Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-22

A Continuous-Discontinuous Galerkin Method for Electromagnetic Simulations Based on an All-Frequency Stable Formulation

By Su Yan
Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021
doi:10.2528/PIERM21100412

Abstract

In this paper, a potential-based partial-differential formulation, called the all-frequency stable formulation, is presented for the accurate and robust simulation of electromagnetic problems at all frequencies. Due to its stability from (near) dc to microwave frequencies, this formulation can be applied to simulate wide-band and multiscale problems without encountering the infamous low-frequency breakdown issue or applying basis function decompositions such as the tree-cotree splitting technique. To provide both efficient and flexible numerical solutions to the electromagnetic formulation, a mixed continuous-discontinuous Galerkin (CDG) method is proposed and implemented. In regions with homogeneous media, the continuous Galerkin method is employed to avoid the introduction of duplicated degrees of freedom (DoFs) on the elemental interfaces, while on the interfaces of two different media, the discontinuous Galerkin method is applied to permit the jump of the normal components of the electromagnetic fields. Numerical examples are provided to validate and demonstrate the proposed numerical solver for problems in a wide electromagnetic spectrum.

Citation


Su Yan, "A Continuous-Discontinuous Galerkin Method for Electromagnetic Simulations Based on an All-Frequency Stable Formulation," Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021.
doi:10.2528/PIERM21100412
http://jpier.org/PIERM/pier.php?paper=21100412

References


    1. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 1995.

    2. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.

    3. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley, Hoboken, NJ, USA, 2010.

    4. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley, Hoboken, NJ, 2014.

    5. Chew, W. C., J.-M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, MA, USA, 2001.

    6. Manges, J. B. and Z. J. Cendes, "Tree-cotree decompositions for first-order complete tangential vector finite elements," Int. J. Numer. Methods Eng., Vol. 40, 1667-1685, 1997.
    doi:10.1002/(SICI)1097-0207(19970515)40:9<1667::AID-NME133>3.0.CO;2-9

    7. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, 98-101, Jan. 1998.
    doi:10.1109/20.43865

    8. Lee, S.-C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 8, 1897-1905, Aug. 2003.
    doi:10.1109/TMTT.2003.815263

    9. Badics, Z. and J. Pávó, "Full wave potential formulation with low-frequency stability including ohmic losses," IEEE Trans. Magn., Vol. 51, No. 3, 7402204, Mar. 2015.
    doi:10.1109/TMAG.2014.2362114

    10. Dyczij-Edlinger, R., G. Peng, and J.-F. Lee, "A fast vector-potential method using tangentially continuous vector finite elements," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 6, 863-868, 1998.
    doi:10.1109/22.681214

    11. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4355-4364, Oct. 2016.
    doi:10.1109/TAP.2016.2593748

    12. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
    doi:10.2528/PIER14060904

    13. Zhao, Y. and W. N. Fu, "A new stable full-wave Maxwell solver for all frequencies," IEEE Trans. Magn., Vol. 53, No. 6, 7200704, Jun. 2017.

    14. Yan, S., "All-frequency stable potential-based formulation for electromagnetic modeling and simulation," Proc. IEEE Antennas Propag. Symp., Atlanta, GA, USA, Jul. 2019.

    15. Dumbser, M., M. Käser, and E. F. Toro, "An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity," Geophys. J. Int., Vol. 171, 695-717, 2007.
    doi:10.1111/j.1365-246X.2007.03427.x

    16. Cockburn, B., G. E. Karniadakis, and C.-W. Shu, "The development of discontinuous Galerkin methods," Discontinuous Galerkin Methods: Theory, Computation and Applications (Lecture Notes in Computational Science and Engineering), Vol. 11, 3-50, Springer-Verlag, New York, NY, USA, 2000.

    17. Zhang, M. and C.-W. Shu, "An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations," Math. Models Methods Appl. Sci., Vol. 13, No. 3, 395-413, Mar. 2003.
    doi:10.1142/S0218202503002568

    18. Cockburn, B. and C. W. Shu, "Runge-Kutta discontinuous Galerkin methods for convection dominated problems," J. Sci. Comput., Vol. 16, 173-261, 2001.
    doi:10.1023/A:1012873910884

    19. Cockburn, B. and C.-W. Shu, "The local discontinuous Galerkin method for time-dependent convection-diffusion systems," SIAM J. Numer. Anal., Vol. 35, 2440-2463, 1998.
    doi:10.1137/S0036142997316712

    20. Hesthaven, J. S. and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, New York, 2008.

    21. Descombes, S., C. Durochat, S. Lanteri, L. Moya, C. Scheid, and J. Viquerat, "Recent advances on a DGTD method for time-domain electromagnetics," Photonics and Nanostructures - Fundamentals and Applications, Vol. 11, 291-302, 2013.
    doi:10.1016/j.photonics.2013.06.005

    22. Lu, T., P. W. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," J. Comput. Physics, Vol. 200, No. 2, 549-580, Nov. 2004.
    doi:10.1016/j.jcp.2004.02.022

    23. Gedney, S. D., C. Luo, J. A. Roden, R. D. Crawford, B. Guernsey, J. A. Miller, T. Kramer, and E. W. Lucas, "The discontinuous Galerkin finite-element time-domain method solution of Maxwell's equations," Applied Comput. Electromag. Society J., Vol. 24, No. 2, 129-142, Apr. 2009.

    24. Xiao, T. and Q. H. Liu, "Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell's equations with well-posed perfectly matched layer," Microwave Opt. Technol. Lett., Vol. 46, No. 5, 459-463, 2005.
    doi:10.1002/mop.21016

    25. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A non-spurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 1-3, Jan. 2010.
    doi:10.1109/LMWC.2009.2035941

    26. Tobón, L. E., Q. Ren, and Q. H. Liu, "A new efficient 3D discontinuous Galerkin time domain (DGTD) method for large and multiscale electromagnetic simulations," J. Computat. Phys., Vol. 283, 374-387, Feb. 2015.
    doi:10.1016/j.jcp.2014.12.008

    27. Li, P. and L. J. Jiang, "A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 113-115, Mar. 2013.
    doi:10.1109/LMWC.2013.2246149

    28. Li, P., Y. F. Shi, L. J. Jiang, and H. Bağci, "A hybrid time-domain discontinuous Galerkin-boundary integral method for electromagnetic scattering analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2816-2841, May 2014.

    29. Alvarez, J., L. D. Angulo, M. F. Pantoja, A. R. Bretones, and S. G. Garcia, "Source and boundary implementation in vector and scalar DGTD," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1997-2003, Jun. 2010.
    doi:10.1109/TAP.2010.2046857

    30. Alvarez, J., L. D. Angulo, A. R. Bretones, and S. G. Garcia, "A spurious-free discontinuous Galerkin time-domain method for the accurate modeling of microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 8, 2359-2369, Aug. 2012.
    doi:10.1109/TMTT.2012.2202683

    31. Angulo, L. D., J. Alvarez, M. F. Pantoja, S. G. Garcia, and A. R. Bretones, "Discontinuous Galerkin time domain methods in computational electrodynamics: State of the art," FERMAT: Forum for Electromagnetic Research Methods and Application Technologies, Vol. 10, 1-24, Aug. 2015.

    32. Chen, G., L. Zhao, W. Yu, S. Yan, K. Zhang, and J.-M. Jin, "A general scheme for the DGTD modeling and S-parameter extraction of inhomogeneous waveports," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 4, 1701-1712, Apr. 2018.
    doi:10.1109/TMTT.2017.2785800

    33. Yan, S., A. D. Greenwood, and J.-M. Jin, "Modeling of plasma formation during high-power microwave breakdown in air using the discontinuous Galerkin time-domain method (invited paper)," IEEE J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 2-13, Jun. 2016.
    doi:10.1109/JMMCT.2016.2559515

    34. Yan, S., A. D. Greenwood, and J.-M. Jin, "Simulation of high-power microwave air breakdown modeled by a coupled Maxwell-Euler system with a non-Maxwellian EEDF," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1882-1893, Apr. 2018.
    doi:10.1109/TAP.2018.2804482

    35. Chang, C.-P., G. Chen, S. Yan, and J.-M. Jin, "Waveport modeling for the DGTD simulation of electromagnetic devices," Int. J. Numer. Model. El., 1-9, Feb. 2017.

    36. Klöckner, A., T. Warburton, J. Bridge, and J. S. Hesthaven, "Nodal discontinuous Galerkin methods on graphics processors," J. Comput. Phys., Vol. 228, No. 21, 7863-7882, 2009.
    doi:10.1016/j.jcp.2009.06.041

    37. Baumann, C. E. and J. T. Oden, "A discontinuous hp finite element method for convection-diffusion problems," Comput. Methods Appl. Mech. Engrg., Vol. 175, 311-341, 1999.
    doi:10.1016/S0045-7825(98)00359-4

    38. Yan, S., C.-P. Lin, R. R. Arslanbekov, V. I. Kolobov, and J.-M. Jin, "A discontinuous Galerkin timedomain method with dynamically adaptive Cartesian meshes for computational electromagnetics," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3122-3133, Jun. 2017.
    doi:10.1109/TAP.2017.2689066

    39. Yan, S. and J.-M. Jin, "A dynamic p-adaptive DGTD algorithm for electromagnetic and multiphysics simulations," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2446-2459, May 2017.
    doi:10.1109/TAP.2017.2676724

    40. Arnold, D. N., F. Brezzi, B. Cockburn, and L. D. Marini, "Unified analysis of discontinuous Galerkin methods for elliptic problems," SIAM J. Numer. Anal., Vol. 39, No. 5, 1749-1779, 2002.
    doi:10.1137/S0036142901384162

    41. Tian, C.-Y., Y. Shi, and C. H. Chan, "Interior penalty discontinuous Galerkin time-domain method based on wave equation for 3-D electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7174-7184, 2017.
    doi:10.1109/TAP.2017.2756678

    42. Tian, C.-Y., Y. Shi, and C. H. Chan, "An improved vector wave equation-based discontinuous Galerkin time domain method and its hybridization with Maxwell's equation-based discontinuous Galerkin time domain method," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6170-6178, 2018.
    doi:10.1109/TAP.2018.2866992

    43. Yang, Q., Y. Shi, Z. G. Ban, and S. C. Zhu, "A nodal discontinuous Galerkin time-domain method based on wave equation," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 7, 1083-1087, 2020.
    doi:10.1109/LAWP.2020.2988916

    44. Coulomb, J. L., "Finite element three dimensional magnetic field computation," IEEE Trans. Magn., Vol. 17, 3241-3246, 1981.
    doi:10.1109/TMAG.1981.1061587

    45. Demerdash, N. A. and R. Wang, "Theoretical and numerical difficulties in 3-D vector potential methods in finite element magnetostatic computations," IEEE Trans. Magn., Vol. 26, 1656-1658, 1990.
    doi:10.1109/20.104481

    46. Yan, S. and J.-M. Jin, "A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media," J. Comput. Phys., Vol. 334, 392-418, Apr. 2017.
    doi:10.1016/j.jcp.2017.01.012