Vol. 111

Latest Volume
All Volumes
All Issues
2022-06-03

Generalized Design Methodology of Highly Efficient Quad-Furcated Profiled Horns with Larger Apertures

By Charalampos Stoumpos, Jean-Philippe Fraysse, George Goussetis, Ronan Sauleau, and Hervé Legay
Progress In Electromagnetics Research M, Vol. 111, 1-12, 2022
doi:10.2528/PIERM22041107

Abstract

In this work we demonstrate the extended and generalized methodology for the design of Quad-Furcated Profiled Horns (Q-FPHs). Based on a design case of a 4λ0×4λ0 Q-FPH, we extract the Generalized Scattering Matrix (GSM) of the enlarged quad-furcated discontinuity and provide analytical expressions for its multimode feeding. Next, the four feeding and the upper common waveguide sections are optimized accordingly through Mode-Matching (MM). The high aperture efficiency levels delivered by the methodology are verified by full-wave simulations of the optimized design case and compared to the state-of-the-art which is thereby redefined.

Citation


Charalampos Stoumpos, Jean-Philippe Fraysse, George Goussetis, Ronan Sauleau, and Hervé Legay, "Generalized Design Methodology of Highly Efficient Quad-Furcated Profiled Horns with Larger Apertures," Progress In Electromagnetics Research M, Vol. 111, 1-12, 2022.
doi:10.2528/PIERM22041107
http://jpier.org/PIERM/pier.php?paper=22041107

References


    1. Shafai, L., S. K. Sharma, and S. Rao, Handbook of Reflector Antennas and Feed Systems: Feed Systems, Vol. 2, Artech House Antennas and Propagation Library, Artech House, Norwood, MA, USA, 2013.

    2. Chan, K. K. and S. K. Rao, "Design of high efficiency circular horn feeds for multibeam reflector applications," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 253-258, Jan. 2008.
    doi:10.1109/TAP.2007.913172

    3. Bhattacharyya, A. K. and G. Goyette, "A novel horn radiator with high aperture efficiency and low cross-polarization and applications in arrays and multibeam reflector antennas," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2850-2859, Nov. 2004.
    doi:10.1109/TAP.2004.835233

    4. Catalani, A., L. Russo, O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, D. Pinchera, and G. Toso, "Sparse arrays for satellite communications: From optimal design to realization," 32nd ESA Antenna Workshop, Noordwijk, The Netherlands, Oct. 5-10, 2010.

    5. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
    doi:10.2528/PIER08061806

    6. Sotoudeh, O., P.-S. Kildal, P. Ingvarson, and S. P. Skobelev, "Single- and dual-band multimode hard horn antennas with partly corrugated walls," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 330-339, Feb. 2006.
    doi:10.1109/TAP.2005.863389

    7. Lier, E., D. H. Werner, and T. S. Bird, "The evolution from metal horns to metahorns: The development of EM horns from their inception to the present day," IEEE Antennas Propag. Mag., Vol. 61, No. 4, 6-18, Aug. 2019.
    doi:10.1109/MAP.2019.2920098

    8. Fraysse, J.-P., C. Stoumpos, H. Legay, and S. Tubau, "Multiple-port radiating element,", US Patent, Pub. No. US 2020/0176878 A1, Jun. 4, 2020.

    9. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, C. G. González, and H. Legay, "Compact and highly efficient single and dual polarized aperture antennas with integrated multiport overmoded excitation," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP'21), 1-5, Mar. 2021.

    10. Stoumpos, C., J.-P. Fraysse, G. Goussetis, C. G. González, R. Sauleau, and H. Legay, "Highly efficient broadband pyramidal horn with integrated H-plane power division," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1499-1504, Feb. 2022.
    doi:10.1109/TAP.2021.3111276

    11. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, and H. Legay, "Quad-furcated profiled horn: The next generation highly efficient GEO antenna in additive manufacturing," IEEE Open J. Antennas Propag., Vol. 3, 69-82, 2022.
    doi:10.1109/OJAP.2021.3134833

    12. Rao, S. K. and C. Ostroot, "Design principles and guidelines for phased array and reflector antennas," IEEE Antennas Propag. Mag., Vol. 62, No. 2, 74-81, Apr. 2020.
    doi:10.1109/MAP.2020.2969261

    13. Angeletti, P., G. Toso, and G. Ruggerini, "Array antennas with jointly optimized elements positions and dimensions. Part II: Planar circular arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1627-1639, Apr. 2014.
    doi:10.1109/TAP.2013.2281519

    14. Nadarassin, M., et al., "PAFSR reconfigurable antenna feed array design," Proc. 15th Int. Symp. Antenna Technol. Appl. Electromagn., 1-6, Jun. 2012.

    15. Polo-López, L., J. Córcoles, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, "On the theoretical maximum directivity of a radiating aperture from modal field expansions," IEEE Trans. Antennas Propag., Vol. 67, No. 4, 2781-2786, Apr. 2019.
    doi:10.1109/TAP.2019.2896660

    16. Mician μWave Wizard, MICIAN GmbH. [Online]. Available: www.mician.com.

    17. ANSYS HFSS, 3D Full-wave Electromagnetic Field Simulation by Ansoft. [Online]. Available: www.ansys.com.

    18. Computer Simulation Technology (CST). Accessed on: January 12, 2021. [Online]. Available: www.3ds.com.

    19. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, C. G. González, T. Pierré, and H. Legay, "Four-way orthomode waveguide power dividers: Subtractive and additive manufacturing," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP'21), 1-5, Mar. 2021.