Vol. 107
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-10
X-Band Multilayer Butler Matrix and SIW Multi-Beam Antenna: Analysis and Design
By
Progress In Electromagnetics Research M, Vol. 107, 79-89, 2022
Abstract
This article presents a new Butler matrix made on stacked Printed Circuit Boards (PCBs). The matrix is based on Substrate Integrated Waveguides (SIW) and microstrip lines. Transitions using through metallic vias are designed and optimized for the crossover sections of the matrix. The other components of the circuit are as follows: 3-dB SIW directional coupler, 45° phase-shifter, and SIW dual-slot linear antenna array. Different sections of the matrix were simulated, fabricated, and tested. Using the full structure with radiating elements, we obtained good numerical and experimental results in terms of radiations patterns for the different beam directions, impedance matching, and isolation between the input ports.
Citation
Moustapha Mbaye, Larbi Talbi, Siwar Louati, Khelifa Hettak, and Halim Boutayeb, "X-Band Multilayer Butler Matrix and SIW Multi-Beam Antenna: Analysis and Design," Progress In Electromagnetics Research M, Vol. 107, 79-89, 2022.
doi:10.2528/PIERM21101405
References

1. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beamforming techniques for scanned and multiple beam antennas," IEE Proc., Vol. 137, No. 5, 293-303, 1990.

2. El-Zooghby, A., "Potentials of smart antennas in CDMA systems and uplink improvements," IEEE Antennas Propag. Mag., Vol. 43, No. 5, 172-177, Oct. 2001.

3. Egami, S. and M. Kawai, "An adaptive multiple beam system concepts," IEEE Journal on Selected Areas in Communications, Vol. 5, No. 4, 630-636, May 1987.
doi:10.1109/JSAC.1987.1146577

4. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114

5. Shelton, J. P., "Focusing characteristics of symmetrically configured bootlace lenses," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 513-518, Jul. 1978.
doi:10.1109/TAP.1978.1141883

6. Herd, J. S. and D. M. Pozar, "Design of a microstrip antenna array fed by a Rotman lens," IEEE AP-S International Symposium, Vol. 22, 729-732, Jun. 1984.

7. Blass, J., "Multi-directional antenna: New approach top stacked beams," IRE Int. Convention Record, 48-50, 1960.
doi:10.1109/IRECON.1960.1150892

8. Nolen, J., "Synthesis of multiple-beam networks for arbitrary illuminations,", Ph.D. dissertation, Bendix Corporation, Radio Division, Baltimore, MD, Apr. 1965.

9. Butler, J. and R. Lowe, "Beam-forming matrix simplifies the design of electrically scanned antennas," Electron Design, 170-173, 1961.

10. White, W., "Pattern limitations in multiple-beam antennas," IRE Trans. Antennas Propag., Vol. 10, 430-436, Jul. 1962.
doi:10.1109/TAP.1962.1137890

11. Djerafi, T. and K. Wu, "A low-cost wideband 77-GHz planar Butler matrix in SIW technology," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4949-4954, Oct. 2012.
doi:10.1109/TAP.2012.2207309

12. Cheng, Y. J., C. A. Zhang, and Y. Fan, "Miniaturized multilayer folded substrate integrated waveguide Butler matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011.
doi:10.2528/PIERC11020502

13. Djerafi, T. and K. Wu, "Multilayered substrate integrated waveguide 4×4 Butler matrix," Int. J. RF Microw. Comput.-Aided Eng., Vol. 22, No. 3, 336-344, Feb. 2012.
doi:10.1002/mmce.20602

14. Yang, Q., Y. Ban, J. Lian, Z. Yu, and B. Wu, "SIW Butler matrix with modified hybrid coupler for slot antenna array," IEEE Access, Vol. 4, 9561-9569, 2016.
doi:10.1109/ACCESS.2016.2645938

15. Lian, J., Y. Ban, Y. Wu, and L. Zhong, "Miniaturized multibeam array antenna based on E-plane Butler matrix for 5G application," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1031-1032, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8609010

16. Mbaye, M., L. Talbi, K. Hettak, and A. Kabiri, "Design of 15 dB directional coupler using substrate integrated waveguide technology," Microwave Opt. Technol. Lett., Vol. 54, 970-973, Apr. 2012.
doi:10.1002/mop.26678

17. Sellal, K., L. Talbi, T. A. Denidni, and J. Lebel, "Design and implementation of a substrate integrated waveguide phase shifter," IET Microw. Antennas Propag., Vol. 2, No. 2, 194-199, Mar. 2008.
doi:10.1049/iet-map:20070135