Vol. 113

Latest Volume
All Volumes
All Issues

Dual-Band Nanostructured Polarizer

By Ragib Shakil Rafi and Alessandro Salandrino
Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022


We propose the design of a dual-band nano-structured polarizer that allows the transmission of two different linear polarizations within different frequency bands. A broad-band transmission window in the visible range exists for the x-polarization, whereas the y-polarization transmits efficiently in the near-infrared range. The transmittance exceeds 80% for the target polarization in both cases under normal incidence. This operation is achieved by an orthogonally patterned metallic surface having a long metal wire along the x-axis with four other small metal wires along the y-axis and allowing for a strong localized slit resonance to operate in the desired passband. The appropriate metal length and air gap choice lead to intense slit resonances in the spectral region of choice. The proposed design can be optimized for either ultrawide single band operation or dual-band perpendicular polarization operation.


Ragib Shakil Rafi and Alessandro Salandrino, "Dual-Band Nanostructured Polarizer," Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022.


    1. Qin, F., L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv., Vol. 2, e1501168, 2016.

    2. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.

    3. Zhang, D., et al., "Polarization properties of subwavelength metallic gratings in visible light band," Appl. Phys. B, Vol. 85, 139-143, 2006.

    4. Frese, D., Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, "Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces," Nano Lett., Vol. 19, 3976-3980, 2019.

    5. Hsiao, H.-H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.

    6. Mizner, N., W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics, Vol. 8, 889-898, 2014.

    7. Bai, B., L. Liu, R. Chen, and Z. Zhou, "Low loss, compact TM-pass polarizer based on hybrid plasmonic grating," IEEE Photonics Technology Letters, Vol. 29, 607-610, 2017.

    8. Wang, B., S. Blaize, and R. Salas-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics," Nanoscale, Vol. 11, 20685-20692, 2019.

    9. Huang, Z., H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, "Robust thin-film wire-grid thz polarizer fabricated via a low-cost approach," IEEE Photonics Technology Letters, Vol. 25, 81-84, 2013.

    10. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, 793-796, 2014.

    11. Ding, F., Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-waveplate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015.

    12. Huang, C.-P., Y.-L. Wang, and Y. Zhang, "Interference-type plasmonic polarizers and generalized law of Malus," J. Opt., Vol. 21, 105001, 2019.

    13. Xia, J., Z. Yuan, C. Wang, C. He, J. Guo, and C. Wang, "Design and fabrication of a linear polarizer in the 8-12 μm infrared region with multilayer nanogratings," OSA Continuum, Vol. 2, 1683-1692, 2019.

    14. Pelzman, C. and S.-Y. Cho, "Polarization-selective optical transmission through a plasmonic metasurface," Appl. Phys. Lett., Vol. 106, 251101, 2015.

    15. Han, C. and W. Y. Tam, "Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays," Appl. Phys. Lett., Vol. 106, 081102, 2015.

    16. Tang, S., F. Ding, T. Jiang, T. Cai, and H.-X. Xu, "Polarization-selective dual-wavelength gap-surface plasmon metasurfaces," Opt. Express, Vol. 26, 23760-23769, 2018.

    17. Li, X., et al., "Switchable multifunctional terahertz metasurfaces employing vanadium dioxide," Sci, Rep., Vol. 9, 5454, 2019.

    18. Qiu, X., J. Shi, Y. Li, and F. Zhang, "All-dielectric multifunctional transmittance tunable metasurfaces based on guided mode resonance and ENZ effect," Nanotechnology, Vol. 32, 065202, 2021.

    19. Cui, J., Q. F. Nie, Y. Ruan, S. S. Luo, F. J. Ye, and L. Chen, "Dual-polarization wave-front manipulation with high-efficiency metasurface," AIP Advances, Vol. 10, 095003, 2020.

    20. Deshpande, R. A., F. Ding, and S. Bozhevolnyi, "Dual-band metasurfaces using multiple gap-surface plasmon resonances," ACS Appl. Mater. Interfaces, Vol. 12, 1250-1256, 2020.

    21. Ebbesen, T., et al., "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.

    22. Lochbihler, H., "Surface polaritons on gold-wire gratings," Phys. Rev. B, Vol. 50, 4795-4801, 1994.

    23. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.

    24. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, 811-818, 1981.

    25. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, 1870-1876, 1996.

    26. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, 2758-2767, 1997.

    27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, 1068-1076, 1995.

    28. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, 1385-1392, 1982.

    29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.

    30. Zhou, J. and L. Guo, "Transition from a spectrum filter to a polarizer in a metallic nano-slit array," Sci. Rep., Vol. 4, 3614, 2014.

    31. Wang, J. J., F. Walters, X. Liu, P. Sciortino, and X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78nm space nanowire grids," Appl. Phys. Lett., Vol. 90, 061104, 2007.

    32. Lindberg, J., K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express, Vol. 12, 623-632, 2004.