Vol. 113

Latest Volume
All Volumes
All Issues
2022-09-11

Low Profile/Single Layer X-Band Circularly Polarized Reflectarray with a Linearly Polarized Feed

By Shimaa Ahmed Megahed Soliman, Ahmed Attiya, and Yahia M. Antar
Progress In Electromagnetics Research M, Vol. 113, 87-99, 2022
doi:10.2528/PIERM22070106

Abstract

This paper presents a design of a right hand circularly polarized x-band reflectarray antenna (RA) at a center frequency 12 GHz. The reflectarray is fed by a linearly polarized dipole antenna. The proposed reflectarray antenna can be used for CubeSat applications. The reflecting elements have the shape of a pentagon. This shape is chosen to convert the incident linearly polarized fields to the required circular polarization. A dipole antenna is used as linearly polarized (LP) feeding element for the proposed reflectarray. This dipole antenna is tilted w.r.t the x-axis by an angle 45˚ to introduce nearly equal polarizations in x and y directions on the aperture of the reflectarray. Each reflecting element is adjusted to produce a phase shift 90˚ between the reflection coefficients in x and y directions. The required reflected phase is realized by adjusting a scaling factor (SF) for the pentagonal patch in x direction to the corresponding SF in y axis. This phase difference is responsible for polarization conversion of the incident plane wave into circularly polarized reflected wave. The reflectarray is designed with focal to-diameter (F/D) ratio equals unity. In this work, an efficient technique is discussed for modelling the reflectarray designed. This technique is based on developing a Visual Basic Script file for allocating the reflecting elements with their corresponding dimensions in their location on the simulation tool. This script file is used directly by the simulation tool (HFSS) to draw the complete model automatically. This procedure has a significant role on simplifying the modeling of complicated structure like the proposed reflectarray. The proposed reflectarray antenna is simulated at 12 GHz. The obtained axial ratio (AR) is found to be 2.1 dB, and peak gain is 18 dBi. The antenna is also fabricated and measured for verification.

Citation


Shimaa Ahmed Megahed Soliman, Ahmed Attiya, and Yahia M. Antar, "Low Profile/Single Layer X-Band Circularly Polarized Reflectarray with a Linearly Polarized Feed," Progress In Electromagnetics Research M, Vol. 113, 87-99, 2022.
doi:10.2528/PIERM22070106
http://jpier.org/PIERM/pier.php?paper=22070106

References


    1. Puig-Suari, J., C. Turner, and W. Ahlgren, "Development of the standard CubeSat deployer and a CubeSat class PicoSatellite," Proceedings of the 2001 IEEE Aerospace Conference, 1/347-1/353, Big Sky, MT, USA, Mar. 10-17, 2001.

    2. Chahat, N., et al., "Advanced CubeSat antennas for Deep Space and Earth Science missions: A review," IEEE Antennas Propag. Mag., Vol. 61, 37-46, 2019.
    doi:10.1109/MAP.2019.2932608

    3. Bulgasem, S., F. Tubbal, R. Raad, P. I. Theoharis, S. Lu, and S. Iranmanesh, "Antenna designs for CubeSats: A review," IEEE Access, Vol. 9, 45289-45324J, 2021.
    doi:10.1109/ACCESS.2021.3066632

    4. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley/IEEE Press, Hoboken, NJ, USA, Nov. 2007, ISBN: 978-0-470-08491-5.

    5. Shaker, J., M. R. Chaharmir, and J. Ethier, "Reflectarray Antennas: Analysis, Design, Fabrication, and Measurement," Artech House, Norwood, MA, USA, 2014.

    6. Ghorbani, H., A. Tavakoli, M. Rabbani, and P. Dehkhoda, "Dualpolarized reflectaray element using open-loop patches," Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2179-2180, Vancouver, BC, Canada, Jul. 2015.

    7. Costanzo, S., et al., "Dual-band dual-linear polarization reflectarray for mmWaves/5G applications," IEEE Access, Vol. 8, 78183-78192, 2020.
    doi:10.1109/ACCESS.2020.2989581

    8. Gao, S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, Hoboken, NJ, USA, 2013.

    9. Liao, T., et al., "Broadband circular polarized reflectarray based on multi-resonance unit," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 6, e22618, 2021.
    doi:10.1002/mmce.22618

    10. Naseri, P., et al., "A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4627-4637, 2020.
    doi:10.1109/TAP.2020.2972650

    11. Yu, A., F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Kim, "An offset-fed X-band reflectarray antenna using a modified element rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1619-1624, Mar. 2012.
    doi:10.1109/TAP.2011.2180299

    12. Strassner, B., C. Han, and K. Chang, "Circularly polarized reflectarray with microstrip ring elements having variable rotation angles," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 1122-1125, Apr. 2004.
    doi:10.1109/TAP.2004.825635

    13. Wu, G. B., S. W. Qu, S. Yang, and C. H. Chan, "Broadband, single-layer dual circularly polarized reflectarrays with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4235-4241, 2016.
    doi:10.1109/TAP.2016.2593873

    14. Abadi, S. M. A. M. H. and N. Behdad, "Broadband true-time-delay circularly polarized reflectarray with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4891-4896, 2016.
    doi:10.1109/TAP.2016.2596900

    15. Li, Y., M. E. Bialkowski, and A. M. Abbosh, "Single layer reflectarray with circular rings and open-circuited stubs for wideband operation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4183-4189, Sep. 2012.
    doi:10.1109/TAP.2012.2207060

    16. Farias, R. L., C. Peixeiro, and M. V. T. Heckler, "Single layer dual-band dual-circularly polarized reflectarray for space communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5989-5994, 2022.
    doi:10.1109/TAP.2022.3161552

    17. Zhou, Q., L. Guo, and W. Feng, "A single-layered wideband circularly polarized reflectarray using a linearly polarized feed," Microwave and Optical Technology Letters, 2022.

    18. Visser, H. J., Array and Phased Array Antenna Basics, John Wiley & Sons, Hoboken, NJ, USA, 2006.

    19. Bhattacharyya, A. K., "Phased array antennas," Floquet Analysis, Synthesis, BFNs, and Active Array Systems, John Wiley & Sons Inc. Publication, Hoboken, NJ, USA, 2006.

    20. James, J. R., Handbook of Microstrip Antennas, Vol. 1, IET, 1989.