Vol. 103
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-16
Polarization Sensitive Dual-Band Metasurface Lens for X-Band Applications
By
Progress In Electromagnetics Research M, Vol. 103, 141-149, 2021
Abstract
This paper presents a dual-band polarization dependent phase gradient metasurface (PGMS) lens based on phase compesation method. The proposed metasurface (MTS) consists of a multi-layered unitcell with elliptical structures encircled by a square loop. Owing to the elliptical shape, the unitcell produces an independent phase control for different polarizations of incident wave at two operating frequencies. The present work is aimed to design a dual band gain enhancement MTS lens antenna in the broadside direction at 10 GHz and 12 GHz. The proposed MTS is designed by one-to-one spatial phase mapping with major and minor axes of the elliptical unitcell at 10 and 12 GHz for x- and y-polarized incident waves, respectively. The performance of the MTS is validated by placing two linearly polarized patch antennas operating at 10 GHz and 12 GHz at the focal distance. The simulation and measured results show a gain enhancement of 10 dB in the frequency range of [9.5-10.1] GHz and [11.6-12.1] GHz for x- and y-polarized waves, respectively.
Citation
Pallapati Vinod Kumar, and Basudeb Ghosh, "Polarization Sensitive Dual-Band Metasurface Lens for X-Band Applications," Progress In Electromagnetics Research M, Vol. 103, 141-149, 2021.
doi:10.2528/PIERM21051605
References

1. Chahat, N., E. Decrossas, D. Gonzalez-Ovejero, O. Yurduseven, M. J. Radway, R. E. Hodges, P. Estabrook, J. D. Baker, D. J. Bell, T. A. Cwik, et al. "Advanced cubesat antennas for deep space and earth science missions: A review," IEEE Antennas and Propagation Magazine, Vol. 61, No. 5, 37-46, 2019.
doi:10.1109/MAP.2019.2932608

2. Hodges, R. E., N. Chahat, D. J. Hoppe, and J. D. Vacchione, "A deployable high-gain antenna bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 39-49, 2017.
doi:10.1109/MAP.2017.2655561

3. Babuscia, A., T. Choi, J. Sauder, A. Chandra, and J. Thangavelautham, "Inflatable antenna for CubeSats: Development of the X-band prototype," 2016 IEEE Aerospace Conference, 1-11, IEEE, 2016.

4. Hodges, R. E., D. J. Hoppe, M. J. Radway, and N. E. Chahat, "Novel deployable reflectarray antennas for CubeSat communications," 2015 IEEE MTT-S International Microwave Symposium, 1-4, IEEE, 2015.

5. Sauder, J. F., M. Arya, N. Chahat, E. Thiel, S. Dunphy, M. Shi, G. Agnes, and T. Cwik, "Deployment mechanisms for high packing efficiency One-Meter Reflectarray Antenna (OMERA),", AIAA Scitech 2019 Forum, 0755, 2019.

6. Minatti, G., F. Caminita, E. Martini, M. Sabbadini, and S. Maci, "Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3907-3919, 2016.
doi:10.1109/TAP.2016.2589969

7. Patel, A. M. and A. Grbic, "Modeling and analysis of printed-circuit tensor impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 211-220, 2012.
doi:10.1109/TAP.2012.2220092

8. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

9. Cai, T., G.-M. Wang, X.-F. Zhang, J.-G. Liang, Y.-Q. Zhuang, D. Liu, and H.-X. Xu, "Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5629-5636, 2015.
doi:10.1109/TAP.2015.2496115

10. Lee, Y., S.-J. Kim, H. Park, and B. Lee, "Metamaterials and metasurfaces for sensor applications," Sensors, Vol. 17, No. 8, 1726, 2017.
doi:10.3390/s17081726

11. Joy, V., A. Dileep, P. Abhilash, R. U. Nair, and H. Singh, "Metasurfaces for stealth applications: A comprehensive review," Journal of Electronic Materials, 1-20, 2021.

12. Afzal, M. U. and K. P. Esselle, "Steering the beam of medium-to-high gain antennas using near-field phase transformation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1680-1690, 2017.
doi:10.1109/TAP.2017.2670612

13. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, No. 2, 026401, 2017.
doi:10.1088/1361-6633/aa8732

14. Erfani, E., M. Niroo-Jazi, and S. Tatu, "A high-gain broadband gradient refractive index metasurface lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1968-1973, 2016.
doi:10.1109/TAP.2016.2526052

15. Junyao, W., F. Junpeng, S. Hao, L. Chang, and C. Yongzhi, "Efficiency-tunable terahertz focusing lens based on graphene metasurface," Opto-Electronic Engineering, Vol. 48, No. 4, 200319, 2021.

16. He, B., J. Fan, Y. Cheng, F. Chen, H. Luo, and R. Gong, "Thermally tunable terahertz vortex beam generator based on an InSb metasurface," JOSA B, Vol. 38, No. 5, 1518-1524, 2021.
doi:10.1364/JOSAB.420928

17. Li, H., G. Wang, H.-X. Xu, T. Cai, and J. Liang, "X-band phase-gradient metasurface for high-gain lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5144-5149, 2015.
doi:10.1109/TAP.2015.2475628

18. Pang, Y., Y. Li, B. Qu, M. Yan, J.Wang, S. Qu, and Z. Xu, "Wideband RCS reduction metasurface with a transmission window," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7079-7087, 2020.
doi:10.1109/TAP.2020.2995429

19. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 076401, 2016.
doi:10.1088/0034-4885/79/7/076401

20. Liang, J.-J., G.-L. Huang, J.-N. Zhao, Z.-J. Gao, and T. Yuan, "Wideband phase-gradient metasurface antenna with focused beams," IEEE Access, Vol. 7, 20 767-20 772, 2019.
doi:10.1109/ACCESS.2019.2898550

21. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Applied Physics Letters, Vol. 102, No. 23, 231116, 2013.
doi:10.1063/1.4810873

22. Nayeri, P., F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications, 2018.
doi:10.1002/9781118846728

23. Yang, F., Y. Kim, J. Huang, and A. Elsherbeni, "A single-layer tri-band reflectarray antenna design," 2007 IEEE Antennas and Propagation Society International Symposium, 5307-5310, IEEE, 2007.
doi:10.1109/APS.2007.4396745

24. Ren, Y., Y. Lu, T. Zang, Y. Wang, Y. Dai, and P. Wang, "Multi-mode resonance properties of two-dimensional metal-dielectric-metal fishnet metasurface at visible wavelengths," Optics Express, Vol. 25, No. 23, 28 417-28 426, 2017.
doi:10.1364/OE.25.028417

25. Ghaderi, B., V. Nayyeri, M. Soleimani, and O. M. Ramahi, "Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting," Scientific Reports, Vol. 8, No. 1, 1-12, 2018.

26. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Independent controls of differently-polarized reflcted waves by anisotropic metasurfaces," Scientific Reports, Vol. 5, 9605, 2015.
doi:10.1038/srep09605

27. Jia, S. L., X. Wan, D. Bao, Y. J. Zhao, and T. J. Cui, "Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface," Laser & Photonics Reviews, Vol. 9, No. 5, 545-553, 2015.
doi:10.1002/lpor.201500094

28. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multifunctional wavefront manipulation based on chiral structure metasurface for terahertz wave," Journal of Physics D: Applied Physics, Vol. 53, No. 2, 025109, 2019.
doi:10.1088/1361-6463/ab4d76

29. Fan, J., Y. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies," Journal of Physics D: Applied Physics, Vol. 54, No. 11, 115101, 2021.
doi:10.1088/1361-6463/abcdd0

30. Zainud-Deen, S., S. Gaber, H. Malhat, and K. Awadalla, "Single feed dual-polarization dual-band transmitarray for satellite applications," 2013 30th National Radio Science Conference (NRSC), 27-34, IEEE, 2013.

31. Li, H.-P., G.-M. Wang, X.-J. Gao, J.-G. Liang, and H.-S. Hou, "An X/Ku-band focusing anisotropic metasurface for low cross-polarization lens antenna application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.
doi:10.2528/PIER17032807

32. Cai, T., G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, "High-performance transmissive meta-surface for C-/X-band lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3598-3606, 2017.
doi:10.1109/TAP.2017.2705228

33. Kumar, P. V. and B. Ghosh, "A dual-band multi-layer metasurface lens," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-4, IEEE, 2018.

34. Abdelrahman, A. H., F. Yang, A. Z. Elsherbeni, and P. Nayeri, "Analysis and design of transmitarray antennas," Synthesis Lectures on Antennas, Vol. 6, No. 1, 1-175, 2017.
doi:10.2200/S00749ED1V01Y201612ANT012