Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-07
InGaAs HEMT Broadband Microstrip Resistive-Terminated Low Noise Amplifier
By
Progress In Electromagnetics Research M, Vol. 112, 191-203, 2022
Abstract
This paper presents the design, co-simulation, and measurement of a two-stage broadband-cascaded low noise amplifier (LNA) using resistive terminated architecture. This architecture extends the bandwidth of a low-noise amplifier while maintaining a low NF and high flat gain S21. The LNA is designed with planar technology and mounted on an FR4 substrate. The used InGaAs HEMT MGF4918D transistor from Mitsubishi technology has very low noise and operates up to 18 GHz. The reflection coefficient results of the studied LNA are lower than -10 dB. The stability is unconditional over the entire operating band. The measured gain is 14 dB ± 0.75 dB with a minimum NF noise figure of 2.9 ± 0.4 dB. The group delay is 0.605±0.145 ns. The 1 dB compression point is 10.16 dBm, and the third order input intercept point IIP3 is 14.25 dBm. Two-stage cascaded LNA has a total power consumption of 164 mW and occupies an area of 7x1.3 cm2.
Citation
Moustapha El Bakkali, Hanae Elftouh, Naima Amar Touhami, Imane Badaoui, and Mohammed Lamsalli, "InGaAs HEMT Broadband Microstrip Resistive-Terminated Low Noise Amplifier," Progress In Electromagnetics Research M, Vol. 112, 191-203, 2022.
doi:10.2528/PIERM22042606
References

1. Le-Ngoc, T. and A. Masmoudi, Full-duplex Wireless Communications Systems, Springer International Publishing, Cham, 2017, https://doi.org/10.1007/978-3-319-57690-9.
doi:10.1007/978-3-319-57690-9

2. Zhang, D., Z. Tian, and G. Wei, "Spatial capacity of narrowband vs. ultra-wideband cognitive radio systems," IEEE Trans. Wirel. Commun., Vol. 7, 4670-4680, 2008, https://doi.org/10.1109/T-WC.2008.070746.
doi:10.1109/T-WC.2008.070746

3. Zhu, J. and S. S. Kia, "UWB ranging aided pedestrian geolocation with GPB-based filtering for LoS and NLoS measurement processing," 2020 IEEE ION Position Locat. Navig. Symp. PLANS, 781-787, IEEE, Portland, OR, USA, 2020, https://doi.org/10.1109/PLANS46316.2020.9110175.

4. Ling, R. W. C., A. Gupta, A. Vashistha, M. Sharma, and C. L. Law, "High precision UWB-IR indoor positioning system for IoT applications," 2018 IEEE 4th World Forum Internet Things WF-IoT, 135-139, IEEE, Singapore, 2018, https://doi.org/10.1109/WF-IoT.2018.8355162.

5. Yin, Z., X. Jiang, Z. Yang, N. Zhao, and Y. Chen, "WUB-IP: A high-precision UWB positioning scheme for indoor multiuser applications," IEEE Syst. J., Vol. 13, 279-288, 2019, https://doi.org/10.1109/JSYST.2017.2766690.
doi:10.1109/JSYST.2017.2766690

6. Poulose, A., O. S. Eyobu, M. Kim, and D. S. Han, "Localization error analysis of indoor positioning system based on UWB measurements," 2019 Elev. Int. Conf. Ubiquitous Future Netw. ICUFN, 84-88, IEEE, Zagreb, Croatia, 2019, https://doi.org/10.1109/ICUFN.2019.8806041.

7. Kumar, A. R. A., A. Dutta, and B. D. Sahoo, "A low-power reconfigurable narrowband/wideband lna for cognitive radio-wireless sensor network," IEEE Trans. Very Large Scale Integr. VLSI Syst., Vol. 28, 212-223, 2020, https://doi.org/10.1109/TVLSI.2019.2939708.
doi:10.1109/TVLSI.2019.2939708

8. Xie, H., Y. J. Cheng, and Y. Fan, "A K-band high interference-rejection GaAs low-noise amplifier using multizero control method for satellite communication," IEEE Microw. Wirel. Compon. Lett., Vol. 30, 1069-1072, 2020, https://doi.org/10.1109/LMWC.2020.3026075.
doi:10.1109/LMWC.2020.3026075

9. Kim, S. H. and Y. C. Rhee, "Implementation of Ku-band low noise block for global multi-band digital satellite broadcasting," The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 11, 23-28, 2016.
doi:10.13067/JKIECS.2016.11.1.23

10. Marimuthu, J., K. S. Bialkowski, and A. M. Abbosh, "Software-defined radar for medical imaging," IEEE Trans. Microw. Theory Tech., 1-10, 2016, https://doi.org/10.1109/TMTT.2015.2511013.
doi:10.1109/TMTT.2015.2511013

11. Ha, H. K., "CMOS ultrasonic analogue front-end with reconfigurable pulser/switch for medical imaging applications," Electronics Letters, Vol. 51, No. 20, 1564-1566, 2015.
doi:10.1049/el.2015.2440

12. Stefigraf, I. and S. Rajaram, "Layout design of X-band low noise amplifier for radar applications," International Symposium on VLSI Design and Test, 140-156, Springer, Singapore, 2018, doi: 10.1007/978-981-13-5950-7 13.

13. Jeon, S.-Y., K. Nikitin, A. Dewantari, J. Kim, and M.-H. Ka, "Low-noise amplifier protection switch using p-i-n diodes with tunable open stubs for solid-state pulsed radar," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 1004-1006, 2017, https://doi.org/10.1109/LMWC.2017.2750029.
doi:10.1109/LMWC.2017.2750029

14. Feng, C., X. P. Yu, Z. H. Lu, W. M. Lim, and W. Q. Sui, "3-10 GHz self-biased resistive-feedback LNA with inductive source degeneration," Electron. Lett., Vol. 49, 387-388, 2013, https://doi.org/10.1049/el.2012.4472.
doi:10.1049/el.2012.4472

15. Shim, Y., C.-W. Kim, J. Lee, and S.-G. Lee, "Design of full band UWB common-gate LNA," IEEE Microw. Wirel. Compon. Lett., Vol. 17, 721-723, 2007, https://doi.org/10.1109/LMWC.2007.905633.
doi:10.1109/LMWC.2007.905633

16. Kobayashi, K. W., D. Denninghoff, and D. Miller, "A novel 100 MHz-45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 inch 0.15 mm GaN-SiC wafer process technology," IEEE J. Solid-State Circuits, Vol. 51, 2017-2026, 2016, https://doi.org/10.1109/JSSC.2016.2558488.
doi:10.1109/JSSC.2016.2558488

17. Fukui, H., "Optimal noise figure of microwave GaAs MESFE," IEEE Transactions on Electron Devices, Vol. 26, No. 7, 1032-1037, Jul. 1979, doi: 10.1109/T-ED.1979.19541.
doi:10.1109/T-ED.1979.19541

18. Iversen, S., "The effect of feedback on noise figure," Proc. IEEE, Vol. 63, 540-542, 1975, https://doi.org/10.1109/PROC.1975.9784.
doi:10.1109/PROC.1975.9784

19. Friis, H. T., "Noise figures of radio receiver," Proceedings of the IRE, Vol. 32, 419-422, 1994, doi: 10.1109/JRPRO.1944.232049.
doi:10.1109/JRPROC.1944.232049

20. Rollett, J., "Stability and power-gain invariants of linear two ports," IRE Trans. Circuit Theory, Vol. 9, 29-32, 1962, https://doi.org/10.1109/TCT.1962.1086854.
doi:10.1109/TCT.1962.1086854

21. Edwards, M. L. and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Trans. Microw. Theory Tech., Vol. 40, 2303-2311, 1992, https://doi.org/10.1109/22.179894.
doi:10.1109/22.179894

22. Arekapudi, S., E. Iroaga, and B. Murmann, "A low-power distributed wide-band LNA in 0.18 μm CMOS," 2005 IEEE Int. Symp. Circuits Syst., 5055-5058, IEEE, Kobe, Japan, 2005, https://doi.org/10.1109/ISCAS.2005.1465770.

23. Ahn, K., R. Ishikawa, and K. Honjo, "Low noise group delay equalization technique for UWB InGaP/GaAs HBT LNA," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 7, 405-407, Jul. 2010, doi: 10.1109/LMWC.2010.2049441.
doi:10.1109/LMWC.2010.2049441

24. Park, Y., C. Lee, J. D. Cressler, and J. Laskar, "The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation," IEEE Trans. Microw. Theory Tech., Vol. 54, 1687-1697, 2006, https://doi.org/10.1109/TMTT.2006.872000.
doi:10.1109/TMTT.2006.872000

25. Chen, M. and J. Lin, "A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 323-325, 2009, https://doi.org/10.1109/LMWC.2009.2017608.
doi:10.1109/LMWC.2009.2017608

26. Jarndal, A. H. and A. M. Bassal, "A broadband hybrid GaN cascode low noise amplifier for WiMax applications," International Journal of RF and Microwave Computer-aided Engineering, Vol. 2, 2018.

27. Jarndal, A., A. Hussein, G. Crupi, and A. Caddemi, "Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers," Int. J. Numer. Model. Electron. Netw. Devices Fields, Vol. 33, 2020, https://doi.org/10.1002/jnm.2585.

28. El Bakkali, M., N. A. Touhami, and T.-E. Elhamadi, "High gain cascaded GaAs-pHEMT broadband planar low noise amplifier for WiMAX-80.16b application," WITS, 1101-1110, Springe, Singapore, 2022.