Vol. 113
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-01
A Microwave Displacement Sensor Based on SIW Double Reentrant Cavity with Ring Gaps
By
Progress In Electromagnetics Research M, Vol. 113, 35-45, 2022
Abstract
In this study, a double reentrant cavity sensor (DRECS) loaded with ring gaps is proposed to characterize the displacement that the metal plate is inserted into the DRECS. The conventional substrate-parasitic-capacitance of DRECS in the substrate integrated waveguide (SIW) configuration, which has no contribution to the sensitivity, is successfully eliminated by using a symmetric double reentrant cavity. The ring gaps are introduced in SIW DRECS to effectively suppress the fringe electric field around the post, and enlarge the range of displacement measurements. Additionally, a displacement model, which is characterized by the quantitative relationship between the resonant frequency of DRECS and insertion depth inside DRECS, is theoretically established with the help of the electric field distribution and the equivalent circuit of the DRECS. A prototype of the designed sensor is fabricated and measured. The sensor work at 1.5-3.1 GHz and the measured results are in good agreement with the simulated ones from the displacement model. The measurement results indicate that the sensor has a displacement test range of 27 mm and Q-factor of over 150, and can achieve high sensitivity of 58 MHz/mm.
Citation
Jixu Ma, Yukang Chen, and Jie Huang, "A Microwave Displacement Sensor Based on SIW Double Reentrant Cavity with Ring Gaps," Progress In Electromagnetics Research M, Vol. 113, 35-45, 2022.
doi:10.2528/PIERM22050102
References

1. Wang, Y. D., F. Y. Han, J. Zhao, Z. W. Zhang, D. Wang, Y. H. Tan, and P. K. Liu, "Design of double-layer electrically extremely small-size displacement sensor," Sensors, Vol. 21, 4923, 2021.
doi:10.3390/s21144923

2. Huang, J., J. Li, G. Xu, and Z. Wei, "A microfluidic sensor based on meta-surface absorber for rapidand nondestructive identification of edible oil species," Progress In Electromagnetics Research C, Vol. 96, 153-163, 2019.
doi:10.2528/PIERC19081601

3. Al-Duhni, G. and N. Wongkasem, "Metal discovery by highly sensitive microwave multi-band metamaterial-inspired sensors," Progress In Electromagnetics Research B, Vol. 93, 1-22, 2021.
doi:10.2528/PIERB21051606

4. Bait-Suwailam, M. M., "Numerical assessment of red palm weevil detection mechanism in palm trees using CSRR microwave sensors," Progress In Electromagnetics Research Letters, Vol. 100, 63-71, 2021.
doi:10.2528/PIERL21080303

5. Teng, C., C. H. Chio, K. W. Tam, and P. Y. Lau, "An angular displacement microwave sensor with 360 dynamic range using multi-mode resonator," IEEE Sensors Journal, Vol. 21, No. 3, 2899-2907, February 1, 2021.

6. Naqui, J., M. Durán-Sindreu, and F. Martín, "Novel sensors based the symmetry properties of Split Ring Resonators (SRRs)," Sensors, Vol. 11, 7545-7553, 2011.
doi:10.3390/s110807545

7. Naqui, J., M. Durán-Sindreu, and F. Martín, "Alignment and position sensors based on split ring resonators," Sensors, Vol. 12, 11790-11797, 2012.
doi:10.3390/s120911790

8. Rezaee, M. and M. Joodaki, "Two-dimensional displacement sensor based on CPW line loaded by Defected Ground Structure (DGS) with two separated transmission zeroes," IEEE Sensors Journal, Vol. 17, No. 4, 994-999, February 15, 2017.
doi:10.1109/JSEN.2016.2638859

9. Saadat-Safa, M., V. Nayyeri, M. Khanjarian, M. Soleimani, and O. M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 806-814, February 2019.
doi:10.1109/TMTT.2018.2882826

10. Soltan, A., R. A. Sadeghzadeh, and S. Mohammad-Ali-Nezhad, "Angular displacement sensor based on Corrugated Substrate Integrated Waveguide (CSIW)," IETE Journal of Research, August 13, 2020.

11. Horestani, A. K., C. Fumeaux, D. Abbott, et al. "Displacement sensor based on diamond-shaped tapered split ring resonator," IEEE Sensors Journal, Vol. 13, No. 4, 1153-1159, April 2013.
doi:10.1109/JSEN.2012.2231065

12. Salim, A., S.-H. Kim, J. Y. Park, and S. Lim, "Microfluidic biosensor based on microwave substrate-integrated waveguide cavity resonator," Journal of Sensors, 1-13, 2018.
doi:10.1155/2018/1324145

13. Chen, C.-M., J. Xua, and Y. Yao, "Fabrication of miniaturized CSRR-loaded HMSIW humidity sensors with high sensitivity and ultra-low humidity hysteresis," Sensors and Actuators B: Chemical, 1100-1106, 2018.
doi:10.1016/j.snb.2017.10.057

14. Soltan, A., R. A. Sadeghzadeh, and S. Mohammad-Ali-Nezhad, "High sensitivity simple structured displacement sensor using Corrugated Substrate-Integrated Waveguide (CSIW)," IET Microwaves, Antennas & Propagation, Vol. 14, 414-418, 2020.
doi:10.1049/iet-map.2019.0575

15. Xi, W., W. R. Tinga, W. A. Geoffrey Voss, and B. Q. Tian, "New results for coaxial re-entrant cavity with partially dielectric filled gap," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 4, 747-753, 1992.
doi:10.1109/22.127525

16. Murugkar, A., R. Panigrahi, and K. J. Vinoy, "A novel approach for high Q microwave re-entrant cavity resonator at S-band," Proceedings of the Asia-Pacific Microwave Conference, 1-4, December 2016.

17. Asua, E., V. Etxebarria, and J. Feutchwanger, "High-precision displacement sensor based on resonant cavities through an electronic interface based on Arduino," Sensors and Actuators A: Physical, 296-301, 2019.
doi:10.1016/j.sna.2019.05.030

18. Saeedi, S., J. Lee, H. H. Sigmarsson, and , "Tunable, high-Q, substrate-integrated, evanescent- mode cavity bandpass-bandstop filter cascade," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 240-242, April 2016.
doi:10.1109/LMWC.2016.2537744

19. Chen, Y., J. Huang, Y. Xiang, L. Fu, W. Gu, and Y. Wu, "A modified SIW re-entrant microfluidic microwave sensor for characterizing complex permittivity of liquids," IEEE Sensors Journal, Vol. 21, No. 13, 14838-14846, July 1, 2021.
doi:10.1109/JSEN.2021.3074169

20. Wei, Z., J. Huang, J. Li, G. Xu, Z. Ju, X. Liu, and X. Ni, "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors, Vol. 18, 4005, 2018.
doi:10.3390/s18114005

21. Bansiwal, A., S. Raina, K. J. Vinoy, and S. K. Datta, "Calculation of equivalent circuit parameters of a rectangular reentrant cavity for klystron," International Journal of Microwave and Optical Technology, Vol. 13, No. 6, 487-492, November 2018.

22. Abdelfattah, M., D. Peroulis, and , "High-Q tunable evanescent-mode cavity SIW resonators and filters with contactless tuners," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3661-3672, September 2019.
doi:10.1109/TMTT.2019.2925092

23. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.

24. Varshney, P. K. and M. Jaleel Akhtar, "Permittivity estimation of dielectric substrate materials via enhanced SIW sensor," IEEE Sensors Journal, Vol. 21, No. 10, 12104-12112, May 15, 2021.
doi:10.1109/JSEN.2021.3064923

25. Zarifi, M. H. and M. Daneshmand, "Monitoring solid particle deposition in lossy medium using planar resonator sensor," IEEE Sensors Journal, Vol. 17, No. 23, 7981-7988, December 1, 2017.
doi:10.1109/JSEN.2017.2757027

26. Abdolrazzaghi, M. and M. Daneshmand, "Multifunctional ultrahigh sensitive microwave planar sensor to monitor mechanical motion: Rotation, displacement, and stretch," Sensors, Vol. 20, 1184, 2020.
doi:10.3390/s20041184