of modes used in the Mathieu or
in the Hankel-Bessel RCWA algorithms needed to exceed a critical
minimum value (in Table 2 about 18 to 20 modes) in order to obtain
meaningful and accurate results. For 14 to 16 modes, for example
(data not shown), highly incorrect and ill-conditioned numerical results
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occurred. It was further found that once this critical minimum number
of modes was exceeded, that the RCWA converged quickly to an
accurate solution. In the third set of data of Table 2, 30 modes of
Mathieu RCWA algorithm (M(R1,R3),SV(R2)) were used to compute
normalized power results using N` = 150, 300, 600, 1200, 2400 layers
and the number of SV harmonics was taken to be NSV = 54 in all
cases except the one where it was taken to be NSV = 107. As can
be seen, for a given number of layers N`, power conservation at the
interfaces u = u−

a , u = u+
a , u = u−

b , and u = u+
b is obeyed to

a high degree of accuracy (5 or 6 place accuracy), but for different
numbers of layers N`, slightly different values of the normalized power
are seen. It is also observed as the number of layers is increased, that
the normalized power changes value by a smaller and smaller amount,
and thus one can conclude that convergence of the Mathieu RCWA
algorithm to the exact answer is occurring. The normalized power data
for the 1200 layer, 30 mode case, was calculated using both NSV = 54
and NSV = 107 SV harmonics. As can be seen very close numerical
results for these two cases were observed. From this we conclude that
NSV = 54 SV harmonics was sufficient for accurate numerical results.
As in Table 1 (uniform profile Reg. R2 case (or homogeneous case)), we
see overall, that the number of layers N` is the most sensitive parameter
as to establishing an accurate solution.

4. SUMMARY AND CONCLUSION

In this paper numerical convergence results and validation results for
the RCWA algorithm has been provided for two numerical examples,
a homogeneous one which corresponded to a uniform material profile
in Reg. R2 and an inhomogeneous one which corresponded a dielectric
step profile in Reg. R2.

Numerical convergence and validation results for the homogenous
case were displayed in Table 1 which presented the normalized power
which occurred in the elliptical system when different sets of expansion
functions were used, when different numbers of modes were and when
a different number of layers were used. It was found that as the
number of layers and modes were increased that the Hankel-Bessel
or Mathieu RCWA algorithms converged to the matrix solution which
resulted when either Mathieu expansion modes were used in all regions
M(R1,R2,R3) or when Hankel Bessel functions were used in Regs.
R1 and R3 and Mathieu modes were used in Reg. R2. Numerical
convergence and validation results were also displayed in Figs. 2–6
where RCWA electric and magnetic fields at the region interfaces were
shown using different expansion modes and different numbers of layers.
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Numerical convergence and validation results for the inhomoge-
neous case were displayed in Table 2 which presented the normalized
power data which occurred in the elliptical system when different sets
of expansion functions were used to form the RCWA algorithm, when
different numbers of modes were used, when a different number of lay-
ers were used, and when different number of SV harmonics were used.
It was found that as the number of layers, modes, and SV harmonics
were increased, that the Hankel-Bessel or Mathieu algorithms numeri-
cal results changed less and less, and thus converged to a final solution.

In both the homogeneous and inhomogeneous examples, power
conservation at the different interfaces was observed when a sufficient
number of modes were used in the solution. In observing the
convergence data of Tables 1 and 2, and Figs. 2–6, the author feels
that the number of layers used was an important parameter as to
establishing an accurate Hankel-Bessel or Mathieu RCWA solution. It
was also found for the step profile numerical example tested, that the
number of modes used in the RCWA algorithms needed to exceed a
critical minimum value (in Table 2 about 18 to 20 modes) in order
to obtain meaningful and accurate results. For 14 to 16 modes
for example, highly incorrect and ill-conditioned numerical results
occurred. It was further found that once this critical minimum of
modes was exceeded, that the RCWA converged quickly to an accurate
solution.

In conclusion the author feels that the Hankel-Bessel and
Mathieu RCWA algorithms as presented have correctly solved the
numerical examples which have been presented. The author bases
this conclusion on the facts that power conservation, validation by
independent methods, and the demonstration of proper EM field
boundary matching has occurred. The author believes that the Hankel-
Bessel and Mathieu RCWA algorithms can provide solutions to more
numerically challenging, inhomogeneous examples than have been
presented herein.
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