Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-27
Transient Thermal Analysis of Human Exposure to Electromagnetic Fields
By
Progress In Electromagnetics Research M, Vol. 112, 93-104, 2022
Abstract
The study of the thermal effect caused by exposure to electromagnetic fields is a focus of this research. To quantify the induced current and temperature distribution in the human body an assessment tool for the frequency range of 50 Hz to 110 MHz has been developed. The major contribution consists of providing a quantitatively accurate and relatively simple model. The formulation of the problem is based on a simplified cylindrical representation defined by the anatomical parameters of the human body. The bio-thermal modeling is carried out in two stages. Firstly, the electromagnetic analysis is based on the transmission lines (TL) theory. Secondly, a thermal modeling based on the thermal networks model (nodal method) is approached. This allows us to quantify the corresponding thermal gradients in the human body.
Citation
Abdelmalek Laissaoui, Ammar Abdi, Mezoued Sabrina, Bachir Nekhoul, and Dragan Poljak, "Transient Thermal Analysis of Human Exposure to Electromagnetic Fields," Progress In Electromagnetics Research M, Vol. 112, 93-104, 2022.
doi:10.2528/PIERM22042402
References

1. "ICNIRP 2020 Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, ICRP 1975 Report of the Task Group on Reference Man Vol. 23, Pergamon, Oxford, 1975.

2. IEEE-C95.1 2019 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 0 Hz to 300 GHz, IEEE, NY, USA.

3. Dogan, H., I. B. Basyigit, S. Ozen, and S. Helhel, "EMF exposure and SAR analysis in the cow tissues," International Journal of Scientific Engineering and Science, Vol. 1, No. 12, 15-18, 2017.

4. Helhel, S., S. Ozen, I. B. Basyigit, O. Kurnaz, Y. E. Yoruk, and M. Bitirgan, "Radiated susceptibility of medical equipment in health care units: 2G AND 3G mobile phones as an interferer," Microwave and Optical Technology Letters, Vol. 53, No. 11, 2657-2661, November 2011.
doi:10.1002/mop.26321

5. Poljak, D. and V. Roje, "Currents induced in human body exposed to the power line electromagnetic field," Proceedings of the 20th Annual International Conference of the IEEE, Vol. 6, 3281-3284, Engineering in Medicine and Biology Society, IEEE, 1998.

6. Zhang, H. H., et al., "Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 9, 1584-1587, September 2018.
doi:10.1109/LAWP.2018.2856365

7. Gandhi, O. P. and J. Chen, "Numerical dosimetry at power-line frequencies using anatomically based models," Bioelectromagnetics, Vol. 13, No. S1, 43-60, 1992.
doi:10.1002/bem.2250130706

8. Laissaoui, A., B. Nekhoul, K. Kerroum, K. El Khamlichi Drissi, and D. Poljak, "On the rotationally-cylindrical model of the human body exposed to elf electric fild," Progress In Electromagnetics Research M, Vol. 29, 165-179, 2013.
doi:10.2528/PIERM13012812

9. Laissaoui, A., B. Nekhoul, S. Mezoued, and D. Poljak, "Assessment of the human exposure to transient and time-harmonic fields using the enhanced transmission line theory approach," AUTOMATIKA, Vol. 58, No. 4, 355-362, 2018.
doi:10.1080/00051144.2018.1435341

10. Paul, C. R., Analysis of Multiconductor Transmission Lines, 641-692, Wiley Interscience, New York, NY, 1994.

11. Paul, C. R., "A spice model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Trans. Electromagnet. Compat., Vol. 36, No. 4, 342-354, 1994.
doi:10.1109/15.328864

12. Taylor, C. D., R. S. Satterwhite, C. W. Harrison, and Jr., "The response of terminated two-wire transmission line excited by a non uniform electromagnetic field," IEEE Transactions on Antennas and Propagation, Vol. 13, 987-989, 1965.
doi:10.1109/TAP.1965.1138574

13. King, R. W. P. and S. S. Sandler, "Electric fields and currents induced in organs of the human body when exposed to ELF and VLF electromagnetic fields," Radio Science, Vol. 31, No. 5, 1153-1167, 1996.
doi:10.1029/96RS01313

14. Bates, J. J. and A. Tustin, "Temperature rises in electrical machines as related to the properties of the thermal networks," Proceeding IEE, Vol. 103, No. 11, 471-482, 1956.

15. Kotnik, R. L., "An equivalent thermal circuit for non-ventilated induction motors," Transactions AIEE, Vol. 73, 1604-1609, 1954.

16. Kibret, B., A. K. Teshome, and D. T. H. Lai, "Cylindrical antenna theory for the analysis of whole-body averaged specific absorption rate," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5224-5229, November 2015.
doi:10.1109/TAP.2015.2478484

17. Ametani, A., Y. Kasai, J. Sawada, et al. "Frequency dependent impedance of vertical conductors and a multiconductor tower model," IEE Proc. --- Gener. Trans. Distrib., Vol. 141, No. 4, 339-345, 1994.
doi:10.1049/ip-gtd:19949988

18. Poljak, D., "Average power and total energy absorbed in the human body exposed to transient fields," Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (MELECON), Vol. 2, 507-510, Dubrovnik, Croatia, May 12-15, 2004.

19. Dielectric Properties of the Body Tissues, http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm.

20. Poljak, D., C. Y. Tham, O. Gandhi, et al. "Human equivalent antenna model for transient electromagnetic radiation exposure," IEEE Trans. Electromagnet. Compact., Vol. 45, No. 1, 141-145, 2003.
doi:10.1109/TEMC.2002.808042

21. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Phys., Vol. 85, No. 1, 5-34, July 1998.

22. Zhang, H. H., Y. Liu, X. Y. Z. Xiong, G. M. Shi, C. Y. Wang, and W. E. I. Sha, "Investigating thermal cooling mechanisms of human body under exposure to electromagnetic radiation," IEEE Access, Vol. 7, 9697-9703, 2019.
doi:10.1109/ACCESS.2019.2891696

23. Fan, J., C. Zhang, Z. Wang, Y. Dong, C. E. Nino, A. R. Tariq, and E. G. Strangas, "Thermal analysis of permanent magnet motor for the electric vehicle application considering driving duty cycle," IEEE Transactions on Magnetics, Vol. 46, No. 6, 2493-2496, 2010.
doi:10.1109/TMAG.2010.2042043

24. Mellor, P. H., D. Roberts, and D. R. Turner, "Lumped parameter model for electrical machines of TEFC design," IEE Proceeding --- B, Vol. 138, No. 5, 205-218, September 1991.

25. Chai, T. and R. R. Draxler, "Root Mean Square Error (RMSE) or Mean Absolute Error (MAE) --- Arguments against avoiding RMSE in the literature," Geoscientific Model Development, Vol. 7, No. 3, 1247-1250, 2014.
doi:10.5194/gmd-7-1247-2014