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Abstract–The strong fluctuation theory is applied to calculate the
effective permittivity of wet snow by a two-phase model with non-
symmetrical inclusions. In the two-phase model, wet snow is assumed
to consist of dry snow (host) and liquid water (inclusions). Numeri-
cal results for the effective permittivity of wet snow are illustrated for
random media with isotropic and anisotropic correlation functions. A
three-phase strong fluctuation theory model with symmetrical inclu-
sions is also presented for theoretical comparison. In the three-phase
model, wet snow is assumed to consist of air (host), ice (inclusions) and
water (inclusions) and the shape of the inclusions is spherical. The re-
sults are compared with the Debye-like semi-empirical model and a
comparison with experimental data at 6, 18 and 37 GHz is also pre-
sented. The results indicate that (a) the shape and the size of inclusions
are important, and (b) the two-phase model with non-symmetrical in-
clusions provides the good results to the effective permittivity of wet
snow.
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1. INTRODUCTION

In remote sensing applications, random medium such as snow, vege-
tation canopy, soil is characterized by an effective permittivity which
describes propagation and attenuation in the media. The effective per-
mittivity of snow is a function of frequency, temperature, volumetric
water content, snow density, ice-particle shape and the shape of the
water inclusions. Many investigations assumed wet snow to consist of
either dry snow and water or of air, ice and water [1–4]. The simple
mixing models that relate the effective permittivity of the mixture to
the permittivities of the constituent (inclusions and host) describe the
situation well enough if the size of the inclusions is much smaller than
the wavelength and if their shape is known. The empirical models
are also confined by the frequency. A summary of the semi-empirical
dielectric models of wet snow is found in [5].

The free water content of wet snow is an important factor in the
calculation of the effective permittivity of wet snow. Jin and Kong
used strong fluctuation theory with a three phase mixture (air, ice and
water particles) to calculate the permittivity of wet snow [6]. In their
calculation, the inclusions are considered as spherical scatterers. The
purpose of this study is to take into account the shape of the scatterers
by using non-symmetrical inclusions in the strong fluctuation theory.

In this paper, wet snow is treated as a two-phase mixture, where
the water is considered as inclusions embedded in dry snow that is
the background material. The shape of the water inclusions is taken
into account by using an anisotropic azimuthally symmetric correla-
tion function [7, 8]. The effective permittivity is calculated by using
a two-phase strong fluctuation theory model with non-symmetrical in-
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clusions. The three-phase strong fluctuation theory model with sym-
metrical inclusions [6] is presented for theoretical comparison. The
results are compared with the Debye-like semi-empirical model and a
comparison with the experimental data at 6, 18 and 37 GHz is also
presented.

                     Dry snow           Water inclusion

Figure 1. Wet snow as a two-phase mixture.

2. EFFECTIVE PERMITTIVITY OF WET SNOW

2.1 Two-Phase Model with Non-Symmetrical Inclusions

Wet snow is treated as a two-phase mixture, considering the water
particles as inclusions embedded in dry snow that is the background
material, as shown in Figure 1. The shape of the water inclusions is
considered by using an anisotropic and azimuth symmetric correlation
function [7, 8]:

ACF (r) = exp
(
−x2 + y2

l2ρ
− |z|

lz

)
, (1)

where lρ = lx = ly is the correlation length in horizontal direction
and lz is the correlation length in vertical direction. The correlation
function and correlation lengths are associated with the physical struc-
ture of the medium. The limit lρ/lz → ∞ corresponds to a laminar
structure and lz/lρ →∞ to a cylindrical structure [7, 9].

Now we consider dry snow as background medium that is a continu-
ous random medium with permittivity εb , and the water inclusions as
scatterers with permittivity εs . The fraction volume occupied by the
scatterers is fv and the fraction volume occupied by the background
medium is 1 − fv . The permittivity of scatterers is εs = εwater and
the permittivity of background is εb = εdry snow.
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The effective permittivity tensor εeff of an inhomogeneous medium
is composed of a quasi-static part and a scattering part corresponding
to the first and second terms, respectively, in the following expression
[8, 10–12]:

εeff = εb + ε0

[
I − ξeff

〈
S

〉]−1
· ξeff (2)

where I is the unit dyad, εg is the auxiliary permittivity tensor, ε0 is
the permittivity of free space, S is the dyadic coefficient of the Dirac
delta part in the dyadic Green’s function of an anisotropic medium,
and ξeff is the effective dyadic scatterer. In (2), the angular brackets
denote ensemble averaging. For the anisotropic and azimuth symmetric
correlation function, we have [8]

εg =


 εg 0 0

0 εg 0
0 0 εgz


, S =


S 0 0

0 S 0
0 0 Sz


, and ξeff =


 ξ1 0 0

0 ξ1 0
0 0 ξ3


,
(3)

where [8]

ξ1 = δ11

{
k2

0

∫ ∞
−∞

dk
[
Gg(k)

]
11

Φξ(k) + S

}
= δ11(I1 + S) (4)

ξ3 = δ33

{
k2

0

∫ ∞
−∞

dk
[
Gg(k)

]
33

Φξ(k) + Sz

}
= δ33(I3 + Sz) (5)

where δ11 and δ33 are the variances of the fluctuation, k0 = ω
√
µ0ε0

is the free space wavenumber, Gg(k) is the Fourier transform of dyadic
Green’s function Gg(r, r′) and Φξ(k) is the Fourier transform of the
correlation function ACF (r) [8],

Φξ(k) =
1

8π3

∫ ∞
−∞

drACF (r)eik·r. (6)

The dyadic Green’s function Gg(r, r′) is decomposed into a principal
value part with an exclusion volume [8]:

Gg(r, r′) = PV ·Gg(r, r′)−
S

k2
0

δ(r, r′) (7)

where PV denotes the principal value.
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We now arrive at the condition for the determination of the dyadic
coefficient S . The coefficient S of the delta function in (7) depends
on the shape of the excluded principal volume and is related to the
correlation function and correlation lengths [7]. Jin [7] calculated the
coefficient S for the correlation function (1); the explicit formulations
are written as follows:

S =
ε0 · b1/2

εg(2b1/2 + 1)
, (8)

Sz =
ε0

εgz(2b1/2 + 1)
, (9)

b =
εg · l2z
εgz · l2ρ

. (10)

The formulation of S in [8] is not identical to that in [7]. The dyadic
coefficient S in [8] is not necessary to specify explicitly the shape of
the exclusion volume for PV ·Gg nor to calculate PV ·Gg explicitly.
Based on procedure to derive S in [8] we know that such a method is
valid in the low-frequency limit. In our model, we will use (8) to (10)
to calculate S.

The average dyadic coefficient
〈
S

〉
in the global coordinates is

obtained by averaging integration over the probability density function
of orientation [10]:

〈
S

〉
=

∫ 2π

0
dφfp(φf )T

−1
·


S 0 0

0 S 0
0 0 Sz


 · T . (11)

For random horizontal orientations with no preference in azimuthal
direction, the probability density function of orientation is simply [10]:

p(φf ) = 1/(2π). (12)

Hence [10]:
〈
S

〉
=


S 0 0

0 S 0
0 0 Sz


 (13)
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The quasi-static permittivities εg and εgz are solutions of the two
non-linear coupled equations [7]:

fv ·
εs − εg

ε0 + S(εs − εg)
+ (1− fv) ·

εb − εg
ε0 + S(εb − εg)

= 0 (14)

fv ·
εs − εgz

ε0 + Sz(εs − εgz)
+ (1− fv) ·

εb − εgz
ε0 + Sz(εb − εgz)

= 0 (15)

Substituting (8) to (10) into (14) and (15), the non-linear equations
(14) and (15) can be solved by Newton’s method.

The variances δ11, δ33 and δ13 are deduced from εg and εgz [13]:

δ11 = fv ·
∣∣∣∣ εs − εg
ε0 + S(εs − εg)

∣∣∣∣
2

+ (1− fv) ·
∣∣∣∣ εb − εg
ε0 + S(εb − εg)

∣∣∣∣
2

(16)

δ13 = Re
[
fv ·

εs − εg
ε0 + S(εs − εg)

·
{

εs − εgz
ε0 + Sz(εs − εgz)

}∗

+ (1− fv) ·
εb − εg

ε0 + S(εb − εg)
·
{

εb − εgz
ε0 + Sz(εb − εgz)

}∗]
(17)

δ33 = fv ·
∣∣∣∣ εs − εgz
ε0 + Sz(εs − εgz)

∣∣∣∣
2

+ (1− fv) ·
∣∣∣∣ εb − εgz
ε0 + Sz(εb − εgz)

∣∣∣∣
2

. (18)

The integrals I1 and I3 in equations (4) and (5) for the correlation
function (1) can be written as [8]:

I1 = −
√
εgzε0

2πhε3/2
g

∫ π/2

0
dθ sin θ tan2 θ

·
{√

π − π
tan θ

2h
√
b

exp
(

tan2 θ

4h2b

)
· erfc

(
tan θ

2h
√
b

)}

+
k2

0l
2
ρ

4
εgz
εg

∫ π/2

0
dθ sin θ cos θ exp

(
tan2 θ

4h2b

)
· erfc

(
tan θ

2h
√
b

)

+
k2

0l
2
ρ

8

∫ π/2

0
dθ tan θ exp

(
tan2 θ

4h2

)
· erfc

(
tan θ

2h

)

+
ik3

0l
2
ρlz

12
εgz√
εgε0

+
ik3

0l
2
ρlz

3

√
εg
ε0

(19)

I3 = − ε0√
εgzεg

1
πh

∫ π/2

0
dθ

{√
π−π tan θ

2h
√
b

exp
(

tan2 θ

4h2b

)
· erfc

(
tan θ

2h
√
b

)}
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+
k2

0l
2
ρ

2

∫ π/2

0
dθ sin2 θ tan θ exp

(
tan2 θ

4h2b

)
· erfc

(
tan θ

2h
√
b

)

+
ik3

0

3
l2ρlz

√
εg
ε0

, (20)

where b = εg
εgz

, h = lz
lρ

; and erfc is incomplete error functions with
complex arguments:

erfc(z) = 1− erf(z) = 1− 2√
π

∫ z

0
e−z

2
dt. (21)

Substituting εg, S,
〈
S

〉
, ξeff , δ11, δ33, I1 , and I3 in (2) yields the

uniaxial effective permittivity tensor εeff = diag [εeffp εeffp εeffz]
whose elements are

εeffp = εg +
ε0δ11(I1 + S)

1− Sδ11(I1 + S)
(22)

εeffz = εgz +
ε0δ33(I3 + Sz)

1− Szδ33(I3 + Sz)
. (23)

2.2 Three-Phase Model with Symmetrical Inclusions

Wet snow is treated as a three-phase mixture, considering the ice
and water particles as inclusions embedded in air that is the back-
ground material, as shown in Figure 2. It is assumed that there are
only spherical scatterers of two different radius a1 and a2 (a1 ≤ a2).

Air is considered as background medium that is a continuous ran-
dom medium with permittivity εb , and the water and ice inclusions as
scatterers with permittivities εs1 and εs2 , respectively. The fraction
volumes occupied by the scatterers are fv1 and fv2 and the fraction
volume occupied by the background medium is 1 − fv1 − fv2 = fb .
The permittivities of the scatterers are εs1 = εwater, εs2 = εice , and
εb = ε0 . The relation between the fraction volumes and the effective
permittivities can be written [6]

fv1ξs1 + fv2ξs2 + (1− fv1 − fv2)ξb = 0 (24)

and

ξi = 3
εg
ε0

[
εi − εg
εi + 2εg

]
, i = s1, s2, b (25)
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Ice particles
(inclusions)

Air (host)

Water particles
(inclusions)

Figure 2. Wet snow as a three-phase mixture.

where εg is the quasi-static permittivity and is the solution of equation
(24) by Newton’s method. The effective permittivity of wet snow can
be given as follows [6]

εeff = εg + i

(
2
3

)
k2

0kgε0

∫ ∞
0

Rξ(r)r2dr, (26)

where k0 = ω
√
µ0ε0 is the free space wavenumber, kg = ω

√
µεg and

the correlation function Rξ(r) [6],

Rξ(r) =




fv1ξ
2
s1 + fv2ξ

2
s2 + fbξ

2
b , for 0 ≤ r ≤ a1

fv2ξ
2
s2 + (fv2ξs2)2, for a1 ≤ r ≤ a2

0 a2 < r

2.3 The Debye-Like Semi-Empirical Model

The real and imaginary part of effective permittivity of wet snow
can be given as follows [5] :

Real part :

ε′eff = A +
Bmx

v

1 + (f/f0)2
(27)

Imaginary part :

ε′′eff =
C(f/f0)mx

v

1 + (f/f0)2
(28)
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where f0 is the relaxation frequency, f is the frequency, mv is the
snow wetness by volume (%) and

A = 1 + 1.83ρds + 0.02A1m
1.015
v + B1

B = 0.073A1

C = 0.073A2

x = 1.31
f0 = 9.07 GHz

where ρds is the density of dry snow.
Below 15 GHz, A1 = A2 = 1 and B1 = 0 can be set and above 15

GHz can be given as follows [5],

A1 = 0.78 + 0.03f − 0.58× 10−3f2

A2 = 0.97− 0.39f × 10−2 + 0.39× 10−3f2

B1 = 0.31− 0.05f + 0.87× 10−3f2,

where f is in GHz.

3. SENSITIVITY OF TWO-PHASE MODEL TO SIZE AND
SHAPE OF WATER INCLUSIONS

Figures 3 to 5 show the effect of the size and shape of the water inclu-
sions on effective permittivity of wet snow at 6, 18, and 37 GHz as com-
puted from equations (22)–(23). The results are shown separately for
the real and imaginary part of effective permittivity of wet snow. The
values of the correlation lengths of water inclusions in vertical and hor-
izontal directions vary in the range, where the two-phase strong fluc-
tuation theory model with non-symmetrical inclusions show the same
behavior with the experimental data [5], shown in next chapters of this
paper. The effect of the size and shape of water inclusions on the effec-
tive permittivity of wet snow is seen clearly at the three frequencies.
When the correlation length in horizontal direction lρ is set to be 0.1
mm and the correlation length in vertical direction lz is changed from
0.2 mm to 1 mm, the effective permittivity of wet snow increases at all
6, 18 and 37 GHz with the increasing of lz . The increase is significant
for high snow wetness values. However, the magnitude of increase,
from lρ = 0.1 mm and lz = 0.2 mm to lρ = 0.1 mm and lz = 1 mm,
decreases when the frequency increases from 6 GHz to 37 GHz. The
effective permittivity of wet snow decreases as lρ increases from 0.1
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Figure 3. Effective permittivity of wet snow at 6 GHz with various
correlation lengths (in mm). (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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Figure 4. Effective permittivity of wet snow at 18 GHz with various
correlation lengths (in mm). (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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Figure 5. Effective permittivity of wet snow at 37 GHz with various
correlation lengths (in mm). (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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mm to 0.3 mm. The decrease is more significant when the frequency
changes from 37 GHz to 6 GHz.

4. COMPARISON OF VARIOUS MODELING
APPROACHES WITH EXPERIMENTAL DATA

The results from two-phase strong fluctuation theory model with non-
symmetrical inclusions are compared with those from the three-phase
strong fluctuation theory with symmetrical inclusions, Debye-Like
semi-empirical model and the experimental data collected for snow
[5].

In [5], a comprehensive database for the effective permittivity of
snow between 3 and 37 GHz was established in 1982 and 1983. The
snow samples had densities ranging from 0.09 to 0.42 g cm−3 and liquid
water contents ranging between 0 and 12.3 percent by volume. The
snow particle size varied between 0.5 and 1.5 mm. The results in this
study are shown for a dry snow density ρds g cm−3 , which was the
average value observed for the reference experimental data set [5].

In the two-phase strong fluctuation theory model with non-symme-
trical inclusions, we used the values of the correlation lengths of water
inclusions in vertical and horizontal direction are lρ = 0.11 mm, lz =
0.43 mm. These values are chosen for comparison with the experimen-
tal data at 6, 18 and 37 GHz. In three three-phase strong fluctuation
theory model, the radius of spherical scatterers are a1 = 0.4 mm and
a2 = 0.7 mm for water and ice particles, respectively [6]. The com-
parisons between the two-phase strong fluctuation theory model with
non-symmetrical inclusions and three-phase strong fluctuation theory
model with symmetrical inclusions, Debye-Like semi-empirical model
and the experimental data given in [5] at 6,18 and 37 GHz are depicted
in Figures 6 to 8.

The results show that the two-phase strong fluctuation theory model
with non-symmetrical inclusions provides a reasonably good agreement
with the experimental data and the other models. When the frequency
increases from 6 to 37 GHz the two-phase strong fluctuation theory
model with non-symmetrical inclusions give better fit with experimen-
tal data for the real part of permittivity. However, concerning the
imaginary part the prediction from the two-phase model underesti-
mates the imaginary part of permittivity at 6 GHz and overestimates
it at 37 GHz. The Debye-like model agrees the best with experimental
data.
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(b)

Figure 6. Comparison of two-phase strong fluctuation theory model
with experimental data for the effective permittivity of wet snow [5]
and other models at 6 GHz. (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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Figure 7. Comparison of two-phase strong fluctuation theory model
with experimental data for the effective permittivity of wet snow [5]
and other models at 18 GHz. (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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Figure 8. Comparison of two-phase strong fluctuation theory model
with experimental data for the effective permittivity of wet snow [5]
and other models at 37 GHz. (a) Real part of the effective permittivity.
(b) Imaginary part of the effective permittivity.
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5. CONLUSIONS

In this paper, we calculated the effective permittivity of wet snow by
using the two-phase strong fluctuation theory with non-symmetrical
inclusions. We assumed that the wet snow is as two-phase mixture,
where the water particles are embedded in dry snow. The shape of
the water inclusions is taken into account by using the anisotropic
azimuthally symmetric correlation function[7, 8]. The accurate re-
lationship between the correlation lengths and the discrete scatterer
parameters (water inclusions) needs to be further studied.

We compared our model with the experimental data of the effective
permittivity of wet snow [5], the three-phase strong fluctuation theory
model [6] and Debye-Like semi-empirical model. The comparison of
results showed that our model is in a relatively good agreement with
the experimental data and the other models. The sensitivity of model
predicted the imaginary part of permittivity to frequency seems to be
too high.
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