Vol. 112

Latest Volume
All Volumes
All Issues
2022-07-28

Electromagnetic Compatibility Study of Quadcopter UAVs : Characteristic Mode Analysis of the Frame's Material and Shape Effect

By Mohamed Z. M. Hamdalla, Jesus M. Roacho-Valles, Anthony Caruso, and Ahmed M. Hassan
Progress In Electromagnetics Research M, Vol. 112, 1-14, 2022
doi:10.2528/PIERM22062907

Abstract

The variation in flight attitude, line-of-sight, and speed of unmanned aerial vehicles (UAVs) affect their polarization-dependent coupling cross-section and resultant compatibility to pulsed electromagnetic energy. Here, we present the out-of-band electromagnetic compatibility (EMC) effects of UAV frame material and shape on the UAV subcomponents. Characteristic mode analysis (CMA) is employed to study the fundamental modes supported by UAVs which facilitate the interpretation of its electromagnetic response and the prediction of its effect on the nearby components. Using CMA, we develop a framework that optimizes the placement of wires and traces of printed circuit boards (PCBs) on the frame mitigating interference from undesired electromagnetic sources. A 3-D scanner is used to provide four versions of a quadrotor UAV to study the frame shape effect on the coupling. Materials of differing permittivity are assigned to these frame versions to assist in understanding the material effect on the EM coupling to the UAV.

Citation


Mohamed Z. M. Hamdalla, Jesus M. Roacho-Valles, Anthony Caruso, and Ahmed M. Hassan, "Electromagnetic Compatibility Study of Quadcopter UAVs : Characteristic Mode Analysis of the Frame's Material and Shape Effect," Progress In Electromagnetics Research M, Vol. 112, 1-14, 2022.
doi:10.2528/PIERM22062907
http://jpier.org/PIERM/pier.php?paper=22062907

References


    1. Koo, V., Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C. S. Lim, C. C. Thum, T. S. Lim, Z. B. Ahmad, K. A. Mahmood, M. H. B. Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
    doi:10.2528/PIER11092604

    2. Kawamoto, Y., H. Nishiyama, N. Kato, F. Ono, and R. Miura, "Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments," IEEE Wireless Communications, Vol. 26, No. 1, 94-99, Feb. 2019.
    doi:10.1109/MWC.2018.1700368

    3. Intelligence, B. I., "Drones are about to fill the skies within the next 5 years," Business Insider, 2016.

    4. Park, G., K. Park, and B. Song, "Spatio-temporal change monitoring of outside manure piles using unmanned aerial vehicle images," Drones, Vol. 5, No. 1, Art. No. 1, Mar. 2021.
    doi:10.3390/drones5010001

    5. Li, B., Z. Fei, and Y. Zhang, "Uav communications for 5g and beyond: Recent advances and future trends," IEEE Internet of Things Journal, Vol. 6, No. 2, 2241-2263, Apr. 2019.
    doi:10.1109/JIOT.2018.2887086

    6. Gonzalez-Prelcic, N., R. W. Heath, C. Rusu, and A. Klautau, "High-capacity millimeter wave UAV communications," UAV Communications for 5G and Beyond, 203-229, John Wiley & Sons, Ltd., 2020.

    7. Abdel-Malek, M. A., N. Saputro, A. S. Ibrahim, and K. Akkaya, "Uav-assisted multi-path parallel routing for mmwave-based wireless networks," Internet of Things, Vol. 14, 100366, Jun. 2021.
    doi:10.1016/j.iot.2021.100366

    8. Zhou, F., R. Wang, and J. Bian, "Joint trajectories and power allocation design for dual UAV-enabled secrecy SWIPT networks," Progress In Electromagnetics Research M, Vol. 87, 73-82, 2019.
    doi:10.2528/PIERM19092802

    9., "The role of drones in future terrorist attacks," AUSA, Feb. 26, 2021, https://www.ausa.org/publications/role-drones-future-terrorist-attacks (accessed Jun. 13, 2021).

    10. Tortorich, R., "A comprehensive study on printed circuit board backdoor coupling in high intensity radiated fields environments," LSU Doctoral Dissertations, 5536, May 2021.

    11. Zhang, D., M. Zhao, E. Cheng, and Y. Chen, "GPR-based EMI prediction for UAV's dynamic datalink," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 19-29, Feb. 2021.
    doi:10.1109/TEMC.2020.3000919

    12. Bo, L., Z. Shengbing, Y. Junpeng, and W. Liang, "An anti-interference method for about unmanned aerial vehicle flight data based on vxworks," 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 7-9, Aug. 2016.

    13. Fernandez Romero, S., P. Lopez Rodriguez, D. Escot Bocanegra, D. Poyatos Martinez, and M. Anon Cancela, "Comparing open area test site and resonant chamber for unmanned aerial vehicle's high-intensity radiated field testing," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1704-1711, Dec. 2018.
    doi:10.1109/TEMC.2017.2747771

    14. Hassan, A. M., F. Vargas-Lara, J. F. Douglas, and E. J. Garboczi, "Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2743-2757, Jul. 2016.
    doi:10.1109/TAP.2016.2526046

    15. Durbhakula, K. C., et al., "Electromagnetic scattering from individual crumpled graphene flakes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6035-6047, Nov. 2017.
    doi:10.1109/TAP.2017.2752218

    16. Dey, S., D. Chatterjee, E. J. Garboczi, and A. M. Hassan, "Plasmonic nanoantenna optimization using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 43-53, Jan. 2020.
    doi:10.1109/TAP.2019.2938705

    17. Lau, B. K., M. Capek, and A. M. Hassan, "Characteristic modes: Progress, overview, and emerging topics," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 14-22, Apr. 2022.
    doi:10.1109/MAP.2022.3145719

    18. Manteuffel, D., F. H. Lin, T. Li, N. Peitzmeier, and Z. N. Chen, "Characteristic mode-inspired advanced multiple antennas: Intuitive insight into element-, interelement-, and array levels of compact large arrays and metantennas," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 49-57, Apr. 2022.
    doi:10.1109/MAP.2022.3145714

    19. Adams, J. J., S. Genovesi, B. Yang, and E. Antonino-Daviu, "Antenna element design using characteristic mode analysis: Insights and research directions," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 32-40, Apr. 2022.
    doi:10.1109/MAP.2022.3145718

    20. Chen, Y. and C. Wang, "Electrically small UAV antenna design using characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 535-545, Feb. 2014.
    doi:10.1109/TAP.2013.2289999

    21. Sow, S., L. Guo, S. Zhou, and T. Chio, "Electrically small structural antenna design for small UAV based on characteristics modes," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2134-2138, Mar. 2017.
    doi:10.23919/EuCAP.2017.7928206

    22. Ma, R. and N. Behdad, "Design of platform-based hf direction-finding antennas using the characteristic mode theory," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1417-1427, Mar. 2019.
    doi:10.1109/TAP.2018.2884878

    23. Cao, Y. S., M. Ouyanz, Y. Wang, and J. Fan, "EMI modeling for antenna-chassis system using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 181-186, Jul. 2018.

    24. Yang, X., et al., "EMI radiation mitigation for heatsinks using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 374-378, Jul. 2018.

    25. Hamdalla, M. Z. M., et al., "Electromagnetic interference of unmanned aerial vehicles: A characteristic mode analysis approach," 2019 IEEE International Symposium on Antennas and Prop- agation and USNC-URSI Radio Science Meeting, 553-554, Jul. 2019.

    26. Uckerseifer, J. and F. Gronwald, "Characteristic mode analysis of surface current distributions on metallic structures exposed to HIRF- and DCI-excitations," Adv. Radio Sci., Vol. 18, 33-41, Dec. 2020.
    doi:10.5194/ars-18-33-2020

    27. Rothenhausler, M. and F. Gronwald, "Characteristic mode analysis of hirf- and dci-excitations of an aircraft structure," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017.

    28. Hamdalla, M. Z. M., A. N. Caruso, and A. M. Hassan, "Predicting electromagnetic interference to a terminated wire using characteristic mode analysis," 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Jul. 2020.

    29. Hamdalla, M., B. Bissen, A. N. Caruso, and M. Hassan, "Experimental validations of characteristic mode analysis predictions using GTEM measurements," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1799-1800, Montreal, Quebec, Canada, Jul. 2020.

    30. Hamdalla, M. Z. M., et al., "Characteristic mode analysis prediction and guidance of electromagnetic coupling measurements to a UAV model," IEEE Access, Vol. 10, 914-925, 2022.
    doi:10.1109/ACCESS.2021.3138296

    31. Wu, Q., "Characteristic mode analysis of composite metallic-dielectric structures using impedance boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7415-7424, Dec. 2019.
    doi:10.1109/TAP.2019.2934902

    32. Wu, Q., "Characteristic mode assisted design of dielectric resonator antennas with feedings," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5294-5304, Aug. 2019.
    doi:10.1109/TAP.2019.2916763

    33. Boyuan, M., S. Huang, J. Pan, Y.-T. Liu, D. Yang, and Y.-X. Guo, "Higher-order characteristic modes-based broad-beam dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 818-822, Apr. 2022.
    doi:10.1109/LAWP.2022.3149603

    34. Huang, S., C.-F. Wang, J. Pan, and D. Yang, "Accurate sub-structure characteristic mode analysis of dielectric resonator antennas with finite ground plan," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6930-6935, Oct. 2021.
    doi:10.1109/TAP.2021.3070648

    35. Huang, S., J. Pan, C. Wang, Y. Luo, and D. Yang, "Unified implementation and cross-validation of the integral equation-based formulations for the characteristic modes of dielectric bodies," IEEE Access, Vol. 8, 5655-5666, 2020.
    doi:10.1109/ACCESS.2019.2963278

    36. Guo, X.-Y., R.-Z. Lian, and M.-Y. Xia, "Variant characteristic mode equations using different power operators for material bodies," IEEE Access, Vol. 9, 62021-62028, 2021.
    doi:10.1109/ACCESS.2021.3073901

    37. Huang, S., C.-F. Wang, J. Pan, D. Yang, and M.-C. Tang, "Full equiphase characteristic mode solution to lossless composite metallic-dielectric problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8526-8538, Dec. 2021.
    doi:10.1109/TAP.2021.3090791

    38. Hamdalla, M. Z. M., A. M. Hassan, and A. N. Caruso, "Characteristic mode analysis of the effect of the UAV frame material on coupling and interference," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1497-1498, Jul. 2019.

    39. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
    doi:10.1109/TAP.1971.1139999

    40. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, Oct. 2007.
    doi:10.1109/MAP.2007.4395295

    41. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 789-795, Nov. 1977.
    doi:10.1109/TAP.1977.1141685

    42. Gaynutdinov, R. R., I. V. Suzdaltsev, and S. F. Chermoshentsev, "Optimization unmanned aerial vehicle onboard equipment placement," 2020 International Russian Automation Conference (RusAutoCon), 1000-1004, Sep. 2020.
    doi:10.1109/RusAutoCon49822.2020.9208172

    43. Makeev, P., "Two-level algorithm for automated placement of elements on a flex-rigid printed circuit board," 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), 196-201, Nov. 2021.

    44. Electromagnetic simulation software|altair feko, https://altairhyperworks.com/product/FEKO.
    doi:10.1109/TAP.1980.1142388

    45. Garbacz, R. and E. Newman, "Characteristic modes of a symmetric wire cross," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 5, 712-715, Sep. 1980.
    doi:10.1109/TAP.2019.2905718

    46. Peitzmeier, N. and D. Manteuffel, "Upper bounds and design guidelines for realizing uncorrelated ports on multimode antennas based on symmetry analysis of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3902-3914, Jun. 2019.
    doi:10.1109/ISEMC.2003.1236559

    47. Hubing, T., "PCB EMC design guidelines: A brief annotated list," 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446), Vol. 1, 34-36, Aug. 2003.

    48. Doridant, A., et al., "EMC of DSI3 communication protocol --- PCB Consideration for Sensor product," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017.
    doi:10.1109/ICECA.2017.8203699

    49. Rehpade, R., S. D. Pable, and G. K. Kharate, "Design issues & challenges with EMI/EMC in system on packages (SOPs)," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 1, 335-338, Apr. 2017.