Vol. 112

Latest Volume
All Volumes
All Issues
2022-07-28

Hydrostatic Pressure Sensor Based on Defective One-Dimensional Photonic Crystal Containing Polymeric Materials

By Sanjeev Srivastava
Progress In Electromagnetics Research M, Vol. 112, 105-114, 2022
doi:10.2528/PIERM22062101

Abstract

In this work, the design of a high sensitivity hydrostatic pressure sensor based on one-dimensional photonic crystal (1DPC) containing polymeric materials has been proposed and investigated, theoretically. The proposed structure consists of alternate layers of polystyrene (PS) and polymethyl metahacrylate (PMMA) with a defect of layer of PS, PMMA and air, respectively, in the middle of the PC structure. The sensing principle is based on the shift in the peak of transmitted wavelength when the hydrostatic pressure is applied on 1DPC. In order to obtain the transmission spectrum of 1DPC structure transfer matrix method (TMM) has been used. From the analysis it is found that with the increase in hydrostatic pressure transmission (or resonance) peak shifts towards the lower wavelength side with respect to the center wavelength. The average sensitivity (Δλ/ΔP) of the proposed sensor is found about 0.948 (nm/MPa) with polymer defect and 0.92 (nm/MPa) with air defect in the mid-IR frequency region, and the applied pressure range is 0 to 200 MPa.

Citation


Sanjeev Srivastava, "Hydrostatic Pressure Sensor Based on Defective One-Dimensional Photonic Crystal Containing Polymeric Materials," Progress In Electromagnetics Research M, Vol. 112, 105-114, 2022.
doi:10.2528/PIERM22062101
http://jpier.org/PIERM/pier.php?paper=22062101

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Masaya, N., "Manipulating light with strongly modulated photonic crystals," Rep. Prog. Phys., Vol. 73, 096501, 2010.
    doi:10.1088/0034-4885/73/9/096501

    4. Jena, S., R. B. Tokas, P. Sarkar, J. S. Misal, S. MaidulHaque, K. D. Rao, S. Thakur, and N. K. Sahoo, "Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal," Thin Solid Films, Vol. 599, 138, 2016.
    doi:10.1016/j.tsf.2015.12.069

    5. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filters using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.
    doi:10.1016/j.ijleo.2018.01.129

    6. Srivastava, S. K. and A. Aghajamali, "Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor," J. Supcond. and Nov. Mag., Vol. 30, 343-351, 2017.
    doi:10.1007/s10948-016-3788-4

    7. Srivastava, S. K., "Investigation of ultra-wide reflection bands in UV region by using one-dimensional multi quantum well photonic crystal," Progress In Electromagnetic Research, Vol. 38, 37-44, 2014.
    doi:10.2528/PIERM14062308

    8. Liu, G. Q., H. H. Hua, Y. B. Liao, Z. S.Wang, Y. Chen, and Z. M. Liu, "Synthesis and photonicband gap characterization of high quality photonic crystal heterostructures," Optik, Vol. 122, 9-13, 2011.
    doi:10.1016/j.ijleo.2009.09.015

    9. Aly, A. H. and Z. A. Zaky, "Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor," Cryogenics, Vol. 104, 102991, 2019.
    doi:10.1016/j.cryogenics.2019.102991

    10. Lee, M. and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express, Vol. 15, 4530-4535, 2007.
    doi:10.1364/OE.15.004530

    11. Rao, W., Y. Song, M. Liu, and C. Jin, "All-optical switch based on photonic crystal micro-cavity with multi-resonant modes," Optik --- Int. J. Light and Elec. Opt., Vol. 121, 1934-1936, 2010.
    doi:10.1016/j.ijleo.2009.05.018

    12. Abohassan, K. M., H. S. Ashour, and M. M. Abadla, "A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk," RSC Advances, Vol. 11, 12058-12065, 2021.
    doi:10.1039/D1RA00955A

    13. Smith, D., R. Dalichaouch, N. Kroll, S. Schultz, S. McCall, and P. Platzman, "Photonic band structure and defects in one and two dimensions," JOSA B, Vol. 10, 314-321, 1993.
    doi:10.1364/JOSAB.10.000314

    14. Aly, A. H. and H. A. Elsayed, "Defect mode properties in a one-dimensional photonic crystal," Physica B: Condensed Matter, Vol. 407, 120-125, 2012.
    doi:10.1016/j.physb.2011.09.137

    15. Srivastava, S. K. and A. Aghajamali, "Narrow transmission mode in 1D symmetric defective photonic crystal containing metamaterial and high Tc superconductor," Optica Applicata, Vol. 49, 37-50, 2019.

    16. Chang, T. W. and C. J. Wu, "Analysis of tuning in a photonic crystal multichannel filter containing coupled defects," Optik --- Int. J. Light and Elec. Opt., Vol. 124, 2028-2032, 2013.
    doi:10.1016/j.ijleo.2012.06.023

    17. Wu, C.-J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
    doi:10.2528/PIER10031706

    18. Ha, Y. K., Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett., Vol. 79, 15-17, 2001.
    doi:10.1063/1.1381414

    19. Lu, Y. H., M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, "Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals," J. Appl. Phys., Vol. 101, 036110, 2007.
    doi:10.1063/1.2435067

    20. Wang, Z. S., L. Wang, Y. G. Wu, and L. Y. Chen, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett., Vol. 84, 1629-1631, 2004.
    doi:10.1063/1.1651650

    21. Hung, H. C., C. J. Wu, and S. J. Chang, "Terahertz temperature dependent defect mode in a semiconductor dielectric photonic crystal," J. Appl. Phys., Vol. 110, 093110-1-6, 2011.
    doi:10.1063/1.3660230

    22. Suthar, B. and A. Bhargava, "Temperature dependent tunable photonic channel filter," IEEE Photon. Tech. Lett., Vol. 24, 338-340, 2012.
    doi:10.1109/LPT.2011.2178401

    23. Chaves, F. S. and H. V. Posada, "Dependence of the defect mode on the temperature and angle of incidence in a one-dimensional photonic crystal," Optik, Vol. 163, 16-21, 2018.
    doi:10.1016/j.ijleo.2018.02.035

    24. Skoromets, V., H. Nmec, C. Kadlec, D. Fattakhova-Rohlfing, and P. Kuzel, "Electric field tunable defect mode in one-dimensional photonic crystal operating in the terahertz range," Appl. Phys. Lett., Vol. 102, 241106-1-4, 2013.
    doi:10.1063/1.4809821

    25. Srivastava, S. K., "Electrically controlled reflection band and tunable defect modes in one-dimensional photonic crystal by using potassium titanyl phosphate (KTP) crystal," J. Nano. Electron. Optoelctron, Vol. 11, 284-289, 2016.
    doi:10.1166/jno.2016.1895

    26. Tian, H. P. and J. Zi, "One-dimensional tunable photonic crystals by means of external magnetic fields," Opt. Commun., Vol. 252, 321-328, 2005.
    doi:10.1016/j.optcom.2005.04.022

    27. Pu, S., T. Geng, X. Chen, X. Zeng, M. Liu, and Z. Di, "Tuning the band gap of self-assembled superparamagnetic photonic crystals in colloidal magnetic fluids using external magnetic fields," J. Magn. Magn. Mater., Vol. 320, 2345-2349, 2008.
    doi:10.1016/j.jmmm.2008.04.134

    28. Fan, C. Z., G. Wang, and J. P. Huang, "Magneto controllable photonic crystals based on colloidal ferrofluids," J. Appl. Phys., Vol. 103, 094107, 2004.
    doi:10.1063/1.2921133

    29. Srivastava, S. K., "Magneto tunable defect modes in one-dimensional photonic crystal based on magnetic fluid film," Springer Proc. Physics, Vol. 256, 163-171, 2020.
    doi:10.1007/978-981-15-8625-5_17

    30. Xu, X. Y., R. J. Zhang, and Y. L. Gong, "The principles of pressure sensor based on photonic crystal," Acta Phys. Sin., Vol. 53, 724-727, 2004.
    doi:10.7498/aps.53.724

    31. Yuan, Z. H., "Study on pressure sensor based on photonic crystal," J. Transducer Technol., Vol. 24, 27-29, 2005.

    32. Ben-Ali, Y., F. Z. Elamri, A. Ouariach, F. Falyouni, Z. Tahri, and D. Bria, "A high sensitivity hydrostatic pressure and temperature based on a defective 1D photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 15, 2030-2050, 2020.
    doi:10.1080/09205071.2020.1806116

    33. Herrera, A. Y., J. M. Calero, and N. P. Montenegro, "Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal," J. Appl. Phys., Vol. 123, 033101-1-5, 2018.

    34. Segovia-Chaves, F. and H. Vinck-Posada, "The effect of the hydrostatic pressure and temperature on the defect mode in the band structure of one-dimensional photonic crystal," Optik, Vol. 156, 981-987, 2018.
    doi:10.1016/j.ijleo.2017.12.037

    35. Segovia-Chaves, F. and H. Vick-Posada, "The effect of hydrostatic pressure and temperature on the defect mode in a GaAs/Ga0.7Al0.3As one-dimensional photonic crystal," Optik, Vol. 159, 169-175, 2018.
    doi:10.1016/j.ijleo.2018.01.065

    36. Tao, S., D. Chen, J. Wang, J. Qiao, and Y. Duan, "A high sensitivity pressure sensor based on two-dimensional photonic crystal," Photon. Sensors, Vol. 6, 137-142, 2016.
    doi:10.1007/s13320-016-0316-x

    37. Jena, S., R. Tokas, S. Thakur, and D. Udupa, "Tunable mirrors and filers in 1d photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.
    doi:10.1016/j.physe.2019.113627

    38. He, J., S. Chen, H. Huang, B. Chen, X. Xiao, J. Lin, and Q. Chen, "Novel anisotropic januscomposite particles based on urushiol-erbium chelate polymer/polystyrene," Soft Mater., Vol. 13, 237, 2015.
    doi:10.1080/1539445X.2015.1078817

    39. Duan, G., C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, "Preparation and characterizationof mesoporous zirconia made by using a poly (methyl methacrylate) template," Nanoscale Res. Lett., Vol. 3, 118, 2008.
    doi:10.1007/s11671-008-9123-7

    40. Yeh, P., Optical Waves in Layered Media, 118-125, John Wiley & Sons, New York, 1988.

    41. Born, M. and E. Wolf, Principles of Optics, 4th Ed., 58-68, Pergamon, Oxford, 1970.

    42. Sanchez, A. and S. Orozco, "Elasto-optical effect on the band structure of a one-dimensionalphotonic crystal under hydrostatic pressure," J. Opt. Soc. Am. B, Vol. 33, 1406, 2016.
    doi:10.1364/JOSAB.33.001406

    43. Sanchez, A., A. Porta, and S. Orozco, "Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression," J. Appl. Phys., Vol. 121, 173101, 2017.
    doi:10.1063/1.4982760