Vol. 111

Latest Volume
All Volumes
All Issues
2022-06-14

A Small Disk-Coupled Circularly Polarized Microstrip Ring Antenna for Microwave Energy Harvesting

By Cheng Peng, Zhi-Hao Ye, Han Xiao, Jing Huang, Ning-Zhao Luo, and Dong Wu
Progress In Electromagnetics Research M, Vol. 111, 13-25, 2022
doi:10.2528/PIERM22042902

Abstract

A small ring antenna working at 2.45 GHz was designed in this paper, a small disk-coupled structure was applied to feed an inner-hole-biased ring patch, contributing to not only improving the impedance characteristics of the antenna but also reducing the size. The simulation results show that the designed patch area is only 70.7% of that of the traditional circular microstrip antenna on the premise of ensuring good bandwidth and gain performance; the -10 dB bandwidth of S11 parameter is 62 MHz; the gain of the maximum direction is 7.11 dB; and the circular polarization of the antenna is also realized. This design has also been compared with several conventional designs, It is proved that the antenna has good comprehensive performance, and the antenna feed structure is simple, easy to process, very conducive to engineering applications. Finally, the feasibility of this technology was verified by contrasting the measured data with the simulation data.

Citation


Cheng Peng, Zhi-Hao Ye, Han Xiao, Jing Huang, Ning-Zhao Luo, and Dong Wu, "A Small Disk-Coupled Circularly Polarized Microstrip Ring Antenna for Microwave Energy Harvesting," Progress In Electromagnetics Research M, Vol. 111, 13-25, 2022.
doi:10.2528/PIERM22042902
http://jpier.org/PIERM/pier.php?paper=22042902

References


    1. Peng, C., Z.-H. Ye, Y.-H. Xia, and C. Yang, "Analysis on space transmission model of the Microwave Wireless Power Transfer system," Frequenz, Vol. 75, 449-458, 2021.
    doi:10.1515/freq-2021-0035

    2. Xiao, Y. Y., Z.-X. Du, and X. Y. Zhang, "High-efficiency rectifier with wide input power range based on power recycling," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, 744-748, 2018.
    doi:10.1109/TCSII.2018.2794551

    3. Peng, C., T. Yu, H. Li, and W. Cao, "Research on circularly polarized small disk coupled square ring microstrip antenna for GPS application," 2013 Proceedings of the International Symposium on Antennas & Propagation, Vol. 01, 380-383, Nanjing, China, 2013.

    4. Mehrparvar, M. and F. H. Kashani, "Microstrip antenna miniaturization using metamaterial structures," 20th Iranian Conference on Electrical Engineering (ICEE2012), 1243-1246, Tehran, Iran, 2012.
    doi:10.1109/IranianCEE.2012.6292546

    5. Ding, K., T. Yu, D.-X. Qu, and C. Peng, "A novel loop-like monopole antenna with dual-band circular polarization," Progress In Electromagnetics Research C, Vol. 45, 179-190, 2013.
    doi:10.2528/PIERC13102002

    6. Ding, K., T. B. Yu, D. F. Guan, and C. Peng, "Stacked tri-band circularly polarized microstrip patch antenna for CNSS applications," Applied Mechanics and Materials, Vol. 347, 1786-1789, 2013.
    doi:10.4028/www.scientific.net/AMM.347-350.1786

    7. Alaukally, M., T. A. Elwi, and D. C. Atilla, "Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting," International Journal of Communication Systems, 2021.

    8. Wong, K.-L. and J.-Y. Wu, "Single-feed small circular polarized square microstrip antenna," Electronic Letters, Vol. 5, 45-46, 1997.

    9. Han, Y. and D. Su, "Design of circularly polarized GPS microstrip antenna with single-feed point," Electronic Measurement Technique, Vol. 11, 50-55, 2006.

    10. Yang, L., L. J. Xu, Y. M. Bo, and M. Zhang, "A single-feed dual-band circularly polarized microstrip antenna with spiral slots," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, China, 2017.

    11. Zhang, J., Microstrip Antenna Theory and Engineering, National Defense Industry Press, Beijing, 1988.

    12. Li, H., S. Fang, and W. Ding, "Low cost high gain microstrip antenna design," Proceedings of the National Antenna Annual Conference 2010, 45-50, Beijing, 2010.

    13. Carrez, F. and J. Vindevoghel, "Experimental study of an integrated linear array microstrip antenna for monolithic fabrication," Microwave and Optical Technology Letters, Vol. 16, 233-236, 1997.
    doi:10.1002/(SICI)1098-2760(199711)16:4<233::AID-MOP11>3.0.CO;2-6

    14. Yuwono, R. and R. Syakura, "2.4 GHz circularly polarized microstrip antenna for RFID application," Advanced Computer and Communication Engineering Technology, 37-42, Berlin, Heidelberg, Springer, 2015.

    15. Daneshmandian, F., P. Dehkhoda, and A. Tavakoli, "A miniaturized circularly polarized microstrip antenna for GPS applications," 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 1653-1656, 2014.
    doi:10.1109/IranianCEE.2014.6999803

    16. Elwi, T. A. and A. M. Al-Saegh, "Further realization of a flexible metamaterial-based antenna on indium nickel oxide polymerized palm fiber substrates for RF energy harvesting," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 1, 1-9, 2020.

    17. Elwi, T. A., D. A. Jassim, and H. H. Mohammed, "Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting," International Journal of Communication Systems, Vol. 33, No. 6, 2020.
    doi:10.1002/dac.4305

    18. Elwi, T. A., Z. Hassain, and O. A. Tawfeeq, "Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Microwaves, Antennas & Propagation, Vol. 13, No. 12, 2185-2192, 2019.
    doi:10.1049/iet-map.2018.5948

    19. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF- energy harvesting applications," AEU --- International Journal of Electronics and Communications, 2019.

    20. Zhong, S., Theory and Application of Microstrip Antenna, Xidian University Press, Xi'an, 1991.

    21. Zhang, R., J. Huang, J. Ding, and G. Zhai, "Compact broadband circularly polarized microstrip antenna with a cross-slotted ground plane," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1753-1754, Atlanta, GA, USA, 2019.

    22. Almizan, H., T. A. Elwi, and Z. Hassain, "Circularly-polarized, wide-range coverage azimuth and elevation angles microstrip antenna for RF harvesting," Journal of Engineering and Sustainable Development, Vol. 24 (special), 191-198, 2020.
    doi:10.31272/jeasd.conf.1.21

    23. Almizan, H., T. A. Elwi, and Z. Hassain, "Circularly-polarized, wide-range coverage azimuth and elevation angles microstrip antenna for RF harvesting," Journal of Engineering and Sustainable Development, Vol. 24 (special), 191-198, 2020.
    doi:10.31272/jeasd.conf.1.21

    24. Meng, F. and S. K. Sharma, "A single feed dual-band (2.4 GHz/5.8 GHz) miniaturized patch antenna for Wireless Local Area Network (WLAN) Communications," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, Beijing, China, 2014.

    25. Meng, F. and S. Sharma, "A single feed dual-band (2.4 GHz/5 GHz) miniaturized patch antenna for Wireless Local Area Network (WLAN) communications," Journal of Electromagnetic Waves and Applications, Vol. 30, 2390-2401, 2016.
    doi:10.1080/09205071.2016.1251854

    26. Chen, H.-R., R.-X. Che, and Y. Shao, "A compact microstrip antenna with 2.4 GHz," Wireless Communication Technology, Vol. 18, 30-32, 2009.

    27. Chen, C., "Design of miniaturized 2.4 GHz microstrip patch antenna," Journal of Taiyuan Normal University (Natural Science Edition), Vol. 13, 66-69, 2014.

    28. Peng, C., T.-B. Yu, H.-B. Li, and P.-C. Xu, "Design and implementation of a novel single-feed microstrip antenna for GPS applications," Journal of Military Communications Technology, Vol. 32, 77-79, 2011.