Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-06

Multifunction Cross Polarization Converter Based on Ultra-Thin Transmissive Chiral Metasurface in C and X Bands

By Jiayu Yu, Qiu-Rong Zheng, Bin Zhang, Huan Jiang, and Kun Zou
Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022
doi:10.2528/PIERM22021201

Abstract

Polarization is an essential feature of electromagnetic (EM) waves, and the variety and simplicity of polarization conversion have substantial demands in wireless systems. Metasurfaces, two-dimensional artificial electromagnetic structures, are emerging as novel modulation solutions for EM waves. In this work, a multifunction polarization converter based on a transmissive metasurface (MPC-TMS) is suggested. This planar structure is made up of a copper-clad dielectric substrate with top and bottom orthogonal slotted sheets joined by a metal via. With frequency selectivity, x- and y-linear cross-polarization transformations are efficiently achieved between 8.04-8.82 GHz (9.25%) and 7.04-9.07 GHz (25.19%), respectively. Meanwhile, the presented microstructure is capable of rotating a circularly polarized incident wave into its opposite handedness from 8.16 to 8.87 GHz (8.46%). Both peak transmission efficiency and the polarization conversion ratio exceed 0.95 simultaneously. In addition, resonance superposition and coupling effects are investigated to explain the operating mechanism. This microstructure not only has a simple construction with an ultra-thin thickness (0.06λ), but also reveals superiorities in bandwidth, transmission, and efficiency. To verify the above quadruple polarization conversion, measurement has been implemented, and the results are reasonably accordant with simulation, suggesting that the low-profile converter is conducive to future telecommunication design where polarization diversity is needed.

Citation


Jiayu Yu, Qiu-Rong Zheng, Bin Zhang, Huan Jiang, and Kun Zou, "Multifunction Cross Polarization Converter Based on Ultra-Thin Transmissive Chiral Metasurface in C and X Bands," Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022.
doi:10.2528/PIERM22021201
http://jpier.org/PIERM/pier.php?paper=22021201

References


    1. Doumanis, E., G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, "Anisotropic impedance surfaces for linear to circular polarization conversion," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 212-219, 2012.
    doi:10.1109/TAP.2011.2167920

    2. Zhao, J., J. Song, Y. Zhou, R. Zhao, and J. Zhou, "Dual-polarization, tunable breaking window in the polarization conversion pass band in a terahertz dirac semimetal-based metamaterial," IEEE Photon. J., Vol. 11, No. 6, 1-9, 2019.

    3. Fernandez, O., A. Gomez, J. Basterrechea, and A. Vegas, "Reciprocal circular polarization handedness conversion using chiral metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2307-2310, 2017.
    doi:10.1109/LAWP.2017.2715830

    4. Jiang, X., Z. Zhang, Y. Li, and Z. Feng, "A planar wideband dual-polarized array for active antenna system," IEEE Antennas Wireless Propag. Lett., Vol. 13, 544-547, 2014.
    doi:10.1109/LAWP.2014.2311583

    5. Van Den Broek, G. and J. Van Der Vooren, "On the reflection properties of periodically supported metallic wire gratings with rectangular mesh showing small sag," IEEE Trans. Antennas Propag., Vol. 19, 109-113, 1971.
    doi:10.1109/TAP.1971.1139874

    6. Liu, W., Y. Li, Z. Zhang, and Z. Feng, "A bidirectional array of the same left-handed circular polarization using a special substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1543-1546, 2013.
    doi:10.1109/LAWP.2013.2292587

    7. Zhou, H., W. Hong, L. Tian, and M. Jiang, "A polarization-rotating SIW reflective surface with two sharp band edges," IEEE Antennas Wireless Propag. Lett., Vol. 15, 130-134, 2016.
    doi:10.1109/LAWP.2015.2433174

    8. Arnieri, E., F. Greco, L. Boccia, and G. Amendola, "A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3730-3738, 2020.
    doi:10.1109/TAP.2020.2963901

    9. Muhammad, S. A., R. Sauleau, L. Le Coq, and H. Legay, "Self-generation of circular polarization using compact Fabry-Perot cavity antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 907-910, 2011.
    doi:10.1109/LAWP.2011.2166989

    10. Xie, P., G. Wang, H. Li, J. Liang, and X. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
    doi:10.1109/TAP.2019.2950811

    11. Pitilakis, A., O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos, M. A. Antoniades, J. Georgiou, C. M. Soukoulis, M. Kafesaki, and S. A. Tretyakov, "A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1440-1454, 2021.
    doi:10.1109/TAP.2020.3016479

    12. Shen, C., R. Xu, J. Sun, Z. Wang, and S. Wei, "Metasurface-based holographic display with all-dielectric meta-axilens," IEEE Photon. J., Vol. 13, No. 5, 1-5, 2021.
    doi:10.1109/JPHOT.2021.3107442

    13. Kato, Y., S. Morita, H. Shiomi, and A. Sanada, "Ultrathin perfect absorbers for normal incident waves using dirac cone metasurfaces with critical external coupling," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 4, 383-386, 2020.
    doi:10.1109/LMWC.2020.2979708

    14. Zhou, G.-N., B.-H. Sun, Q.-Y. Liang, Y.-H. Yang, and J.-H. Lan, "Beam-deflection short backfire antenna using phase-modulated metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 546-551, 2020.
    doi:10.1109/TAP.2019.2934832

    15. Murugesan, A., D. Natarajan, and K. T. Selvan, "Low-cost, wideband checkerboard metasurfaces for monostatic RCS reduction," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 4, 493-497, 2021.
    doi:10.1109/LAWP.2021.3054863

    16. Dalgac, S., M. Bakir, F. Karadag, M. Karaaslan, O. Akgol, E. Unal, and C. Sabah, "Microfluidic sensor applications by using chiral metamaterial," Modern Physics Letters B, Vol. 34, No. 5, 2020.
    doi:10.1142/S0217984920500311

    17. Dalgac, S., M. Bakir, F. Karadag, E. Unal, M. Karaaslan, and C. Sabah, "Characterization of chiral metamaterial sensor with high sensitivity," Optik, Vol. 202, 2020.

    18. Dalgac, S., F. Karadag, M. Bakir, O. Akgol, E. Unal, and M. Karaaslan, "Chiral metamaterial-based sensor applications to determine quality of car lubrication oil," Transactions of the Institute of Measurement and Control, Vol. 43, No. 7, 1640-1649, 2021.
    doi:10.1177/0142331220976104

    19. Xu, P., W. X. Jiang, S. Y. Wang, and T. J. Cui, "An ultrathin cross-polarization converter with near unity efficiency for transmitted waves," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4370-4373, 2018.
    doi:10.1109/TAP.2018.2839972

    20. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3522-3530, 2015.
    doi:10.1109/TAP.2015.2434392

    21. Murtaza, M., A. Rashid, and F. A. Tahir, "A highly efficient low-cost reflective anisotropic metasurface for linear to linearly cross- and circular-polarization conversion," Microw. Opt. Technol. Lett., Vol. 63, No. 5, 1346-1353, 2020.
    doi:10.1002/mop.32748

    22. Han, B., S. Li, X. Cao, J. Han, L. Jidi, and Y. Li, "Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously," AIP Advances, Vol. 10, No. 12, 2020.
    doi:10.1063/5.0034762

    23. Meng, C., P. C. V. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, and S. I. Bozhevolnyi, "Dynamic piezoelectric MEMS-based optical metasurfaces," Science Advances, Vol. 7, No. 26, 2021.
    doi:10.1126/sciadv.abg5639

    24. Cheng, Y. Z., W. Y. Li, and X. S. Mao, "Triple-band polarization angle independent 90 degrees polarization rotator based on Fermat's spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
    doi:10.2528/PIER18112603

    25. Song, K., Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, "Broadband and high-efficiency transmissive-type nondispersive polarization conversion meta-device," Opt. Mater. Express, Vol. 8, No. 8, 2018.
    doi:10.1364/OME.8.002430

    26. Wang, S.-Y., W. Liu, and W. Geyi, "A circular polarization converter based on in-linked loop antenna frequency selective surface," Appl. Phys. B, Vol. 124, No. 6, 2018.

    27. Cui, Z. T., Z. Y. Xiao, M. M. Chen, F. Lv, and Q. D. Xu, "A transmissive linear polarization and circular polarization cross polarization converter based on all-dielectric metasurface," J. Electron. Mater., Vol. 50, No. 7, 4207-4214, 2021.
    doi:10.1007/s11664-021-08944-2

    28. Fei, P., G. A. E. Vandenbosch, W. H. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, and X. Chen, "Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations," Adv. Opt. Mater., Vol. 8, No. 13, 2020.
    doi:10.1002/adom.202000194

    29. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classi cation of periodic metamaterials," Phys. Rev. A, Vol. 82, No. 5, 2010.
    doi:10.1103/PhysRevA.82.053811

    30. Naseri, P., F. Khosravi, and P. Mousavi, "Antenna-filter-antenna-based transmit-array for circular polarization application," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1389-1392, 2017.
    doi:10.1109/LAWP.2016.2638469

    31. Wang, S. Y., W. Liu, and W. Geyi, "Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface," Sci. Rep., Vol. 8, No. 1, 3791, 2018.
    doi:10.1038/s41598-018-22092-4

    32. Xie, P., G. M. Wang, H. P. Li, J. G. Liang, and X. J. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
    doi:10.1109/TAP.2019.2950811

    33. Akram, M. R., M. Q. Mehmood, X. D. Bai, R. H. Jin, M. Premaratne, and W. R. Zhu, "High efficiency ultrathin transmissive metasurfaces," Adv. Opt. Mater., Vol. 7, No. 11, 2019.
    doi:10.1002/adom.201801628

    34. Yu, Y. Z., F. J. Xiao, I. D. Rukhlenko, and W. R. Zhu, "High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface," AEU - Int J. Electron. C, Vol. 118, 2020.