Vol. 113

Latest Volume
All Volumes
All Issues
2022-09-16

A Tri-Band Miniaturized Antenna Using Fractal Defected Ground Structure for C/X and Ku-Band Applications

By Kakani Suvarna, Nallagarla Ramamurthy, and Dupakuntla Vishnu Vardhan
Progress In Electromagnetics Research M, Vol. 113, 115-128, 2022
doi:10.2528/PIERM22032301

Abstract

In this article, a miniaturized antenna with a Koch fractal defected ground structure (KFDGS) is proposed for C/X and Ku-band applications. The performance of an inset-fed lambda/2 patch antenna is examined using an iterated KFDGS etched on the ground plane. A conventional antenna operated at 16 GHz with a return loss of -34.31 dB is constructed, followed by a tri-band miniaturized antenna operating at 6.35, 9, and 13.05 GHz with a return loss of -22.41, -25.05, and -28.54 dB in order to achieve miniaturization of 60.31%, 43.75%, and 18.43% respectively. An antenna is designed on a Roger RT Duroid substrate, fabricated, and tested with dimensions of 12×14×0.8 mm3, and its impact on reduction in size performance has been evaluated with measured peak directivity and gain of 3.07 and 2.80 dBi at 6.35 GHz, 4.78 and 4.65 dBi at 9 GHz, and 7.73 and 7.76 dBi at 13.05 GHz, respectively. A good agreement is found between the measurements and simulations.

Citation


Kakani Suvarna, Nallagarla Ramamurthy, and Dupakuntla Vishnu Vardhan, "A Tri-Band Miniaturized Antenna Using Fractal Defected Ground Structure for C/X and Ku-Band Applications," Progress In Electromagnetics Research M, Vol. 113, 115-128, 2022.
doi:10.2528/PIERM22032301
http://jpier.org/PIERM/pier.php?paper=22032301

References


    1. Fallahpour, M. and R. Zoughi, "Antenna miniaturization techniques: A review of topology- and material-based methods," IEEE Antennas and Propagation Magazine, Vol. 60, No. 1, 38-50, Feb. 2018.
    doi:10.1109/MAP.2017.2774138

    2. Ghosh, B., S. M. Haque, D. Mitra, and S. Ghosh, "A loop loading technique for the miniaturization of non-planar and planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2116-2121, Jun. 2010.
    doi:10.1109/TAP.2010.2046842

    3. Ghosh, B., S. K. Moinul Haque, and N. Rao Yenduri, "Miniaturization of slot antennas using wire loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 488-491, 2013.
    doi:10.1109/LAWP.2013.2255857

    4. Ghosh, B., S. M. Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3922-3927, Oct. 2011.
    doi:10.1109/TAP.2011.2163754

    5. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 672-676, May 1996.
    doi:10.1109/8.496253

    6. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, 691-707, Mar. 2008.
    doi:10.1109/TAP.2008.916949

    7. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the I.R.E, Vol. 35, 1479-1484, Dec. 1947.

    8. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
    doi:10.1063/1.1715038

    9. Haque, S. K. M. and K. M. Parvez, "Slot antenna miniaturization using slit, strip, and loop loading techniques," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2215-2221, May 2017.
    doi:10.1109/TAP.2017.2684191

    10. Jahani, S., M. J. Rashed, and M. Shahabadi, "Miniaturization of circular patch antennas using MNG metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 9, 1194-1196, 2010.

    11. Khan, M. U., S. S. Mohammad, and R. Mittra, "Microstrip patch antenna miniaturization techniques: A review," IET Microwave Antennas and Propagation, Vol. 9, No. 9, 913-922, 2015.
    doi:10.1049/iet-map.2014.0602

    12. Shrestha, S., S. R. Lee, and D. Y. Choi, "A new fractal-based miniaturized dual band patch antenna for RF energy harvesting," International Journal of Antennas and Propagation, 1-9, 2014.
    doi:10.1155/2014/805052

    13. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 891-901, May 2017.
    doi:10.1017/S1759078716000726

    14. Bharath Reddy, G., M. H. Adhithya, and D. Sriram Kumar, "Miniaturization of microstrip slot antenna using high refractive index metamaterial based on single ring split ring resonator," Progress In Electromagnetics Research Letters, Vol. 93, 115-122, 2020.
    doi:10.2528/PIERL20060601

    15. Sharma, N. and V. Sharma, "A design of Microstrip Patch Antenna using hybrid fractal slot for wideband applications," Ain Shams Engineering Journal, Vol. 9, No. 4, 2491-2497, Dec. 2018.
    doi:10.1016/j.asej.2017.05.008

    16. Ao, J., J. Huang, W. Wu, and N. Yuan, "A miniaturized Vivaldi antenna by loading with parasitic patch and lumped resistor," AEU: International Journal of Electronics and Communications, Vol. 81, 158-162, Nov. 2017.

    17. Er Rebyiy, R., J. Zbitou, M. Latrach, A. Tajmouati, A. Errkik, and L. E. L. Abdellaoui, "New miniature planar microstrip antenna using DGS for ISM applications," Telkomnika, Vol. 15, No. 3, 1149-1154, Sep. 2017.
    doi:10.12928/telkomnika.v15i3.6864

    18. Oulhaj, O., N. A. Touhami, M. Aghoutane, and A. Tazon, "A miniature microstrip patch antenna array with defected ground structure," International Journal of Microwave and Optical Technology, Vol. 11, No. 1, 32-39, Jan. 2016.

    19. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
    doi:10.2528/PIERL15031003

    20. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
    doi:10.2528/PIERC14092302

    21. Ghaloua, A., J. Zbitou, L. El Abdellaoui, M. Latrach, A. Tajmouati, and A. Errkik, "A novel configuration of a miniature printed antenna array based on defected ground structure," International Journal of Intelligent Engineering and Systems, Vol. 12, No. 1, 211-220, 2019.
    doi:10.22266/ijies2019.0228.21

    22. Huang, Y. and K. Boyle, Antennas from Theory to Practice, John Wiley & Sons Ltd, UK, 2008.

    23. Volakis, J. L., C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill, New York, NY, 2010.

    24. Hansen, R. C. and R. E. Collin, Small Antenna Handbook, Wiley, Hoboken, NJ, 2011.
    doi:10.1002/9781118106860

    25. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, 2011.
    doi:10.1109/TAP.2011.2152322

    26. Elavarasi, C. and T. Shanmuganantham, "Multiband SRR loaded Koch star fractal antenna," Alexandria Engineering Journal, Vol. 57, No. 3, 1549, 2018.
    doi:10.1016/j.aej.2017.04.001

    27. Swetha, A. and K. Rama Naidu, "Miniaturized planar antenna with enhanced gain characteristics for 5.2 GHz WLAN application," International Journal of Electronics, Vol. 108, No. 12, 2137-2154, 2021.
    doi:10.1080/00207217.2021.1908612

    28. Meena, M. L., M. Kumar, G. Parmar, and R. S. Meena, "Design analysis and modeling of UWB antenna with elliptical slotted ground structure for applications in C- & X-bands," Progress In Electromagnetics Research C, Vol. 63, 193-207, 2016.
    doi:10.2528/PIERC16030804