Vol. 113

Latest Volume
All Volumes
All Issues
2022-09-19

Dual-Band Nanostructured Polarizer

By Ragib Shakil Rafi and Alessandro Salandrino
Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022
doi:10.2528/PIERM22073102

Abstract

We propose the design of a dual-band nano-structured polarizer that allows the transmission of two different linear polarizations within different frequency bands. A broad-band transmission window in the visible range exists for the x-polarization, whereas the y-polarization transmits efficiently in the near-infrared range. The transmittance exceeds 80% for the target polarization in both cases under normal incidence. This operation is achieved by an orthogonally patterned metallic surface having a long metal wire along the x-axis with four other small metal wires along the y-axis and allowing for a strong localized slit resonance to operate in the desired passband. The appropriate metal length and air gap choice lead to intense slit resonances in the spectral region of choice. The proposed design can be optimized for either ultrawide single band operation or dual-band perpendicular polarization operation.

Citation


Ragib Shakil Rafi and Alessandro Salandrino, "Dual-Band Nanostructured Polarizer," Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022.
doi:10.2528/PIERM22073102
http://jpier.org/PIERM/pier.php?paper=22073102

References


    1. Qin, F., L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv., Vol. 2, e1501168, 2016.
    doi:10.1126/sciadv.1501168

    2. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.
    doi:10.1016/S0030-4018(00)00462-4

    3. Zhang, D., et al., "Polarization properties of subwavelength metallic gratings in visible light band," Appl. Phys. B, Vol. 85, 139-143, 2006.
    doi:10.1007/s00340-006-2403-y

    4. Frese, D., Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, "Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces," Nano Lett., Vol. 19, 3976-3980, 2019.
    doi:10.1021/acs.nanolett.9b01298

    5. Hsiao, H.-H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.
    doi:10.1002/smtd.201600064

    6. Mizner, N., W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics, Vol. 8, 889-898, 2014.
    doi:10.1038/nphoton.2014.247

    7. Bai, B., L. Liu, R. Chen, and Z. Zhou, "Low loss, compact TM-pass polarizer based on hybrid plasmonic grating," IEEE Photonics Technology Letters, Vol. 29, 607-610, 2017.
    doi:10.1109/LPT.2017.2663439

    8. Wang, B., S. Blaize, and R. Salas-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics," Nanoscale, Vol. 11, 20685-20692, 2019.
    doi:10.1039/C9NR06948H

    9. Huang, Z., H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, "Robust thin-film wire-grid thz polarizer fabricated via a low-cost approach," IEEE Photonics Technology Letters, Vol. 25, 81-84, 2013.
    doi:10.1109/LPT.2012.2228184

    10. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, 793-796, 2014.
    doi:10.1364/OL.39.000793

    11. Ding, F., Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-waveplate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015.
    doi:10.1021/acsnano.5b00218

    12. Huang, C.-P., Y.-L. Wang, and Y. Zhang, "Interference-type plasmonic polarizers and generalized law of Malus," J. Opt., Vol. 21, 105001, 2019.
    doi:10.1088/2040-8986/ab3e8a

    13. Xia, J., Z. Yuan, C. Wang, C. He, J. Guo, and C. Wang, "Design and fabrication of a linear polarizer in the 8-12 μm infrared region with multilayer nanogratings," OSA Continuum, Vol. 2, 1683-1692, 2019.
    doi:10.1364/OSAC.2.001683

    14. Pelzman, C. and S.-Y. Cho, "Polarization-selective optical transmission through a plasmonic metasurface," Appl. Phys. Lett., Vol. 106, 251101, 2015.
    doi:10.1063/1.4922993

    15. Han, C. and W. Y. Tam, "Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays," Appl. Phys. Lett., Vol. 106, 081102, 2015.
    doi:10.1063/1.4913360

    16. Tang, S., F. Ding, T. Jiang, T. Cai, and H.-X. Xu, "Polarization-selective dual-wavelength gap-surface plasmon metasurfaces," Opt. Express, Vol. 26, 23760-23769, 2018.
    doi:10.1364/OE.26.023760

    17. Li, X., et al., "Switchable multifunctional terahertz metasurfaces employing vanadium dioxide," Sci, Rep., Vol. 9, 5454, 2019.
    doi:10.1038/s41598-019-41915-6

    18. Qiu, X., J. Shi, Y. Li, and F. Zhang, "All-dielectric multifunctional transmittance tunable metasurfaces based on guided mode resonance and ENZ effect," Nanotechnology, Vol. 32, 065202, 2021.
    doi:10.1088/1361-6528/abc3e5

    19. Cui, J., Q. F. Nie, Y. Ruan, S. S. Luo, F. J. Ye, and L. Chen, "Dual-polarization wave-front manipulation with high-efficiency metasurface," AIP Advances, Vol. 10, 095003, 2020.
    doi:10.1063/5.0016973

    20. Deshpande, R. A., F. Ding, and S. Bozhevolnyi, "Dual-band metasurfaces using multiple gap-surface plasmon resonances," ACS Appl. Mater. Interfaces, Vol. 12, 1250-1256, 2020.
    doi:10.1021/acsami.9b15410

    21. Ebbesen, T., et al., "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
    doi:10.1038/35570

    22. Lochbihler, H., "Surface polaritons on gold-wire gratings," Phys. Rev. B, Vol. 50, 4795-4801, 1994.
    doi:10.1103/PhysRevB.50.4795

    23. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.
    doi:10.1016/S0030-4018(00)00462-4

    24. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, 811-818, 1981.
    doi:10.1364/JOSA.71.000811

    25. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, 1870-1876, 1996.
    doi:10.1364/JOSAA.13.001870

    26. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, 2758-2767, 1997.
    doi:10.1364/JOSAA.14.002758

    27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, 1068-1076, 1995.
    doi:10.1364/JOSAA.12.001068

    28. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, 1385-1392, 1982.
    doi:10.1364/JOSA.72.001385

    29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
    doi:10.1103/PhysRevB.6.4370

    30. Zhou, J. and L. Guo, "Transition from a spectrum filter to a polarizer in a metallic nano-slit array," Sci. Rep., Vol. 4, 3614, 2014.
    doi:10.1038/srep03614

    31. Wang, J. J., F. Walters, X. Liu, P. Sciortino, and X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78nm space nanowire grids," Appl. Phys. Lett., Vol. 90, 061104, 2007.
    doi:10.1063/1.2437731

    32. Lindberg, J., K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express, Vol. 12, 623-632, 2004.
    doi:10.1364/OPEX.12.000623