Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-02-08

Ultra-Wideband CPW Fed Band-Notched Monopole Antenna Optimization Using Machine Learning

By Pinku Ranjan, Ankit Maurya, Harshit Gupta, Swati Yadav, and Anand Sharma
Progress In Electromagnetics Research M, Vol. 108, 27-38, 2022
doi:10.2528/PIERM21122802

Abstract

In this article, a compact Coplanar Waveguide (CPW) fed band-notched monopole antenna is designed and optimized. The unique feature of this article is to provide an approach for designing an antenna in the best way using machine learning techniques. Machine Learning can be used to speed up the antenna design process. There are five algorithms employed: Decision Tree, Random Forest, XGB Regression, K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN). Among all algorithms, KNN gives the best result with accuracy up to 98%. From the obtained result, we can estimate the dimensions of the desired parameters, which could not be done previously by High Frequency Structure Simulator (HFSS) Electromagnetic (EM) simulator. The optimized antenna design is also fabricated and tested, which confirms its frequency range between 2.9 and 21.6 GHz. Stable radiation features in between the operating frequency range makes it suitable for Ultra-Wideband (UWB) applications.

Citation


Pinku Ranjan, Ankit Maurya, Harshit Gupta, Swati Yadav, and Anand Sharma, "Ultra-Wideband CPW Fed Band-Notched Monopole Antenna Optimization Using Machine Learning," Progress In Electromagnetics Research M, Vol. 108, 27-38, 2022.
doi:10.2528/PIERM21122802
http://jpier.org/PIERM/pier.php?paper=21122802

References


    1., , Revision of Part 15 of the Commission's rules regarding ultra-wide-band transmission systems First report and order FCC 02.V48, Federal Communications Commission, Washington, DC, 2002.
    doi:10.1049/iet-map:20070100

    2. Chang, K., H. Kim, and Y. J. Yoon, "Ultra-wideband antenna with improved gain characteristics," IET Microwaves, Antennas Propagation, Vol. 2, No. 5, 512-517, August 2008.
    doi:10.1049/iet-map:20070100

    3. Malekpour, H. and S. Jam, "Enhanced bandwidth of shorted patch antennas using folded-patch techniques," IEEE Antenna and Wireless Propagation Letters, 198-201, 2013.
    doi:10.1109/LAWP.2013.2244555

    4. Kim, G. H. and T. Y. Yun, "Compact ultrawideband monopole antenna with an inverted-L-shaped coupled strip," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 1291-1294, 2013.
    doi:10.1109/LAWP.2013.2283863

    5. Chen, S. J., et al., "A compact highly efficient and flexible polymer ultra-wideband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1207-1210, December 2015.
    doi:10.1109/LAWP.2015.2398424

    6. Ranjan, P. and H. Gupta, "Investigation of dual-band rectangular dielectric resonator antenna with DGS for wireless applications," 2021 IEEE Bombay Section Signature Conference (IBSSC), 1-4, 2021.
    doi:10.1109/LAWP.2013.2244055

    7. Gautam, A. K., S. Yadav, and B. K. Kanaujia, "A CPW fed compact UWB microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 151-154, 2013.
    doi:10.1109/LAWP.2013.2244055

    8. Gao, P., S. He, X. Wei, Z. Xu, N. Wang, and Y. Zheng, "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 376-379, 2014.
    doi:10.1109/LAWP.2014.2305772

    9. Zhu, F., et al., "Miniaturized tapered slot antenna with signal rejection in 5-6 GHz band using a balun," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 507-510, 2012.

    10. Gautam, A. K., Indu, and B. K. Kanaujia, "Dual band-notched rectangular monopole antenna for ultra wideband application," Microwave and Optical Technology Letters, 12, December 2013.
    doi:10.1002/mop.28913

    11. Rajeshkumar, V. and S. Raghavan, "Bandwidth enhanced compact fractal antenna for UWB application with 5-6 GHz band rejection," Microwave and Optical Technology Letters, Vol. 57, 607-613, 2015.
    doi:10.1002/mop.28913

    12. Devi, M., A. K. Gautam, and B. K. Kanaujia, "A compact ultra wideband antenna with triple band-notch characteristics," International Journal of Microwave and Wireless Technologies, 2015.
    doi:10.1109/LAWP.2012.2192900

    13. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas and Wireless Propagation Letters, 411-414, December 2012.
    doi:10.1109/LAWP.2012.2192900

    14. Wu, Q., Y. Cao, H. Wang, and W. Hong, "Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges," China Communications, Vol. 17, No. 4, 152-164, 2020.
    doi:10.23919/JCC.2020.04.014

    15. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 6052-6057, September 2021.
    doi:10.1109/TAP.2021.3069491

    16. Shi, M., L. Cui, H. Liu, M. Lv, and X. Sun, "A new UWB antenna with band-notched characteristics," Progress In Electromagnetics Research M, Vol. 74, 201-209, 2018.
    doi:10.2528/PIERM18081002

    17. Saed, M. and R. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
    doi:10.2528/PIER05041401

    18. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Transactions on Antennas and Propagation, 3292-3301, 2016.
    doi:10.1109/TAP.2016.2570254

    19. Rezaeieh, S. A. and M. Abbak, "A novel compact antenna enhanced with variable notches," Microwave and Optical Technology Letters, 946-949, 2012.
    doi:10.1002/mop.26716

    20. Sarkar, M., S. Dwari, and A. Daniel, "Compact printed monopole antenna for ultra-wideband application with dual bandnotched characterstic," Microwave and Optical Technology Letters, 946-949, 2013.

    21. Rahman, M., M. Nageshvara Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics MDPI, 2019.
    doi:10.1109/TAP.2020.2966051

    22. Sharma, Y., H. H. Zhang, and H. Xin, "Machine learning techniques for optimizing design of double T-shaped monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5658-5663, 2020.
    doi:10.1109/TAP.2020.2966051

    23. El Misilmani, Hilal M., Tarek Naous, and Salwa K. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e22356, 2020.
    doi:10.1002/mmce.22356

    24. Chauhan, N. S., Decision Tree Algorithm - Explained, towards data science, [Online], Available: https://towardsdatascience.com/decision-tree-algorithm-explained-83beb6e78ef4.
    doi:10.1023/A:1010933404324

    25. Breiman, L., "Random forests," Machine Learning, Vol. 45, No. 1, 5-32, 2001.
    doi:10.1023/A:1010933404324

    26., , Vishal MordeXGBoost Algorithm - Explained, towards data science, [Online], Available: https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d.
    doi:10.1109/TAP.2020.3001743

    27. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6858-6866, October 2020.
    doi:10.1109/TAP.2020.3001743

    28. Sallam, T., A. B. Abdel-Rahman, M. Alghoniemy, Z. Kawasaki, and T. Ushio, "A neural-network-based beamformer for phased array weather radar," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 9, 5095-5104, September 2016.
    doi:10.1109/TGRS.2016.2554116

    29. Wang, J. R., W. J. Liu, and M. S. Tong, "An artificial neural network based design of triple-band microstrip patch antenna for WLAN applications," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.

    30., , Training and Test Sets: Splitting Data. Machine Learning Crash Course, [Online], Available: https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data.