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Abstract–A technique that allows to locate defective elements in pla-
nar arrays by using some samples of the degraded far-field power pat-
tern is described. This approach uses genetic algorithms to minimize
the square of the difference between the far-field power pattern ob-
tained for a given configuration of failed elements and the measured
one. The method also allows to detect defective elements that don’t
fail completely

1. Introduction
2. The Method
3. Application of the Method

3.1 Array with Complete Failures
3.1.1 Samples Spread Along the Main Beam Directions
3.1.2 Samples in the Pattern Maxima

3.2 Array with Partial Failures
4. Conclusions
References
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1. INTRODUCTION

In present years, active antennas are working in several systems as
for example in SAR applications for earth observation, boarded on
spatial platforms. The antenna, in such cases, has several hundreds
of radiating elements or subarrays, and the possibility of failure of
some of them increases due to the high number of elements. These
element failures cause sharp variations in the field intensity across the
array aperture, thus increasing both the sidelobe and ripple level of
the power pattern. In aircraft antennas, this problem can be solved by
replacing the defective elements each time the plane lands. But this is
a critical problem in space platforms.

Active antennas have the advantage that the radiation pattern can
be restored by changing their feeding distribution from base station
[1]. In many cases, the excitations of the non-defective elements can
be readjusted to produce a pattern with a minimal loss of quality
with respect to the original one. In the literature, we found several
approaches that perform this compensation by numerically finding a
new set of excitations of the unfailed elements that optimizes some
objective function [2–4]. Obviously, these techniques require to know
the number and the location of the failed elements in the array.

To know which element or elements are damaged, active antennas
include different calibration systems. These systems make an easy
control of system components, but this control fails if the calibration
is damaged too. Furthermore, it is very difficult to calibrate the be-
haviour of a radiating element without radiation disturbance, and then,
failures due to a debris collision in radiators may not have an easy de-
tection. On the other hand, in small platforms, calibration systems
can be rejected because the inclusion of such a system in these cases
means a critical increase in volume, weight and cost.

A smart solution to this problem consists on the location of the
failing elements from external data: the initial radiation pattern and
the measurement from base station of a small number of spatial di-
rections of the damaged radiation pattern (it is assumed that it is not
possible to know the whole damaged pattern). We can then obtain
the radiators that must be failing to produce such damaged pattern
by means of optimization algorithms. In this paper, we present a tech-
nique based on this procedure that allows to find the number and the
location of the defective elements in planar arrays by means of genetic
algorithms [5].
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2. THE METHOD

Let us consider a planar array of N identical and equally oriented
elements. Assuming that the elements are located over the xy-plane,
the far field pattern, expressed in dB’s, can be calculated using the
following expression:

P (θ, φ) = 10 · log10

(
fe(θ, φ) ·

N∑
n=1

Inejk sin θ(xn cos φ+yn sin φ)

)2

(1)

where In is the relative excitation of the n-element located at the
position given by (xn, yn), fe(θ, φ) is the element pattern, and (θ, φ)
gives the angular position of the field point.

As we have stated, the procedure of locating defective elements in a
planar array begins with the measurement of several samples of the de-
graded pattern (emitted by the antenna presenting one or more failing
elements). Hereafter, we will denote as Pm(θi, φi) the i-th sample of
this pattern expressed in dB’s and measured at the angular direction
specified by θi and φi.

Using a cost function, the method compares the measured radiation
pattern with that corresponding to the array with a given configuration
of failed/unfailed elements. The configuration used in this comparison
depends on the chromosome of the genetic algorithm. This chromo-
some contains a binary encoding of the array elements that describes
the status of each array element. The encoding depends on the way of
failing the defective elements:

• If we assume that defective elements fail completely, we just need N
genes of 1-bit each in every chromosome, because there are two pos-
sibilities for the status of each array element (failed/unfailed). The
chromosome encoding is as follows: a bit ‘1’ denotes an unaltered
element, whereas a bit ‘0’ indicates that this element is failing. In
this case, the relative excitation for the defective elements is zero.

• If some defective elements fail but irradiate some power (i.e., its
effective excitation is a fraction of the original, but not zero), we
need N genes of m-bits each, being 2m the number of possible
states of the elements that we want to encode. In this work we
have assumed that partially defective elements fail in a 50%. This
is equivalent to assume that their relative excitation is a half of the
original one. Thus, there are 3 possibilities for each array element
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status: completely failed/partially failed/unfailed. In this case, we
need N genes of 2-bits each, assigning a ‘00’ to a gene if the cor-
responding element is completely failed, ‘01’ or ‘10’ if the element
fails in a 50%, or ‘11’ if the element is unfailed. The method makes
possible to generalize the study by introducing more different states
for the partial failures, i.e., elements whose excitation is a 5% of the
original one, 10%, 15%, and so on. However the changes in the pat-
tern samples will be undistinguishable for these different states (or
at least smaller than measurement errors) and the predicted results
will not be good.

After encoding the configuration of defective elements in the chro-
mosomes of the genetic algorithm, we define the following cost function:

ξ(chr) = c ·
M∑
i=1

[Pm(θi, φi) − Pchr(θi, φi)]
2 (2)

where chr is a given chromosome, M is the number of samples used
in the comparison, Pchr(θi, φi) is the value of the pattern associated
to that chromosome in the same direction, obtained by (1), and c is
a normalization constant.

The minimization of this cost function by means of genetic algo-
rithms allows us to calculate that chromosome generating the radia-
tion pattern that is closer to the measured one (at least in the angular
positions of the samples). This is equivalent to obtain the number and
the location of the defective elements. In the case of partial failures,
this chromosome also allows to know the grade of failure of the array
elements.

Since we assume that an accurate measurement of samples of the
degraded pattern is difficult to perform, it is important to assure that
the algorithm achieves the right solution using a minimum number of
samples. Therefore, we will study the influence of the number and the
position of the samples in the algorithm convergence.

3. APPLICATION OF THE METHOD

As an example, we have considered a shaped beam pattern using a 8×8
element planar array in a rectangular grid with 0.7λ interelement spac-
ing. The corresponding aperture distribution, obtained by application
of the simulated annealing technique [6], yields a pattern with a side-
lobe level of −15 dB and a ripple level in shaped region of ±1.0 dB.
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Figure 1. Simulated initial radiation pattern, corresponding to the
array without defective elements.

This pattern is plotted in Fig. 1, where u = sin θ · cos φ and v =
sin θ · sinφ. In the pattern calculation, we have assumed that the array
elements are circular patches whose element pattern can be approxi-
mated by fe(θ, φ) = 10(−θ/82.16), which falls to −22 dB at θ = 90◦.
Besides, some elements with nearly-null excitations were removed from
the array because of their low influence in the radiation pattern so a
total of 48 elements were excited.

To get optimal results, the genetic algorithm has been run several
times for each search changing the number of chromosomes of the pop-
ulation as well as the seed of the random generator of the initial popu-
lation. In each run, the number of chromosomes in the population was
constant and a ranked replacement took place in each iteration if there
was an improvement from parents to offspring. One point crossover
was always applied and mutation happened every iteration, affecting
one gene on every chromosome. The process ends when the best so-
lution provided by the genetic algorithm does not change after three
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runs.
To simplify the study, we have not made use of a real failing antenna,

but we have simulated it. In the simulation process, some elements
excitations of the initial array have been randomly cancelled (or divided
by two to study partial failures). Afterwards, some pattern samples
have been chosen in order to prove if the algorithm is able to find the
right configuration. Two cases have been studied depending whether
the array may have partially failed elements or not.

3.1 Array with Complete Failures

In the first study we consider that the array defective elements fail
completely, which is equivalent to assume that their relative excitations
are zero. Thus, the simulation begins cancelling the excitations of some
array elements randomly chosen. In this case, each chromosome of the
genetic algorithm has 48 bits.

In an ideal case, the genetic algorithm must find the failing elements
configuration associated with a radiation pattern showing exactly the
same samples than those calculated in the simulation process, which
implies a cost function (2) equal to 0.

Unfortunately, in a real application a certain experimental error
in pattern measurement is always present. The introduction of these
errors affects to the algorithm convergence in several ways:

• In the ideal case the algorithm stops once the cost function is 0. But
if we take into account measurement errors, the cost function will
never reach the minimum value ‘0’. The cost function will have a
minimum possible value, associated with the samples measurement
error. Then, the algorithm does not stop by itself. The only thing
to do is to run an adequate number of generations keeping the lower
cost solution.

• If the measurements show an important error and/or the number of
samples taken is very low, the algorithm may find a solution with a
cost function lower than the right solution. In this case the problem
has not solution, and it is necessary to use more samples and/or
perform a more accurate measurement of them to find the right
solution.

• Algorithm convergence is now strongly dependent on the pattern
angular directions where the samples have been taken, because ra-
diation pattern can be measured more accurately in the main beam
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than in the secondary lobes directions, and because there are some
areas more affected than others to the failure of some elements.

In the simulation, we have introduced certain errors to these samples
in order to simulate the measurement errors. To study the influence
of the samples position in algorithm convergence, two cases have been
analyzed: in the first of them, the samples are spread over the beam
directions, whereas in the second the samples are taken in the maxima
of the radiation pattern. In both cases, we only take samples in the
principal planes of the pattern (φ = 0◦, φ = 90◦) because they provide
the algorithm with enough information to obtain good results and, at
the same time, we minimize the number of samples required to be
measured.

3.1.1 Samples Spread Along the Main Beam Directions

In this case, the samples are equally spaced along main beam area in
the principal planes (θ ∈ [−15◦, 15◦], φ = 0◦ and φ = 90◦ cuts). The
distance between the samples depends on the number of samples (M)
that we are introducing in the algorithm. Fig. 2 shows the radiation
pattern cuts corresponding to the array without defective elements as
well as the position of the samples for M = 8 (4 in each main plane).

Although we have tested the algorithm using a different number of
failed elements, we only present results considering 2 defective elements
in the array. To study the algorithm convergence, we start with 10
configurations of 2 failed elements randomly chosen, and we change
M. In the evaluation of these samples, we have assumed a maximum
experimental error of ∆ = ±0.2 dB. This is equivalent to add/subtract
to the exact value of each simulated sample, obtained by (1), a random
value calculated between 0 and ∆. Since the results are dependent on
these values, we run the algorithm 10 times for every configuration, just
as if for each run we were repeating the measurement of these samples.
The results are listed in Table 1, in which t(s) is the average time
used in seconds to find the right solution (measured on a Pentium-II
processor running at 350 Mhz); and Found indicates how many times
of the total runs the algorithm was able to find the right solution.

Note that using 8 samples with a maximum error of ±0.20 dB the
algorithm provided a wrong solution in 78 of a total of 100 runs. This
behaviour is due to the fact that, in these cases, it exists a given
chromosome with a cost value lower than the corresponding to the
chromosome associated to the right solution, so the algorithm is unable
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(a)

(b)

Figure 2. Power pattern φ-cuts corresponding to the array without
defective elements. Angular positions of the 8 samples used in the
simulation are also shown.
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Table 1. Simulation results using 10 random configurations of 2 defec-
tive elements completely failed. The samples for the genetic algorithm
have been taken over the main beam region.

2 defective elements, ∆ = ±0.20 dB

8 samples 20 samples 28 samples Failing elements

t(s.) Found t(s.) Found t(s.) Found positions

31 2/10 63 6/10 85 6/10 1,32

31 2/10 63 4/10 85 6/10 17,46

36 3/10 63 5/10 85 8/10 34,48

31 1/10 63 7/10 85 7/10 6,45

31 2/10 63 8/10 85 8/10 46.48

31 2/10 63 5/10 85 6/10 5,18

31 3/10 63 6/10 85 7/10 15,32

31 2/10 63 6/10 85 8/10 27,42

31 2/10 63 5/10 85 7/10 7,36

31 3/10 63 6/10 85 5/10 10,31

32 22/100 63 58/100 85 68/100 ← Average

to find the right solution. As we have stated, this problem can be
alleviated (or even avoided) by increasing the number of samples used
in the comparison of the pattern and/or by reducing their measurement
errors. It has been found that in an ideal case with ∆ = ±0.0 dB (i.e.,
we assume no experimental errors), the algorithm was able to find the
right solution in all cases using 8 samples only.

3.1.2 Samples in the Pattern Maxima

Since the maxima of radiation patterns are very sensitive to the
failure of elements of the array, it is a good idea to characterize these
points as samples in the optimization algorithm. The positions of
the samples used in the algorithm are taken in the directions of the
maxima of the initial pattern in the principal planes (it is likely that
we would obtain better results if we take these samples in the maxima
of the degraded pattern, but we assume that we don’t want to measure
the whole pattern but a small number of samples only). Fig. 3 shows
the radiation pattern cuts corresponding to the array without defective
elements as well as the position of the samples for M = 20 (10 samples
in each main plane). The maximum experimental error assumed for
these samples is of ∆ = ±0.75 dB.

To compare the results, we tested the same 10 random configura-
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(a)

(b)

Figure 3. Power pattern φ-cuts corresponding to the array without
defective elements. Angular positions of the 20 samples used in the
simulation are also shown.
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tions of 2 defective elements as before, varying the number of samples
from 12 to 20 (in the cases M = 12 and M = 16, some of the samples
at extreme angles of Fig. 3 are not used). The results are shown in the
Table 2. We found that, for this case, the success percentage is better
than before because the samples used now are more sensitive to the
failure of the array elements.

Table 2. Simulation results using 10 random configurations of 2 defec-
tive elements completely failed. The samples for the genetic algorithm
have been taken in the maxima of the initial pattern.

2 defective elements, ∆ = ±0.75 dB

12 samples 16 samples 20 samples Failing elements

t(s.) Found t(s.) Found t(s.) Found positions

38 5/10 50 5/10 63 9/10 1,32

38 6/10 50 7/10 63 9/10 17,46

38 6/10 50 8/10 63 9/10 34,48

38 6/10 50 5/10 63 9/10 6,45

38 4/10 50 8/10 63 10/10 46.48

38 3/10 50 8/10 63 9/10 5,18

38 6/10 50 7/10 63 10/10 15,32

38 3/10 50 6/10 63 10/10 27,42

38 7/10 50 8/10 63 8/10 7,36

38 5/10 50 7/10 63 9/10 10,31

38 51/100 50 69/100 63 92/100 ← Average

One more time, it is clear that the decrease of the samples number
implies the decrease of the probability of finding the right solution,
being necessary at least 20 samples to assure a good result.

3.2 Array with Partial Failures

In this case we consider that some of the array defective elements
may not be completely failed. As we stated, we assume that the exci-
tations of the partially failed elements are a half of the original ones,
having 3 different states for each array element status. Therefore each
chromosome of the genetic algorithm will have 96 bits.

The procedure begins modifying the original excitations of some
array elements to simulate a given grade of failure. The position as
well as the grade of failure of these elements are randomly chosen.

To study the behaviour of our algorithm to this problem, we have se-
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lected 10 random configurations of 3 complete/partial failures each. In
the searching process, we have used 20 samples located in the maxima
of the initial pattern as Fig. 3. shows. In order to study the influence
of the maximum measurement error in the process, we have modified
this value in the samples evaluation. The final results for each con-
figuration are shown in Table 3, where the values between parenthesis
denote the percentage of failure of each element.

Table 3. Simulation results considering 10 random configurations of
3 defective elements completely and partially failed. A total of 20
samples located in the maxima of the initial pattern were used in the
algorithm.

3 defective elements, 20 samples, partial failures

∆ = ±0.00 dB ∆ = ±0.50 dB ∆ = ±0.75 dB Failing elements positions

t(s.) Found t(s.) Found t(s.) Found

263 1/1 261 7/10 240 5/10 5(100%), 19(100%), 29(50%)

66 1/1 66 4/10 66 1/10 2(50%), 14(50%), 17(50%)

66 1/1 66 4/10 66 3/10 18(100%), 23(50%), 43(50%)

66 1/1 85 7/10 88 3/10 13(100%), 31(50%), 42(50%)

66 1/1 102 5/10 148 1/10 2(50%), 18(50%), 25(100%)

66 1/1 66 8/10 66 5/10 8(50%), 26(50%), 47(50%)

99 1/1 219 8/10 181 3/10 9(100%), 36(100%), 27(50%)

66 1/1 66 6/10 66 1/10 13(50%), 17(50%), 31(100%)

66 1/1 66 4/10 66 1/10 13(50%), 28(100%), 42(50%)

99 1/1 305 2/10 247 3/10 41(100%), 29(100%), 35(50%)

93 10/10 130 55/100 123 26/100 ← Average

In this case, the algorithm not only need to know the location of
defective elements, but also its grade of failure. It is remarkable that
with an experimental error of ±0.75 dB, we have obtained a success
percentage equal to 26%. If this maximum error is reduced to ±0.50 dB
this percentage is increased to 55%, whereas if no errors are considered
the right solution is achieved in all cases.

4. CONCLUSIONS

We have introduced a method of locating defective elements in pla-
nar arrays by using samples of their far-field patterns. It has been
found that the probability of finding the right solution increases as the
number of samples increases. Besides, it is extremely important to
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accomplish a very accurate measurement of the samples. This method
is specially useful for those applications in which the near-field pattern
is not accessible, such as systems boarded on space platforms.
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