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Abstract—Discrete differential forms should be used to deal with the
discretization of boundary value problems that can be stated in the
calculus of differential forms. This approach preserves the topological
features of the equations. Yet, the discrete counterparts of the metric-
dependent constitutive laws remain elusive.

I introduce a few purely algebraic constraints that matrices
associated with discrete material laws have to satisfy. It turns out
that most finite element and finite volume schemes comply with these
requirements. Thus convergence analysis can be conducted in a unified
setting. This discloses basic sufficient conditions that discrete material
laws have to meet in order to ensure convergence in the relevant energy
norms.
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1. INTRODUCTION

The focus of this paper is on linear stationary boundary value problems
that can be expressed in the calculus of differential forms (For
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introduction/survey see [19, 33, 9, 10]). Let Ω ⊂ Rn, n ∈ N, be some
domain, whose (piecewise smooth) boundary ∂Ω is partitioned into
ΓD, ΓN , and ΓM . The generic boundary value problem stated in the
language of differential forms is given by

d u = (−1)lσ , d j = −ψ + φ
tDu = 0 on ΓD , tN j = 0 on ΓN

j = �α σ , ψ = �γ u in Ω

tM j = (−1)l−1 �Γβ tMu on ΓM .

Here, d is the exterior derivative of exterior calculus, and u, σ, j, ψ,
and φ are differential forms of different orders. More precisely, if u is
an l − 1-form, l ∈ N, then σ is an l-form, j an m-form, m := n − l,
whereas both ψ and φ are of order m+ 1. In (1), φ can be regarded as
source term, while we have to solve for the other forms u, σ, j, and ψ.
Of course, knowledge of u is sufficient.

The linear operators tD, tN , and tM stand for the trace of
differential forms onto ΓD, ΓN , and ΓM , respectively [33, Sect. 1.10].
They preserve the order of the form and commute with exterior
differentiation.

We pay special attention to the Hodge-operators �γ and �β. They
supply linear mappings of (continuous) l-forms into n − l-forms. In
contrast to most other concepts in the theory of differential forms,
Hodge-operators are not meaningful on their own, but they have to
be spawned by Riemannian metrices. For the details I refer to [33,
Sect. 1.4] or [7, Sect. 4.5]. Therefore, in (1) α, γ and β designate
uniformly positive metrices on Ω and ΓM , respectively.

Translated into vector calculus (1) covers a wide array of boundary
value problems. For instance, in three dimensions we recover standard
second order elliptic boundary value problems in the case l = 1.
Boundary value problems involving the double -curl-operator that
arise in quasistatic electromagnetism are included as the case l = 2.

The formulation (1) is often dismissed as nice but moot, because
people doubt whether the perspective of differential forms brings any
tangible gains. The main message I want to send in this paper is that
there is a substantial benefit both for the design, understanding, and
error analysis of discretization procedures. I am by no means the first to
make this point. I would like to mention Matiussi [35], Tonti [49], Dezin
[24], Shashkov [30, 32], Chew [20, 48], and, most prominently, Bossavit
[5, 8, 9, 7, 4, 3, 47]. Whereas the foundation is borrowed from these
works, I am setting out to build upon it a general unifying framework
for the quantitative analysis of a wide class of finite element and
finite volume schemes. In a sense, the present paper supplements the
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previous conceptual works by what is cherished as “rigorous analysis”
and “abstract treatment”. The reader can view it as an extension of
A. Bossavit’s paper [13], in which the concepts are exposed for the
concrete case of Maxwell’s equations. The benefit of abstraction is that
fundamental relationships between different discretization schemes will
be disclosed, widening the scope of techniques originally developed for
only one type of method.

One insight can already be gleaned from (1). It is obvious that
the top line in (1) and the boundary conditions on ΓD and ΓN do
not involve any metric. They represent the topological relationships
underlying the boundary value problems. I will refer to them as
equilibrium equations (topological field equations in [48]). On top of
that the two equilibrium equations are not directly coupled. One
may view them as equations for different kinds of differential forms:
“ordinary” forms and twisted forms [18, 7, 48, 13]. The link between
the equilibrium equations is established by the constitutive relations
(material laws, metric field equations [48]) that essentially depend on
metrics.

Admittedly, there is a price tag on generality. The results I am
getting may be weaker than those obtained through more specialized
techniques. In addition, quite a few cumbersome details may still be
left to work out for specific schemes. However, the sheer scope of the
method compensates for these drawbacks. It can also serve as a reliable
guide to the construction of appropriate schemes.

The paper is organized as follows: The next section reviews
discrete differential forms, i.e., finite elements for differential forms.
The third section introduces the key concept of discrete Hodge-
operators and gives a purely algebraic characterization. Similar, though
more restricted, approaches to the construction of discrete Hodge
operators are pursued in [47] and [48, Sect. VII]. The fourth section
studies examples of discrete Hodge operators. In particular, the focus is
on finite volume methods. Using only a few basic algebraic properties
of discrete Hodge operators, abstract bounds for the energies of the
discretization errors are established in the fifth section. This is further
elaborated in the case of concrete schemes in the sixth section.

2. DISCRETE DIFFERENTIAL FORMS

When solving (1) numerically, we hope to get a good approximation
of all or some of the unknown differential forms that can be described
by a finite number of real numbers. It is reasonable to insist that this
approximation is a valid differential form itself. In short, as result of
the computation we expect to get a discrete differential form.
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Definition 2.1 A sequence of spaces W l, 0 ≤ l ≤ n, provides
discrete differential forms on Ω, if

• the integral of any ω ∈ W l over any piecewise smooth l-
dimensional oriented manifold is well defined.

• dW l ⊂ W l+1 for 0 ≤ l < n.
• all the spaces W l have finite dimension.
• there is a linear mapping I lh from l-forms onto W l satisfying the

commuting diagram property dI lhω = I l+1
h (dω) for all l-forms ω,

0 ≤ l < n (see e.g. [47, Sect. IV]).

In the sequel I take for granted that the corresponding discrete
differential forms comply with the boundary traces tN j = 0 and
tDu = 0 stated in (1).

In practice, the W l are constructed as finite element spaces. In
particular, the discrete differential forms are usually built upon some
mesh (tessellation, cell complex) of Ω (cf. [48, Sect. IV])

Definition 2.2 For any 0 ≤ k ≤ n denote by Fk a collection
of piecewise smooth oriented contractible k-dimensional submanifolds
(k-facets) of Ω̄ such that

• for distinct facets their interiors are disjoint regardless of
dimension.

• the intersection of the closures of any two facets of any dimensions
coincides with the closure of one and only one other facet.

• the boundary of each k-facet, 1 ≤ k ≤ n, is the union of a finite
number of k + 1-facets.

• the union of the closures of all n-facets is equal to Ω̄.

Then {Fk}nk=0 forms a mesh Th of Ω, and Fn is the set of its cells.
The boundary parts ΓN , ΓD, and ΓM are to be composed of

entire faces of elements. Thus, by plain restriction of a mesh of Ω
we get meshes of ΓN , ΓD, and ΓM . By dropping all facets contained
in the closure of ΓD (ΓN ) we end up with the so-called ΓD(ΓN )-
active mesh. Examples of valid meshes are the customary finite element
triangulations in the sense of [21].

For discrete differential forms on triangulations the first condition
stated in definition (2.1) is equivalent to demanding that the traces of
the discrete l-form on any k-dimensional facet, l ≤ k ≤ n have to be
well defined [27].

In the sequel we only consider (generalized) Whitney-forms, i.e.
discrete differential l-forms, whose degrees of freedom are supplied by
integrals over l-facets of the mesh. Mainly for the sake of simplicity,
because the basic considerations carry over to higher order elements, as
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well. However, we admit rather general meshes according to definition
(2.2). The only restriction should be that any cell can be split into a
few (curved) simplices. Hence, for complicated shapes of elements we
can come up with composite Whitney-elements.

For each space W l we pick the basis dual to the set of degrees
of freedom and assume a numbering of the basis functions. Thus, a
differential form uh ∈ W l is uniquely characterized by its coefficient
vector �u ∈ Cl, where we have abbreviated Cl := R

Nl , Nl := dimW l

(number of active l-facets). I tag coefficient vectors by � and discrete
differential forms by a subscript h. The latter can also be seen as a
mapping assigning a differential form in W l to some coefficient vector
∈ Cl. This induces a matrix representation for all linear operators on
the spaces W l, l = 0, . . . , n. For instance, we write Dl ∈ RNl+1×Nl
for the matrix representing the exterior derivative d : W l �→ W l+1.
These matrices turn out to be the incidence matrices of the active
mesh [5, 39, 41, 11], e.g., Dl is the incidence matrix of oriented active
l-facets and active l+1-facets. Both from this background and d◦d = 0
we can conclude DlDl−1 = 0, l = 1, . . . , n [5, Ch. 5].

It goes without saying that the trace operators tD, tN , and tM
possess matrix representations, too. Those are particularly simple,
because taking the trace of a discrete differential form on a part of
the boundary just amounts to isolating the d.o.f. located there [27].
We chose the symbol T for these matrices.

Now, we are already able to come up with the discrete equilibrium
equations

Dl−1�u = (−1)l�σ , Dm�j = −�ψ + �φ . (1)

Here, �φ is the coefficient vector of some suitable interpolant ∈ Wm+1

of the source term φ. The reader should be aware that whatever
features of the equations arise from the equilibrium equations alone
are preserved in the discrete setting. For instance, for any oriented
control volume Ω′ ⊂ Ω∫

Ω′

(σh ∧ jh + uh ∧ ψh) =
∫
Ω′

uh ∧ φh + (−1)l
∫
∂Ω′

σh ∧ jh .

In short, thanks to discrete differential forms we automatically achieve
discrete models that inherit most of the global features of the original
problem (cf. [34, 20] for a discussion of Maxwell’s equations and [32]
for discrete decomposition theorems).

Remark. The discrete equilibrium equations (1) could also have
been derived as network or lattice equations [11, 20, 52, 15] by applying
Stokes’ theorem directly to facets of the mesh in the spirit of a finite
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volume approach. Yet, my point is that discrete differential forms
are indispensable when trying to assess the approximation properties
of discretization schemes. This will be elucidated in the remaining
sections.

3. DISCRETE HODGE OPERATORS

The Hodge operators defy a straightforward discretization in the
spaces of discrete differential forms: Consider the example of a
discrete 1-form ω in three dimensions (“edge elements”): Its vector
representative u sports only tangential continuity [38] and so its
normal components on interelement faces are not necessarily well
defined. The Hodge operator belonging to the Euclidean metric leaves
vector representatives unchanged, i.e. the (twisted) 2-form �ω is also
described by u. If F is a face, at which the normal component of u has a
jump, it is not possible to evaluate the integral

∫
F �ω =

∫
F 〈u,nF 〉 dS:

This reveals that �ω fails to supply a proper discrete 2-form on the
same mesh.

Thus, when embracing discrete differential forms, one inevitably
stumbles onto the issue of a discrete Hodge operator [47, 34, 23, 12].
Its construction is outside the scope of the canonical discrete exterior
calculus, because the standard definition of the Hodge operator is
a “strong concept”, which relies on point values being well defined.
However, conventional discrete differential forms, with the exception
of discrete 0-forms, are inherently discontinuous at interelement faces.
This situation is typical of finite element methods: Recall piecewise
linear finite element whose derivative is also meaningless in a pointwise
sense. We are forced to resort to “weak concepts” that involve
variational principles. This is not a nuisance, but leaves us with ample
choices (cf. the introduction of [11]).

One aspect of this freedom arises from the observation that the
two equilibrium equations are only linked through the constitutive
relations. In fact, they involve differential forms of different nature
(ordinary and twisted). So there is no reason, why both equilibrium
equations should be discretized via the same family of discrete
differential forms:

In general, the two equilibrium equations can be discretized on
different unrelated meshes of Ω, called primary mesh Th and secondary
mesh T̃h.

I stress that absolutely no relationship between these two meshes
is stipulated. The terms “primary” and “secondary” must not even
insinuate some precedence. I adopt the convention that all symbols
related to the secondary mesh will be labeled by a tilde. This applies
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to matrices acting on coefficient vectors of discrete differential forms
on the secondary mesh, too.

Basically, discrete versions of the Hodge operators occurring in
(1) have to establish linear mappings between spaces of discrete l-
forms and n − l-forms based on possibly different meshes. In other
words, a discrete Hodge-operators can be described by a Nm × Nl-
matrix. Moreover, for continuous l-forms �α ◦ �1/α = (−1)ln−l · Id [33,
Sect. 1.8], i.e. the Hodge operators are invertible. This must hold for
discrete Hodge-operators, too.

To get down to specifics, remember that Hodge operators define
inner products on space of continuous differential forms via (ω, η)α :=∫
Ω ω ∧ �α η. Here ∧ denotes the exterior product of differential forms,

which generates an l + k-form when given an l-form and a k-form as
arguments. The exterior product is a bilinear mapping. Admittedly, the
inner product (ω, η)α is of little value, because it would yield a circular
“definition” of a discrete Hodge operator. Yet, the relationship reveals
the general pattern:

�µw = ω

�
(−1)ln−l �1/µ ω = w

↔


(w, η)µ =
∫
Ω

ω ∧ η
� ∀ l-forms η

(−1)ln−l (ω, v)1/µ =
∫
Ω

w ∧ v
∀ m-forms v .

(2)

This suggests the following generic discrete form for a material law
linking an ordinary l-form w and a twisted m-form ω:

�µw = ω
�

(−1)ln−l �1/µ ω = w

 discretize−→


Ml
µ �w = K̃lm�ω

or
(−1)ln−l M̃m

1/µ�ω = Kml �w ,

(3)

with yet obscure matrices Ml
µ, M̃m

1/µ, and Kml , K̃lm. In an obvious
fashion, the various indices are related to the order of differential forms
on whose coefficient vectors the matrices act. Note that the discrete
versions of the equivalent continuous material laws need not remain
equivalent as explained in [48, Sect. VII]: In general we must reckon
with

Ml
µ · (−1)ln−l M̃m

1/µ �= ENm ,
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where ENm is the Nm × Nm identity matrix. An equality would be
desirable, but seems to be rather elusive, as we will see in a moment.
In sum, we can distinguish between two versions of the same material
law. I dub the upper discrete material law “primary”, the lower
“secondary”.

The matrices from (3) have to satisfy only a few algebraic
requirements:

The first states that both Ml
µ ∈ RNl,Nl and M̃m

1/µ ∈ RÑm,Ñm are to be
square, symmetric, and positive definite matrices, where Nl := dimW l,
Ñm := dim W̃m. This is natural if they are to give rise to inner products
as explained above.

The second wants the “pairing matrices” Kml ∈ RÑm,Nl and K̃lm ∈
R
Nl,Ñm to fulfill

Kml = (−1)lm(K̃lm)T ⇐⇒ K̃lm = (−1)lm(Kml )T (4)

for all 0 ≤ l,m ≤ n such that l +m = n. Keep in mind that Kml and
K̃lm somehow approximate

∫
Ω ω ∧ η and

∫
Ωw ∧ v. Then the equation

ω ∧ η = (−1)lkη ∧ ω , ω l-form, η k-form (5)

immediately leads to (4).

The third requirement is the discrete counterpart of the integration
by parts formula [33, Sect. 3.2]∫

Ω

dω ∧ η + (−1)l
∫
Ω

ω ∧ dη =
∫
∂Ω

ω ∧ η (6)

for l-forms ω, k-forms η, 0 ≤ l, k < n − 1, l + k = n − 1. Here, the
boundary ∂Ω is endowed with the induced orientation. In the discrete
setting this means

(Dl−1�u)T K̃lm�v = (−1)l �uT K̃l−1
m+1D̃

m�v + (Tl−1
Γ �u)T K̃l−1

m,ΓT̃mΓ �v . (7)

for all �u ∈ Cl−1, �v ∈ C̃m, and translates into

(Dl−1)T K̃lm = (−1)l K̃l−1
m+1D̃

m + (Tl−1
Γ )T K̃l−1

m,ΓT̃mΓ (8)

for all 0 < m, l < n with l+m = n. Here, we denote by K̃lm,Γ a pairing
matrix acting on degrees of freedom on the boundary part ΓM . Using
(4), (8) can be converted into

(D̃m)TKm+1
l−1 = (−1)m+1Kml Dl−1 + (T̃mΓ )TKml−1,ΓTl−1

Γ . (9)
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Let us assume that we have found a discrete Hodge operator according
to the above specifications. Nevertheless, we cannot be sure that the
resulting linear system of equation has a solution at all. Usually the
number of unknowns and equations will not agree. To end up with a
square linear system of equations we eliminate some of the unknowns
by means of (8), (9) and the material laws. I first consider (1) and
discuss some variants of choosing the discrete Hodge operators. I start
with listing the formal discrete constitutive laws that might be used in
the discretization of (1):

Primary:


Ml
α�σ = K̃lm

�j (a)
Ml−1
γ �u = K̃l−1

m+1
�ψ (b)

Ml−1
β,ΓTl−1

Γ �u = (−1)l−1 K̃l−1
m,ΓT̃mΓ

�j (c)

(10)

Secondary:


M̃m

1/α
�j = (−1)mn−m Kml �σ (a)

M̃m+1
1/γ

�ψ = (−1)(l−1)(n−1) Km+1
l−1 �u (b)

M̃m
1/β,ΓT̃mΓ

�j = (−1)(l−1)(n−1) Kml−1,ΓTl−1
Γ �u (c)

(11)

1. Primary elimination: Using only primary discrete Hodge operators
(10a), (10c) and (1), (8) we get

(Dl−1)TMl
αDl−1�u = (Dl−1)T (−1)lMl

α�σ = (−1)l(Dl−1)T K̃lm
�j =

= K̃l−1
m+1D̃

m�j + (−1)l(Tl−1
Γ )T K̃l−1

m,ΓT̃mΓ
�j =

= K̃l−1
m+1(−�ψ + �φ)− (Tl−1

Γ )TMl−1
β,ΓTl−1

Γ �u =

= −Ml−1
γ �u− (Tl−1

Γ )TMl−1
β,ΓTl−1

Γ �u+ K̃l−1
m+1

�φ .

We arrive at a linear system of equations

(Dl−1)TMl
αDl−1�u+ Ml−1

γ �u+ (Tl−1
Γ )TMl−1

β,ΓTl−1
Γ �u = K̃l−1

m+1
�φ (12)

for the unknown coefficients �u with a symmetric positive definite
coefficient matrix. If γ �= 0, it has a unique solution. Even if γ = 0,
at least Dl−1�u can be uniquely determined. Two more important
facts have to mentioned: To begin with, the secondary spaces do only
affect the right hand side K̃l−1

m+1
�φ of the final system. In other words,

the choice of the secondary mesh is totally irrelevant as regards the
ultimate system matrix. Secondly, in the process of elimination we
irretrievable lost information about the secondary unknowns σh and
ψh, unless the pairing matrices are invertible.
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2. Secondary elimination: We exclusively rely on secondary discrete
Hodge operators (11b), (11c) along with (1), (9):

M̃m
1/α
�j = (−1)n(m+1)Kml Dl−1�u

= (−1)(n−1)(l−1)((D̃m)TKm+1
l−1 �u− (T̃mΓ )TKml−1,ΓTl−1

Γ �u)

= (D̃m)T M̃m+1
1/γ

�ψ − (T̃mΓ )T M̃m
1/β,ΓT̃mΓ

�j

Introducing the auxiliary unknown �ζ := M̃m+1
1/γ

�ψ we get the saddle
point problem(

M̃m
1/α + (T̃mΓ )T M̃m

1/β,ΓT̃mΓ −(D̃m)T

−D̃m −(M̃m+1
1/γ )−1

)(
�j
�ζ

)
=

(
0
−�φ

)
. (13)

As the diagonal blocks are positive and negative definite, respectively,
this linear system has a unique solution (cf. [17]). In the case of
vanishing γ we just define the auxiliary unknown as �ζ := Km+1

l−1 �u and
still get uniqueness for �j. Parallel to the purely primal case we observe
that no trace of the primary discrete spaces is left. As above, in general
we cannot solve for the primary unknowns �u and �σ.
3. Hybrid elimination: Both primary and secondary discrete Hodge
operators are used for the sake of eliminating unknowns. For example,
if we use primary representations (10a), (10c) for the material laws
j = �α σ and tM j = (−1)l−1 �Γβ tMu, but the secondary version (11b)
for ψ = �γ u we get

(Dl−1)TMl
αDl−1�u+ (Tl−1

Γ )TMl−1
β,ΓTl−1

Γ �u+

K̃l−1
m+1(M̃

m+1
1/γ )−1Km+1

l−1 �u = K̃l−1
m+1

�φ .

Again, we have obtained a positive semidefinite system of linear
equations for the unknown vector �u, in which both meshes are still
visible. Yet, even if γ �= 0 the system matrix need not be regular. At
least a unique solution for �σ := (−1)lDl−1�u is guaranteed. On the other
hand, the elimination might have squandered any information about�j.
If we resort to the secondary version of tM j = (−1)l−1 �Γβ tMu instead,
it results in

(K̃lm)T (Ml
α)−1K̃lm

�j =(−1)lmKml (Ml
α)−1K̃lm

�j = (−1)lmKml �σ

=(−1)l(m+1)Kml Dl−1�u

=(−1)(l+1)(m+1)((D̃m)TKm+1
l−1 u− (T̃mΓ )TKml−1,ΓTl−1

Γ )
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=(D̃m)T M̃m+1
1/γ

�ψ − (T̃mΓ )T M̃m
1/β,ΓT̃mΓ

�j

=− (D̃m)T M̃m+1
1/γ (D̃mj− �φ)− (T̃mΓ )T M̃m

1/β,ΓT̃mΓ
�j .

4. EXAMPLES

The most natural way to define the matrices in (3) is to define the inner
products in (2) as weighted L2-inner products for vector representatives
of the forms w.r.t. the Euclidean metric. Where the discrete forms are
continuous this is suggested by the definition of the Hodge-operator.
As discontinuities are confined to sets of measure zero, they simply do
not affect the integral.

Then plug in the bases of the spaces of discrete differential forms
in the variational equations from (2). This may be dubbed the finite
element approach: The matrices M∗∗, M̃

∗
∗ become exact (weighted) mass

matrices. I should point out that primary elimination yields (almost)
the same system of linear equations (12) as the primal finite element
Galerkin method. The only exception might be a modified right hand
side. By secondary elimination we get the linear saddle point problem
(13) of the dual mixed finite element Galerkin method (cf. [17]).
Hitherto unknown problems arise from hybrid eliminations.

In the case of the finite element approach all the requirements
stated for the matrices in the previous section are automatically
satisfied. Since we are free to pick any primary and secondary mesh,
the pairing matrices are not square in general. In particular, there is
no reason, why they should be invertible and information about some
eliminated unknowns cannot be recovered.

A bijective relationship between primary and secondary unknowns
is the rationale behind the second class of methods. It can be achieved
by using a dual secondary mesh [11, 15].

Definition 4.1 Two meshes T̃h and Th covering an n-dimensional
manifold are called (topologically) dual to each other if LTl =
(−1)lLn−l+1, 0 ≤ l < n, where Ll and Ll are the incidence matrices of
oriented l- and l + 1-facets of Th and T̃h, respectively.

In [48, Sect. V] the relationships between an externally oriented
dual mesh and twisted differential forms is thoroughly discussed, but
I will not dwell on this subject. Just note that for dual meshes the
numbers of l-facets of one mesh and those of n − l-facets of the other
mesh must be equal. More precisely, the secondary mesh T̃h is chosen
such that

(i) the restriction of T̃h to the interior of Ω is dual to the entire mesh
Th.
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(ii) the restriction of T̃h and Th to the boundary ∂Ω are dual to each
other.

Thanks to duality, we can assume a one-to-one correspondence between
l-facets of Th and interior n− l-facets of T̃h. Similarly, we may associate
boundary l-facets, 0 ≤ l < n, of Th and n− 1− l-facets of T̃h on ∂Ω. If
Th is ΓD-active, an l-facet of T̃h is active, i.e., it bears a d.o.f., if one
of the following alternatives applies:

(i) Either it is contained in ∂Ω \ Γ̄N and associated with an active
primary n− 1− l-facet of Th,

(ii) or it is located inside Ω and belongs to an active primary n − l-
facet.

ΓD and ΓN may switch roles depending on which unknowns are
discretized on the primary mesh. Figure 1 sketches an example of two
dual grids in two dimensions.

Figure 1. Primal and dual grid in two dimensions. The bullets
represent active vertices of the primary grid, the edges ←→ active
boundary faces of the secondary grid.

Figure 1 reveals that the dual mesh may fail to comply with
the partitioning of the boundary. This can be cured by confining a
degree of freedom to only a part of a boundary facet. If ΓM = ∅,
there is no active n − 1-facet of T̃h on the boundary. The numbering
of interior l-facets of T̃h is induced by the numbering of primary
n − l-facets via duality. Boundary facets of T̃h are numbered last.
Then the intimate relationship between discrete exterior derivatives
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and incidence matrices shows that for 0 < m, l < n, l +m = m

(Dl−1)T (ENl ,O) = (−1)lENl−1
D̃m + (Tl−1

Γ )T T̃mΓ . (14)

Here EN stands for a N × N identity matrix, and O denotes a zero
block of dimension Nl × ÑΓ

m, with ÑΓ
m the number of active boundary

m-facets of T̃h. A glance at (7) and (8) shows that we can choose

K̃lm := (ENl ,O) , K̃l−1
m+1 := ENl−1

, K̃l−1
m,Γ := EÑΓ

m
, (15)

and abide by requirement (8) at the same time. If ΓM = ∅, the zero
block disappears and the pairing matrices reduce to (signed) identity
matrices. In any case, the dual unknowns �j and �ψ can be calculated
from �σ, �u, no matter which discrete Hodge-operator is used.

Examples for dual meshes are supplied by the usual covolumes
(boxes) used in finite volume schemes [26]. Well known are the
circumcentric dual Voronoi meshes of a Delauney tesselation and the
barycentric dual meshes of the box method. This is why I chose to call
the methods of this second class generalized finite volume methods. As
a special subclass they include covolume methods distinguished by the
use of diagonal approximate mass matrices and orthogonal dual meshes
[40, 41].

Let us for simplicity assume ΓM = ∅. Then the discrete material
laws for generalized finite volume methods read

Ml
α�σ =�j or (M̃m

1/α)−1�σ =�j , (16)

Ml−1
γ �u = �ψ or (M̃m+1

1/γ )−1�u = �ψ . (17)

In short, all discrete material laws can be viewed as both a primary
and secondary version. This makes it possible to proceed with both
primary and secondary elimination. We end up with linear systems
of equations for primary or secondary unknowns only and draw an
important conclusion:

Corollary 4.2 Generalized finite volume methods combined with
either primary or secondary elimination lead to linear systems of
equations that also arise from a primal or mixed-dual finite element
discretization employing some approximation of the mass matrices and
source term.

Thus, the study of generalized finite volume method can help
itself to the powerful tools of finite element theory. This generalizes
the results of [26, 1], where the case n = 2, l = 1 and its links with the
primal Galerkin finite element method were thoroughly investigated.
In [2, 42] the connection with a dual mixed Galerkin scheme with



260 Hiptmair

lumped mass matrix was explored. Covolume schemes for Maxwell’s
equations [51, 52, 53, 50] can also be analyzed from this perspective
[14]. Eventually, knowledge about the underlying discrete differential
forms offers a recipe for the natural reconstruction of fields from the
degrees of freedom. Thanks to the canonical transformations of discrete
differential forms [27] this is useful even for distorted elements as in
[46]. Ultimately, awareness of basic requirements for discrete Hodge
operators reveals causes for instability of finite volume schemes and
leads to remedies [43].

Another conclusion is that a finite volume method can be
completely specified by prescribing some procedure to compute the
(approximate) mass matrices and the right hand side. Conversely,
Galerkin finite element schemes can be viewed as finite volume methods
(cf [47]). Thus we learn how to recover approximations to quantities
that have been dumped in the process of primary or secondary
elimination (cf. [6]).

Remark. The discussion illustrates the basic limitation of finite
volume schemes to lowest order. If we had decided to use higher order
discrete differential forms, the matrices of the exterior derivative could
not have been identified as incidence matrices. Then it is very hard to
come up with a suitable secondary mesh rendering the pairing matrices
square and invertible.

Also the method of support operators (mimetic finite differences)
[28, 44] can be seen as a special finite volume approach to
the construction of discrete Hodge operators. Using only discrete
differential forms on a primary grid [30], it focuses on Hodge
codifferentials d∗ := (−1)nl−1 � d � taking l-forms to l − 1-forms.
[33, Sect. 3.2]. The construction of their discrete counterparts Dl

∗ :
Cl �→ Cl−1 is based on the variational characterization

(
�u,Dl−1�v

)
0

=(
Dl
∗�u,�v

)
0

for all �u ∈ Cl, �v ∈ Cl−1. Special approximations of the
inner products are employed to this end [29]. This policy has been
successfully pursued for a wide range of problems, e.g. in [31, 45].

5. ABSTRACT ERROR ANALYSIS

We have learned that often the error analysis can be carried out in a
Galerkin setting involving variational crimes (cf. [16, Ch. 6]). Yet, this
is not possible for all combinations of discrete material laws. Therefore,
the error analysis presented in this section forgoes the Galerkin option.

I start from the premises that it is most natural to use the energy
norm when gauging the discretization error. An ambiguity arises,
because, given discrete solutions uh,σh, jh, ψh we can either examine
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continuous energy norms of the error, e.g.

‖(u− uh,σ − σh)‖2E := ‖σ − σh‖2α + ‖u− uh‖2γ + ‖u− uh‖2β ,
‖(j− jh, ψ − ψh)‖2Ẽ := ‖j− jh‖21/α + ‖ψ − ψh‖21/γ + ‖j− jh‖21/β ,

or discrete energy norms of the following nodal errors

δ�u := �u∗ − �u , �u∗ := I l−1
h u , δ�σ := �σ∗ − �σ , �σ∗ := I lhσ ,

δ�j :=�j∗ −�j , �j∗ := Ĩmh j , δ �ψ := �ψ∗ − �ψ , �ψ∗ := Ĩm+1
h ψ .

What are meaningful discrete energy norms heavily hinges on the
choice of the discrete material laws.

First, we tackle 1 when only primary discrete Hodge operators
from (10) are used. This fixes the relevant discrete energy norm

|(�u, �σ)|2E := |�σ|2α + |�u|2γ + |�u|2β ,

|·|2α :=
〈
Ml
α·, ·

〉
, |·|2γ :=

〈
Ml−1
γ ·, ·

〉
, |·|2β :=

〈
Ml−1
β,ΓTl−1

Γ ·,Tl−1
Γ ·

〉
.

Next, in the spirit of [41, 15], we observe that thanks to the commuting
diagram property of the nodal projection the discrete equilibrium laws
are free of consistency errors:

Dl−1δ�u = (−1)l δ�σ , D̃mδ�j = −δ �ψ + δ�φ . (18)

In what follows I assume that δ�φ = 0, i.e. �φ = Ĩm+1
h φ. If this is not the

case, one additional term enters the error bounds established below. In
contrast to (18), consistency errors lurk in the discrete material laws
(cf. [48, Sect. VII] and [51])

Ml
αδ�σ = K̃lmδ

�j + �Rl , (19)

Ml−1
γ δ�u = K̃l−1

m+1δ
�ψ + �Rl−1 , (20)

Ml−1
β,ΓTl−1

Γ δ�u = (−1)l+1K̃l−1
m,ΓT̃mΓ δ

�j + �RΓ , (21)

with some residuals �Rl ∈ C1, �Rl−1 ∈ C0, and �RΓ ∈ C0
Γ. Based on (18)

and (7), we can estimate the discrete energy of the nodal errors〈
Ml
αδ�σ, δ�σ

〉
+

〈
Ml−1
γ δ�u, δ�u

〉
+

〈
Ml−1
β,ΓTl−1

Γ δ�u,Tl−1
Γ δ�u

〉
=

=
〈
K̃lmδ

�j + �Rl, (−1)l Dl−1δ�u
〉

+
〈
K̃l−1
m+1δ

�ψ + �Rl−1, δ�u
〉

+

+
〈
(−1)l−1K̃l−1

m,ΓT̃mΓ δ
�j + �RΓ, δ�u

〉
=

〈
�Rl, δ�σ

〉
+

〈
�Rl−1, δ�u

〉
+

〈
�RΓ, δ�u

〉
.
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Please note that the second terms on both sides do not occur in the case
γ = 0 and an error estimate for u remains elusive. Hardly surprising,
because there might not be a unique solution for �u, unless special
properties of Dl−1 (injectivity) are known. By the Cauchy-Schwarz
inequality

|(δ�u, δ�σ)|E ≤
∣∣∣(Ml

α)−1 �Rl

∣∣∣
α

+
∣∣∣(Ml−1

γ )−1 �Rl−1

∣∣∣
γ

+
∣∣∣(Ml−1

β,Γ)−1 �RΓ

∣∣∣
β
.

Similar considerations apply, when solely secondary discrete
Hodge operators from (11) are employed. Then the suitable discrete
energy norm is given by∣∣∣(�j, �ψ)

∣∣∣2
Ẽ

:=
∣∣∣�j∣∣∣2

1/α
+

∣∣∣�ψ∣∣∣2
1/γ

+
∣∣∣�j∣∣∣2

1/β
,

|·|21/α :=
〈
M̃m

1/α·, ·
〉
, |·|21/γ :=

〈
M̃m+1

1/γ ·, ·
〉
, |·|21/β :=

〈
M̃m

1/β,Γ·, ·
〉
.

Partly retaining the notations for the consistency errors, we can write

M̃m
1/αδ
�j =(−1)mn−m Kml δ�σ + �Rm (22)

M̃m+1
1/γ δ �ψ =(−1)(l−1)(n−1) Km+1

l−1 δ�u+ �Rm+1 (23)

M̃m
1/β,ΓT̃mΓ δ

�j =(−1)(l−1)(n−1) Kml−1,ΓTl−1
Γ δ�u+ �RΓ , (24)

with �Rm ∈ C̃m, �Rm+1 ∈ C̃m+1, and �RΓ ∈ C̃mΓ . Since (18) remains valid,
the following identity is established as above:〈

M̃l
1/αδ
�j, δ�j

〉
+

〈
M̃l−1

1/γ δ
�ψ, δ �ψ

〉
+

〈
M̃l−1

1/β,ΓT̃mΓ δ
�j, T̃mΓ δ�j

〉
=

=
〈
�Rm, δ�j

〉
+

〈
�Rm+1, δ �ψ

〉
+

〈
�RΓ, δ�j

〉
.

Other combinations of discrete material laws are treated alike. For
the sake of brevity I am not elaborating on this. In sum, estimating
the consistency errors of the material laws is the key to controlling
discrete energy norms of nodal errors. The analysis of finite volume
methods [40, 41, 37] is often content with this goal, but I am not
(cf. the discussion in [15, Sect. III]). Discrete energies might lack any
physical meaning, so that the focus should be on the exact energy
norm. In the case of primary discrete Hodge operators

‖(u− uh,σ − σh)‖E ≤ ‖(u− u∗h,σ − σ∗h)‖E + ‖(δuh, δσh)‖E
tells us that it is essential to have stability

‖(uh,σh)‖E ≤ C |(�u, �σ)|E ∀�u ∈ Cl−1, �σ ∈ Cl , (25)
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in order to get information about the energy of the total discretization
error. Here, the constant C > 0 should be independent of as much
geometric parameters of the mesh as possible. In the case of secondary
discrete constitutive laws, we proceed as above, replacing ‖·‖E by ‖·‖Ẽ
and |·|E by |·|Ẽ .

In addition, the energy of the projection error ‖(u− u∗h,σ − σ∗h)‖E
has to be bounded. This is the objective of asymptotic finite element
interpolation estimates. Those rely on a Sobolev space setting and
are large based on the Bramble-Hilbert lemma and affine equivalence
techniques depending on families of quasiuniform and shape regular
meshes [16, Ch. 4], [21, Ch. 3]. In particular, for results on discrete
2-forms in two and three dimensions the reader should consult [17].
Estimates for discrete 1-forms (n = 3) can be found in [38, 25, 22, 36].
It is important to be aware that all estimates hinge on assumptions on
the smoothness of the continuous solutions.

In the case of finite difference or finite volume methods, one might
object that the spaces of discrete differential forms are “artificial” and
so is the notion of a total discretization error. Yet, an approximation
of the total energy must always be available and the error in the
approximation of the total energy is well defined at any rate. For this
error we get in the case of primary discrete Hodge operators

‖(u,σ)‖2E − |(�u, �σ)|2E =

= ‖(u,σ)‖2E − ‖(u∗h,σ∗h)‖
2
E + ‖(u∗h,σ∗h)‖2E −

− |(�u∗, �σ∗)|2E + |(�u∗, �σ∗)|2E − |(�u, �σ)|2E
≤‖(u− u∗h,σ − σ∗h)‖E ‖(u+ u∗h,σ + σ∗h)‖E +

+ |(�u∗ − �u, �σ∗ − �σ)|E |(�u∗ − �u, �σ∗ − �σ)|E +

+ ‖(u∗h,σ∗h)‖2E − |(�u∗, �σ∗)|
2
E .

Even if the discretization error, the nodal error, and the projection
error tend to zero, the error in the energy need not, owing to the
quantity ‖(u∗h,σ∗h)‖

2
E − |(�u∗, �σ

∗)|2E . It can be regarded as a consistency
error in the approximation of the mass matrices. Hence, the quality of
the approximation of the discrete energy can serve as an acid test for
the efficacy of a discretization scheme.

Remark. Primary Hodge operators do not permit us to get error
estimates for dual quantities. However, the generalized finite volume
methods are an exception. For instance, in the case ΓM = ∅ the bound
for |(δ�u, δ�σ)|E also applies to〈

(M̃l
α)−1δ�j, δ�j

〉
+

〈
(M̃l−1

γ )−1δ �ψ, δ �ψ
〉

+
〈
(M̃l−1

β,Γ)−1T̃mΓ δ
�j, T̃mΓ δ�j

〉
.
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This paves the way for coming to terms with ‖(j− jh, ψ − ψh)‖2Ẽ .

6. ESTIMATION OF CONSISTENCY ERRORS

Let us study the consistency error term �Rl from (19) and find bounds
for the relevant primary norm

∣∣∣(Ml
α)−1 �Rl

∣∣∣
α
. As a consequence of (18),

it is immediate that∣∣∣(Ml
α)−1 �Rl

∣∣∣2
α

=
〈
Ml
α(�σ∗ − �ζ), �σ∗ − �ζ

〉
, (26)

where I set �ζ := (Ml
α)−1K̃lm

�j∗. Note that by the definition of the weak
solution (cf. (2)) (σ,η)α =

∫
Ω j∧ η for all η ∈ Hl(d,Ω). A few formal

manipulations yield

∣∣∣(Ml
α)−1 �Rl

∣∣∣
α

= sup
�η∈Cl

〈
Ml
α(�σ∗ − �ζ), �η

〉
|�η|α

=

= sup
�η∈Cl

1
|�η|α

(〈
Ml
α�σ
∗, �η

〉
−

〈
K̃lm
�j∗, �η

〉)
= sup
�η∈Cl

1
|�η|α

(〈
Ml
α�σ
∗, �η

〉
− (�σ∗,ηh)α + (�σ∗ − σ,ηh)α +

+
∫
Ω

j ∧ ηh −
∫
Ω

j∗h ∧ ηh +
∫
Ω

j∗h ∧ ηh −
〈
K̃lm
�j∗, �η

〉 )

≤ sup
�η∈Cl

〈
Ml
α�σ
∗, �η

〉
− (�σ∗,ηh)α
|�η|α

+ sup
�η∈Cl

∫
Ω

j∗h ∧ ηh −
〈
K̃lm
�j∗, �η

〉
|�η|α

+

+ sup
�η∈Cl

‖ηh‖α
|�η|α

·
(
‖σ − σ∗h‖α + ‖j− j∗h‖1/α

)
The first two terms are typical consistency errors, as they occur in
estimates for inexact finite element schemes [16, Ch. 8]. The factor in
front of the third term reflects the stability of the approximate mass
matrix Ml

α , whereas the third term itself incorporates approximation
errors of the nodal projection. In the case of an exact Galerkin
approach, the consistency terms and the stability factor can be
dropped. Then, in combination with the results of the previous section,
a standard finite element error estimate pops up.
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There is a more direct approach to bounding the norm from
(26), which is particularly useful in the case of diagonal finite volume
methods (cf. [40, 41]). So let us assume that K̃lm is an identity matrix
and Ml

α is diagonal. For an l-facet F let F̃ stand for its associated dual
n − l-facet. Remember that the components of vectors in Cl can be
indexed by the l-facets in Fl. By definition of �Rl∣∣∣(Ml

α)−1 �Rl

∣∣∣2
α

=
∑
F∈Fl

mF
�R2
l,F ,

�Rl,F := m−1
F �σ

∗
F −�j∗F̃ , (27)

with mF the diagonal element of Ml
α belonging to F , and a subscript

F acting as a selector for vector components. Plugging in the canonical
degrees of freedom for Whitney forms, we arrive at

�Rl,F = m−1
F

∫
F

σ −
∫
F̃

j = m−1
F

∫
F

σ −
∫
F̃

�α σ . (28)

In the spirit of finite difference methods, the final term may be tackled
based on a Taylor’s expansion of σ. If possible, it should be around
a suitable point in space, provided by the intersection of F and
F̃ . Sufficient smoothness of σ is tacitly assumed. An alternative to
Taylor’s expansion are Bramble-Hilbert techniques, which impose less
stringent requirements on smoothness. However, shape-regularity of
the meshes is indispensable then [40].

It is worth noting that (28) offers a prescription for a viable choice
of Ml

α. For instance, one could try to fix all mF such that �Rl,F , F ∈ Fl,
vanishes for any constant σ. However, the space of constant l-forms
has dimension

(
n
l

)
. As 0 < l < n, this objective cannot be achieved in

general. Consider the case of a constant metric α and flat facets. If σ
is constant, too, (28) means

�Rl,F = m−1
F volα(F )σ(t1, . . . , tl)− volα(F̃ )σ(n1, . . . ,nl) , (29)

where {t1, . . . , tl} and {n1, . . . ,nl} are α-orthonormal (oriented) bases
of the tangent space of F and of the orthogonal complement of the
tangent space of F̃ . Only if Span {t1, . . . , tl} = Span {n1, . . . ,nl},
i.e. if F and F̃ are α-orthogonal, we can make �Rl,F vanish for all
alternating l-linear forms σ. This highlights the necessity of orthogonal
dual meshes, if diagonal approximate mass matrices are desired. (cf.
[15, Sect. III]).
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